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Abstract

We consider the tetrahedral subdivision problem for a polygonal prismatic mesh with prescribed boundary constraints and without
Steiner points. We prove the necessary and su� cient conditions for the existence of solutions, and also provide algorithms to
compute such a constrained subdivision if there exists one. The result applies to arbitrary k-gonal prismatic meshes and even
mixed prismatic meshes, allowing arbitrary topology for the base mesh and arbitrary constraints on the boundary.
c
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1. Introduction

1.1. Motivations

Prismatic meshes are widely used as volumetric models in various areas, such as computational �uid dynamics,
computer-aided-design, and computational topology. They are particularly useful for modeling volumes with layered
structures. For example, in modeling the boundary for viscous �ows [5,6], a prismatic boundary-layer mesh can
e� ectively reduce the computational errors. In modeling the dynamic moving interface for crystal growth [4], a
prismatic face o� setting mesh is used to extend a Lagrangian surface mesh or level-set iso-surface. In addition,
prismatic meshes can be used to model the three-dimensional space-time �nite elements (i.e.space-time slabs) [7].

On the other hand, tetrahedral meshes are often preferable to prismatic meshes in many tasks, especially for the
purpose of numerical simulation. For example, many �nite element solvers, such as adaptive mesh re�nement in
scienti�c computation, are designed for tetrahedral meshes but not prismatic elements [8,9]. Many e� cient com-
puter graphics algorithms, such as those for volume rendering, iso-contouring and particle advection, only work for
tetrahedral meshes [10,11].
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More recently, we have also seen an interesting trend of using tetrahedral meshes and their high-dimensional
generalization, simplicial complexes, as a modeling tool in several blossoming �elds. In machine learning, for exam-
ple, they have been used in important clustering problems [13,14], and are making their way into more challenging
problems, such as arti�cial general intelligence (AGI), lifelong learning machine (L2M) [15], and non-von Neuman-
n computer systems, with various emerging real world applications. In quantum computing, they have also played
important roles in some quantum algorithms for topological and geometric analysis for large data sets [16].

In brief, subdividing a prismatic mesh into a tetrahedral mesh has become a highly desirable task. In this work,
we focus on a constrained version of this prismatic mesh subdivision problem, where the cutting on the boundary
surface of the prismatic mesh is prescribed, and the internal cutting has to conform to the boundary cutting. Such
constraints are very critical in certain applications, such as discrete tangent bundle construction [19], tetrahedralisa-
tions containing knotted and linked line segments [20] and so on. For example, to construct a discrete tangent bundle
for 2-dimensional spheres [19], one needs to subdivide two prismatic meshes into tetrahedral meshes and glue them
together along their boundary surfaces. The gluing operation needs to satisfy certain topological requirements. As a
result, the boundary triangulation of the two prismatic meshes needs to have a very special pattern, which gives rise
to a boundary constraint that the subdivision process must follow strictly.

1.2. Some Concepts

A prismis a volumetric element constructed by lifting up a polygon along a line segment. The polygon is called
thebase, and the quadrilateral faces on the side are calledwalls. The base could be a triangle, quadrilateral, or a k-gon
in general. The resulting prism is called atriangular prism, quadrilateral prism, andk-gonal prismaccordingly.

A prismatic meshis a one layer volumetric mesh by lifting up a polygonal mesh (surface mesh) along a line
segment, or multiple layers stacked up. The polygonal surface mesh is called thebase meshof the prismatic mesh.
The base mesh could be a k-gonal mesh, such ask = 3 for a triangular mesh,k = 4 for a quadrilateral mesh and
so on, or a mixed polygonal mesh that consists of a mixture of triangle, quadrilateral and/or so on. Accordingly,
the corresponding prismatic mesh is called ak-gonal prismatic mesh(e.g. triangular prismatic mesh, quadrilateral
prismatic mesh, and so on) or amixed prismatic mesh.

A tetrahedral subdivisionfor a prismatic mesh is a tetrahedral mesh acquired by cutting each prism in the prismatic
mesh into a set of tetrahedra. If the cutting on the boundary walls are given upon input, we call such a set of boundary
cutting aboundary constraint, the prismatic mesh aconstrained prismatic mesh, and the corresponding subdivision
problem aconstrained tetrahedral subdivision. A boundary constraint is auniform boundary constraintif all the
boundary walls are cut in the same way, either all along thediagonal (from lower-left to upper-right) or all along
theanti-diagonal(from lower-right to upper-left), or amixed boundary constraintotherwise, where some walls are
cut along the diagonal and some along the anti-diagonal. We distinguish between the diagonal and the anti-diagonal
for clari�cation purpose on the cutting �ow problem (section 2), where a diagonal cutting corresponds to an out-�ow
while an anti-diagonal cutting corresponds to an in-�ow.

The main problem of this work is de�ned as Problem 1.

Problem 1 (The Constrained Tetrahedral Subdivision Problem).Given a prismatic mesh P with prescribed bound-
ary constraints, �nd a (if there is any) tetrahedral subdivision T for P, without inserting extra vertices. Namely, �nd
a way to cut each prism in P into a set tetrahedra, such that the cutting on the boundary walls of P agrees with the
prescribed boundary constraints.

1.3. Related Work

The subdivision problem on a single k-gonal prism has been well studied. Given a single triangular prism (k = 3),
there are eight possible ways to cut the side walls. Two of them are known as Schönhardt's polyhedron [1], which
do not allow a tetrahedral subdivision of the given prism [2]. This result has been generalized to k-gonal prisms (for
arbitraryk >= 3) [3]. Basically for an arbitrary k-gonal prism, if the boundary cutting is uniform, it is impossible to
subdivide the prism into tetrahedra without inserting Steiner points. Note that all these results considered boundary
constraints, but only for subdividing a single k-gonal prism, not for a k-gonal prismatic mesh consisting of multiple
prisms.
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Fig. 1. Subdividing a constrained triangular prismatic mesh, by solving the constrained cutting �ow problem on the base mesh (see Algorithm 1).
(a) shows the input triangular prismatic mesh, with prescribed boundary constraints (red lines). (b) shows constrained cutting �ow computed on
the base mesh, where the red �ow across boundary edges are the prescribed constraints, the blue �ow across internal edges are computed results.
(c) shows the resulting tetrahedral subdivision induced by the cutting �ow, where each prism has been cut (along blue lines) into a set of tetrahedra.

For subdividing a prismatic mesh consisting of multiple prisms, there is a rich history but mostly in an uncon-
strained fashion. For example, in [12] the authors proposed a method to subdivide volumetric meshes consisting of
prisms ofk = 3 (triangular prisms) andk = 4 (hexahedra). It is not clear whether the method applies to higher k-gonal
prisms (k > 4). After all, that work, among a lot others, did not consider prescribed boundary constraints, meaning
that it requires the cutting on the boundary to be freely determined during the subdivision.

Compared to the unconstrained version, the constrained version of this tetrahedral subdivision problem has not
drawn that much attention yet. Among the limited literature along this line, [17] proposed acutting patternmethod
to subdivide constrained triangular prismatic meshes (k = 3), and the authors showed that the method works on base
meshes with disk topology. Later on, [18] proposed acutting �ow method for subdividing constrained triangular
prismatic meshes (k = 3), which works for arbitrary base mesh topology. The authors also provided and proved a
necessary and su� cient condition for the existence of such a subdivision. However, these results do not necessarily
apply to arbitrary k-gonal prismatic meshes for larger k.

1.4. Contributions

In this work, we extensively studied the constrained tetrahedral subdivision problem for prismatic meshes, and
provided de�nite answers to two fundamental questions:

� Existence: Does there exist such a subdivision for a given boundary constraint?
� Algorithms: How to compute such a constrained subdivision if there exists one?

In particular:

� We proved the existence of solutions and proposed an e� cient algorithm for subdividing triangular prismatic
meshes (k = 3), with a new proof and a simpli�ed algorithm compared to [18]; (Section 3)

� We extended the above result fork = 3 to arbitrary k-gonal (k > 3) prismatic meshes; (Section 4)
� We generalized the above results to mixed prismatic meshes; (Section 5)
� We showed that the above results apply to arbitrary base mesh topology. (Section 5)

2. Basic Building Blocks

In this section, we lay out some basic building blocks that are needed to derive the major results of this paper.
As explained in [18], the subdivision problem for a prismatic mesh can be formulated as an equivalent cutting �ow

problem on the base mesh, thus converting a volumetric problem to a surface problem. But the de�nitions in [18] are
limited to triangular prismatic meshes and triangular meshes only.
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Here we �rst generalize the notion of cutting �ow (De�nition 1) and the constrained cutting �ow problem (Problem
2) to allow arbitrary polygonal meshes. Then we revisit the relation between the constrained tetrahedral subdivision
problem and the constrained cutting �ow problem, in the original setting (Proposition 1) as well as a generalized
setting (Proposition 2).

De�nition 1 (Cutting Flow). Given a polygonal surface mesh M, a cutting �ow is a �ow assignment on the edge set
of M, such that:

� Each edge of M is assigned with a �ow, crossing the edge from one side to the other; and
� Each face of M has both in-�ow and out-�ow assignment to its edges.

Problem 2 (The Constrained Cutting Flow Problem). Given a polygonal surface mesh M, �nd a cutting �ow (if
there is any) on M, where the �ow assignment on the boundary edges are prescribed. Namely, given �ow assignment
on boundary edges of M, �nd �ow assignment on internal edges of M, such that the over all �ow assignment is a
cutting �ow for M by De�nition 1.

Proposition 1. The constrained tetrahedral subdivision problem on a triangular prismatic mesh isequivalent tothe
constrained cutting �ow problem on the corresponding triangular base meshes. In other words:

� A solution to the former implies a solution to the latter; and
� A solution to the latter implies a solution to the former.

Proposition 2. The constrained tetrahedral subdivision problem on a k-gonal (k> 3) or mixed prismatic mesh can
bereduced fromthe constrained cutting �ow problem on the corresponding triangular base meshes. In other words,
the former is harder than the latter:

� A solution to the former implies a solution to the latter; but
� A solution to the latter does not imply a solution to the former.

For triangular prismatic meshes, Proposition 1 gives the equivalence of the constrained tetrahedral subdivision
problem and the constrained cutting �ow problem on the corresponding base mesh (a triangular mesh). That means
in order to solve the former, we just need to solve the latter, and a solution for the latter will give us a solution for the
former as well. This is exactly what we will do in Section 3.2 when designing Algorithm 1 for triangular prismatic
meshes.

In addition, Proposition 1 implies that if there is no solution to the constrained cutting �ow problem, then there
is no solution to the constrained tetrahedral subdivision problem. This fact is utilized in our proof for Theorem 1
regarding existence of solutions over triangular prismatic meshes.

According to Proposition 2, however, there is no such problem equivalence for other types of prismatic meshes,
such as k-gonal (k > 3) or mixed prismatic meshes. For those meshes, a solution to the constrained cutting �ow
problem does not give us a solution to the constrained tetrahedral subdivision problem. Therefore in Algorithm 2 for
subdividing k-gonal (k > 3) prismatic meshes and Algorithm 3 for subdividing mixed prismatic meshes, we can not
utilize a cutting �ow solution on the original base mesh directly. Instead, we have to convert it to a triangular prismatic
mesh problem �rst.

Nevertheless, Proposition 2 is still useful in our work. For a k-gonal (k > 3) or mixed prismatic mesh, there will
be no solution to the constrained tetrahedral subdivision problem if there is no solution to the constrained cutting �ow
problem. This fact is utilized in our proof for Theorem 2 and Theorem 3 regarding existence of solutions over k-gonal
(k > 3) or mixed prismatic meshes.

With the notion of cutting �ow, a constrained prismatic mesh, which is a prismatic mesh with prescribed cutting
on the boundary walls, can be equivalently represented by aconstrained base mesh, which is a base mesh with
prescribed �ow assignment on the boundary edges. In particular, there is a special type of constrained base mesh,
called uniformly constrained tree (De�nition 2), which plays an important role in this work.
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Fig. 2. Constrained cutting �ow on triangular base meshes, where red arrows are prescribed boundary constraints and blue arrows are computed
internal �ows. (a) is uniformly constrained tree, which does not allow any cutting �ow. (b) is a tree but not uniformly constrained, as the lower-left
boundary �ow is di� erent to others. (c) is uniformly constrained but not a tree.

De�nition 2 (Uniformly Constrained Tree). A polygonal surface mesh M is called auniformly constrained treeif
and only if:

� The dual graph of M is acyclic, i.e. a tree; and
� M has uniform boundary constraints, i.e. all the boundary edges of M are assigned with the same �ow, either

all in-�ow or all out-�ow.

Note that this de�nition not only applies to triangular meshes, as illustrated in Figure 2(a), but also applies to other
types of polygonal base meshes, such as quadrilateral meshes and so on. We will refer to this de�nition extensively in
the rest of the paper for di� erent types of base meshes, both in their existence theorems and the subdivision algorithms.

3. Subdividing Triangular Prism Mesh (k = 3)

In this section we consider subdividing a constrained triangular prismatic mesh. For such a prismatic mesh, the
base mesh is a triangular mesh. For simplicity, we assume the base mesh is a topological disk, while the result can be
generalized to more complicated topologies (see Section 5).

In the rest of this section, we will prove existence of solutions and provide an algorithm to �nd such a solution if
there exists one. Both the proof and the algorithm are di� erent to those in [18].

3.1. Existence of Subdivisions (k= 3)

For a constrained triangular prismatic mesh, the existence of tetrahedral subdivisions is given in Theorem 1. Some
examples are shown in Figure 2 shows a few examples, where (a) does not allow any solution while (b) and (c) do.

Theorem 1. A constrained triangular prismatic mesh allows a tetrahedral subdivision if and only if the base mesh is
NOT a uniformly constrained tree.

Equivalently, Theorem 1 can be stated as:A constrained triangular prismatic mesh does NOT allow a tetrahedral
subdivision if and only if the base mesh is a uniformly constrained tree. To prove it, we need to show the following
two claims hold:

� Claim 1: If the base mesh is a uniformly constrained tree, then the corresponding constrained triangular pris-
matic mesh does NOT have any tetrahedral subdivision;

� Claim 2: If the base mesh is NOT a uniformly constrained tree, then corresponding constrained triangular
prismatic mesh has at least one tetrahedral subdivision.
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(a) (b)

Fig. 3. Slicing a general triangular base mesh (a) into a tree (b), both with boundary constraints (red lines), as done at Line 6 of Algorithm 1. Note
that even if the input mesh is uniformly constrained, such as the one in (a), the resulting tree is always mixed constrained; this is because the new
boundary �ows (short red lines) that are made up across the newly sliced boundary always consist of both in-�ows and out-�ows.

Sketch of proof for Claim 1.Here we outline a proof by induction onn, which is the number of triangular faces in the
base mesh. Without loss of generality, we assume all the boundary edges have constraint+1, i.e. an in-�ow.

If n = 1, the base mesh consists of a single triangle, with all three edges carrying in-�ow assignment (i.e. boundary
constraints). Then the corresponding prismatic mesh consists of a single triangular prism that is a Schönhardt's
polyhedron. According to [2], there is no tetrahedral subdivision for it.

Suppose Claim 1 holds forn = m(� 1). Consider a triangular prismatic meshP, whose base meshB hasn = m+ 1
faces. We can prove by contradiction thatP does not allow any tetrahedral subdivision. AssumeP has a tetrahedral
subdivision. Letf0 2 B be a leaf face in treeB, andt0 2 P be the corresponding triangular prism inP. On one hand,
by Proposition 1, there must be a cutting �ow onB, and it must �ow out of f0 and intoB � f f0g. This meansB � f f0g
is a uniformly constrained tree consisting ofm faces. Then by Claim 1, which is supposed to hold forn = m, P � f t0g
does not have any tetrahedral subdivision. On the other hand, sinceP has a tetrahedral subdivision,P � f t0gwill have
an induced tetrahedral subdivision as well, which causes a contradiction. Therefore,P does not allow any tetrahedral
subdivision; Claim 1 holds forn = m+ 1.

As a conclusion, for a base mesh with arbitrary number of triangular faces, so long as it is a uniformly constrained
tree, there is no tetrahedral subdivision.Q.E.D.

Sketch of proof for Claim 2.Here we outline a proof by construction. As we will show in section 3.2, if the base mesh
is a tree but not uniformly constrained, we can always �nd a solution using proceduresolvemixedconstrainedtree().
If the base mesh is not a tree, we can always transform it into a non-uniformly constrained tree by procedure
slice to tree() and then solve the latter again using proceduresolvemixedconstrainedtree(). As a conclusion,
so long as the base mesh is NOT a uniformly constrained tree, Algorithm 1 always returns a cutting �ow, which is
equivalent to a tetrahedral subdivision.Q.E.D.

3.2. Subdivision Algorithm (k= 3)

Given a constrained triangular prismatic mesh, we can check whether or not it allows a tetrahedral subdivision
based on Theorem 1; and if yes, compute such a tetrahedral subdivision by solving the corresponding cutting �ow
problem (see Figure 1) as follows.

� Firstly, slice the base mesh into a tree, where we assign arbitrary �ows across the cuts as new boundary con-
straints.

� Secondly, solve the constrained cutting �ow problem on the sliced base mesh.
� Finally, build a tetrahedral mesh based on the computed cutting �ow.
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Note that the way we treat the sliced base mesh in the �rst step (see Figure 3) guarantees that the new boundary
constraints always consist of both in-�ows and out-�ows. Therefore the sliced base mesh is a tree with mixed boundary
constraints. According to Lemma 3 in [18], such a base mesh always allows a cutting �ow.

Algorithm 1 captures this whole process, including checking the existence and computing a solution. The input to
this algorithm is a triangular prismatic meshP, including the boundary constraints. The output is a tetrahedral mesh
T, which is a subdivision of the input prismatic meshP, or empty if there does not exist any tetrahedral subdivision
for the input mesh.

Algorithm 1: Subdividing constrained triangular prismatic mesh
Input : A constrained triangular prismatic meshP
Output : A tetrahedral subdivisionT of P

1 B  get constrainedbasemesho f(P) ;
2 if is tree(B) and is uni f ormly constrained(B) then
3 return ? ;
4 end
5 if is not tree(B) then
6 B  slice to tree(B) ;
7 end
8 solvemixedconstrainedtree(B) ;
9 T  tet meshby cutting f low(B) ;

10 return T ;

Line 1 extracts the base meshB, with boundary constraints, of the input constrained prismatic meshP.
Line 2 to 4 checks existence of solutions, and return empty if there is no solution. This check is directly based

on the necessary and su� cient condition of existence of solutions, as given in Theorem 1. After getting through this
check, it is guaranteed to have a solution, and the rest of the algorithm will return such a solution.

Line 5 to 7 transforms a general triangular mesh into (if not yet) a simple form: a tree with mixed boundary
constraints. See Figure 3 for an example. This is done by procedureslice to tree(). There are two steps involved
here. First, slice the input mesh into a tree, which can be easily done using any spanning tree algorithm. Second,
make up the boundary constraints for the newly introduced boundary edges. For each edge that is sliced open, just
assign an in-�ow on one side of the cut and an out-�ow on the other (Figure 3(b)). Such a constraint making up
scheme not only conforms to the de�nition of a cutting �ow (having opposite signs on two sides of each internal
edge), but also guarantees that the resulting tree has mixed boundary constraints, which is guaranteed to be solvable
as in below.

Line 8 computes a cutting �ow solution for a tree with mixed boundary constraints. This is done by procedure
solvemixedconstrainedtree(). Here we can simply follow the corresponding procedure in [18]. First, solve the
uniformly constrained branches iteratively. There is only one way to direct the cutting �ow through such a branch,
thus the solution is unique here. Second, solve mixed constrained branches iteratively. There could be multiple ways
to direct the cutting �ow through such a branch, and we just need to pick an arbitrary one. As shown in [18], such a
procedure is guaranteed to converge to a valid cutting �ow.

Line 9 maps a cutting �ow on the base mesh back to a tetrahedral subdivision of the input prismatic mesh. This
is done by proceduretet meshby cutting f low(), by cutting each triangular prism in the input prismatic mesh into 3
tetrahedra, in a way indicated by the cutting �ow on the corresponding base triangular face. The resulting tetrahedral
mesh is returned in line 10.

There are two remarks for Algorithm 1. As the �rst remark, Line 4 to 6 is the major di� erence between this
algorithm and the one proposed in [18]. In the latter, a general input mesh is �rst sliced into (if not yet) a set of
topological disks. Then each topological disk is partitioned into a set of components, where each component is either
a tree or a cluster. Finally, a cluster component is solved using an advancing front algorithm and a tree component is
solved in a branch-by-branch fashion. As a comparison, Algorithm 1 in this work only needs to slice the base mesh
into a mixed constrained tree and then solve the latter accordingly, which is much simpler than that in [18].
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The second remark is that, there could be multiple valid cutting �ow solutions for a given base mesh, and Algorithm
1 only gives one possible solution. Considering the �exibility of implementing theslice to tree() procedure and
the solvemixedconstrainedtree() procedure, one can get di� erent solutions by implementing these procedures in
di� erent ways. Furthermore, such a �exibility provides options to impose extra constraints, such as one concerning
the quality of elements in the resulting tetrahedral mesh. That means this basic algorithm can be tailored to generate
special tetrahedral subdivisions that are speci�c to certain applications.

4. Subdividing K-gonal Prismatic Mesh (k > 3)

In this section we consider how to subdivide a constrained k-gonal prismatic mesh fork > 3. In other words, here
the base mesh could be a quadrilateral mesh (k = 4), a pentagonal mesh (k = 5), a hexagonal mesh (k = 6) and so on.

One question is: how exactly do thek > 3 cases di� er from thek = 3 case? One natural guess could be: convert a
k-gonal (k > 3) prismatic mesh to a triangular prismatic mesh (k = 3), and the existence arguments and construction
algorithm for the latter will work just �ne. However, things are not as straightforward as that. In fact, the algorithm
can be generalized in a pretty straightforward way, but not the existence arguments. We will explain the details in
section 4.2 and section 4.1 respectively.

4.1. Existence of Subdivisions (k> 3)

To prove the existence of solutions for thek > 3 cases, it is not as straightforward as converting to ak = 3 case.
Given a k-gonal prismatic mesh (k > 3) and converting it to a triangular prismatic mesh (k = 3), even if the latter has
no tetrahedral subdivision, it does not necessarily mean the former has no tetrahedral subdivision: there could be a
tetrahedral subdivision of the k-gonal prismatic mesh, which is not a subdivision of the triangular prismatic mesh.

In fact, this is the gap between the known result for thek = 3 case by [18] and the unknownk > 3 cases that we
are trying to tackle here. And this is why we need to treat thek = 3 case in this work di� erently with [18]. In fact, we
can easily generalize the new existence arguments fork = 3 in section 3.1 of this paper to thek > 3 cases, as shown
in below.

Given a constrained k-gonal (k > 3) prismatic mesh, the existence of tetrahedral subdivisions is given in Theorem
2. The result actually conforms to thek = 3 case very well.

Theorem 2. A constrained k-gonal (k> 3) prismatic mesh allows a tetrahedral subdivision if and only if the base
mesh is NOT a uniformly constrained tree.

(a) (b) (c)

Fig. 4. Subdividing a constrained quadrilateral (k-gonal, wherek = 4) prismatic mesh, by converting to a constrained triangular prismatic mesh
(k = 3) and subdividing the latter (see Algorithm 2). (a) shows the input quadrilateral prismatic mesh, with prescribed boundary constraints
(red lines). (b) shows subdividing (by grey lines) the base mesh into a triangular mesh (see Line 5 of Algorithm 2); this actually induces a
triangular prismatic mesh, an intermediate subdivision for the original quadrilateral prismatic mesh. (c) shows the �nal tetrahedral mesh, which is
a subdivision for the intermediate triangular prismatic mesh, as well as a subdivision for the original quadrilateral prismatic mesh.
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Algorithm 2: Subdividing constrained k-gonal prismatic mesh
Input : A constrained k-gonal prismatic meshP
Output : A tetrahedral subdivisionT of P

1 B  get constrainedbasemesho f(P) ;
2 if is tree(B) and is uni f ormly constrained(B) then
3 return ? ;
4 end
5 B0  subdivideinto triangular mesh(B) ;
6 if is not tree(B0) then
7 B0  slice to tree(B0) ;
8 end
9 solvemixedconstrainedtree(B0) ;

10 T  tet meshby cutting f low(B0) ;
11 return T ;

Equivalently, Theorem 2 can be stated as:A constrained k-gonal (k> 3) mesh does NOT allow a tetrahedral
subdivision if and only if the base mesh is a uniformly constrained tree. To prove it, we need to show the following
two claims hold:

� Claim 1: If the base mesh is a uniformly constrained tree, then the corresponding constrained k-gonal (k > 3)
prismatic mesh does NOT have any tetrahedral subdivision;

� Claim 2: If the base mesh is NOT a uniformly constrained tree, then corresponding constrained k-gonal (k > 3)
prismatic mesh has at least one tetrahedral subdivision.

Sketch of proof for Claim 1.The proof here is very similar to that for the triangular prismatic mesh (k = 3). Again,
we have a proof by induction onn, which is the number of k-gonal faces in the base mesh. Without loss of generality,
we assume all the boundary edges have constraint+1, i.e. an in-�ow.

The base case (forn = 1) is a little di� erent to that for triangular prismatic mesh (k = 3). Here the base mesh
consists of a single k-gon, with all k edges carrying in-�ow constraints. Then the corresponding constrained prismatic
mesh consists of a single constrained k-gonal prism, which is de�ned in [3] as anuntwisted polygonal prism extend-
ing a cyclically symmetric triangulation of the boundary quadrilaterals. According to [3], there is no tetrahedral
subdivision for such a prism.

The induction step and the conclusion will be the same as thek = 3 case, except for dealing with k-gonal faces
instead of triangular faces, and relying on Proposition 2 instead of Proposition 1.Q.E.D.

Sketch of proof for Claim 2.The proof here is very similar to that for the triangular prismatic mesh (k = 3). Again,
we have a proof by construction, but based on a di� erent algorithm. Basically, so long as the base mesh is NOT a
uniformly constrained tree, we can always use Algorithm 2 in section 4.2 to �nd a cutting �ow on the base mesh,
which is equivalent to a tetrahedral subdivision for the corresponding k-gonal prismatic mesh.Q.E.D.

4.2. Subdivision Algorithm (k> 3)

To compute a tetrahedral subdivision, if there is any, for a constrained k-gonal (k > 3) prismatic mesh, we basically
subdivide it into a triangular prismatic mesh (k = 3) and solve the latter accordingly. This process is captured in
Algorithm 2 and illustrated in Figure 4.

Algorithm 2 takes a k-gonal prismatic meshP, including the boundary constraints, as input. The output is a tetra-
hedral meshT, which is a subdivision of the input prismatic meshP, or empty if there does not exist any tetrahedral
subdivision for the input mesh.

Most part of the algorithm is an analog to Algorithm 1 for a triangular prismatic mesh. The major di� erence is
that, here we need an extra procedure,subdivideinto triangular mesh(), at line 5. This procedure subdivides each
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k-gonal face into a set of triangular faces, without inserting Steiner points. Again, one can implement this procedure
in di� erent ways that could lead to di� erent valid solutions.

5. Generalization and Extension

In this section we show how our results apply to more general settings, including support for mixed prismatic
meshes and arbitrary base mesh topologies.

5.1. Mixed Prismatic Meshes

Up to now, we have solved the constrained tetrahedral subdivision problem for k-gonal (k � 3) prismatic meshes,
where the prisms in an input prismatic mesh all have the same number of sides. In fact, we can extend the results to
mixed prismatic mesh, which could consist of a mixture of di� erent types of prisms, such as triangular prism (k = 3),
quadrilateral prism (k = 4), pentagonal prism (k = 5) and so on. See Figure 5(b) for an example.

The existence of solutions for constrained mixed prismatic mesh is given in Theorem 3. It is actually an analog to
Theorem 1 and Theorem 2, and the proof closely follows those for the latter two, with minor modi�cations.

Theorem 3. A constrained mixed prismatic mesh allows a tetrahedral subdivision if and only if the base mesh is NOT
a uniformly constrained tree.

To �nd a solution for a constrained mixed prismatic mesh, we propose Algorithm 3. This algorithm actually follows
the same process as Algorithm 2, except for that the input is a mixed prismatic mesh instead of a k-gonal prismatic
mesh, and all the procedures used in the algorithm should be adapted to such an input accordingly.

Algorithm 3: Subdividing constrained mixed prismatic mesh
Input : A constrained mixed prismatic meshP
Output : A tetrahedral subdivisionT of P

1 B  get constrainedbasemesho f(P) ;
2 if is tree(B) and is uni f ormly constrained(B) then
3 return ? ;
4 end
5 B0  subdivideinto triangular mesh(B) ;
6 if is not tree(B0) then
7 B0  slice to tree(B0) ;
8 end
9 solvemixedconstrainedtree(B0) ;

10 T  tet meshby cutting f low(B0) ;
11 return T ;

5.2. Arbitrary Base Mesh Topologies

All the results we have derived and proposed so far, including Algorithm 1, Algorithm 2, Algorithm 3, Theorem 1,
Theorem 2, and Theorem 3, apply not only to base meshes with simple topology, such as trees and topological disks,
but also to those with more complicated topologies. See Figure 5 for examples.

In fact, our results apply to arbitrary oriented 2-manifold base mesh with boundary, such as:

� A topological disk, including special case like a tree, and degenerated case like a single polygonal face;
� A topological disk with one or more holes;
� An open surface with one or more handles.
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(a) (b)

Fig. 5. The results of this paper support base meshes with complicated topologies (Section 5.2) and mixture of polygons (Section 5.1). (a) is a
triangular mesh, (b) is a mixed polygonal mesh consisting of triangles (in pink), quadrilaterals (in blue) and hexagons (in green). Both (a) and (b)
are topological disks with multiple holes.

This generalization can be justi�ed for both the existence theorems and the subdivision algorithms. For the exis-
tence theorems, the proof relies on arguments about cutting �ow on the dual graph of the base mesh. Those arguments
do not restrict the dual graph to any special form, it could be planar or non-planar. For the subdivision algorithms,
they rely on slicing a general base mesh into a tree. This slicing operation can be carried out on base meshes with any
type topology.

Our statement of this generalization emphasizes base mesh with boundary, i.e. open surfaces, but not those without
boundary, i.e. closed surface. It is because this work is dedicated to the constrained version of the tetrahedral sub-
division problem, which makes sense only on base mesh with boundary. Otherwise there is nowhere to impose the
constraints. For base mesh without boundary, it belongs to the unconstrained version of the tetrahedral subdivision
problem, which is beyond the scope of this work.

6. Conclusion

In this work, we investigated the constrained tetrahedral subdivision problem over prismatic meshes. In particular,
we derived and proved the necessary and su� cient condition, under which a solution exists. We also proposed linear
algorithms to �nd such a solution if there is any. The result of this work applies to arbitrary polygonal base meshes
with arbitrary topology and arbitrary boundary constraints. The resulting tetrahedral meshes can be potentially used
in both classical research areas, such as scienti�c computation, and emerging research areas of important applications,
such as arti�cial general intelligence, lifelong learning machines and quantum computing.

Remark 1.This work answers both the existence question and the algorithm question, while the former leads the
latter in two aspects.

First, the existence theorems we proved in the paper actually reveals the nature of this problem. This is the number
one challenge in this work. Once we gain such an insight into the problem, the algorithms we developed just follow
naturally, and those algorithms can be easily justi�ed by the existence theorems. Furthermore, as suggested by the
existence theorems, it turns out this problem can be solved using pretty simple algorithms, like the ones we proposed
in the paper.

Second, it is very critical to understand the existence of solutions for this problem before developing algorithms
to �nd a solution. Otherwise, one could propose an algorithm based on certain heuristics, which seems to work
practically but actually fails occasionally. In fact, as indicated by the theorems in the paper, this problem does not
have any solution in certain corner cases, while those corner cases can be easily overlooked when designing algorithms
for this problem. By providing a de�nite answer to the existence question, this work can help algorithm designers
avoid such occasional failures associated with those corner cases.

Remark 2.The result of this work is derived in the combinatorial setting. We do not consider geometry of the input
mesh, such as edge lengths (i.e. metric) or vertex positions (i.e. embedding). In fact, bringing geometry into the
picture makes the problem di� erent in multiple aspects.
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For example, in Algorithm 2 and Algorithm 3, we need to subdivide each k-gonal (k > 3) face into a set of
triangular faces, without inserting Steiner points. The way we do it here is purely combinatorial; it is always doable,
as in some sense it is equivalent to a geometry-aware setting where we assume all the vertices of the polygon are in
general convex position in a plane. But if we consider the real geometry of the input mesh, the vertices could be in
arbitrary position in 3D, and it is not clear whether or not the polygon is subdividable, unless one can give a rigorous
proof.

Another example is related to the element quality in the resulting tetrahedral mesh. The algorithms in this work
could generate multiple subdivision solutions for a given constrained prismatic mesh, since some of the procedures
we presented here can be implemented in di� erent ways, as we have shown at the end of Section 3.2 and the end
of Section 4.2. In the combinatorial setting, they are all valid solutions and are treated equivalently, none of them is
better or worse than another. In the geometry-aware setting, however, some of the solutions could consist of elements
of very bad quality, such as highly skewed tetrahedra, while some others could have much higher quality. In fact, one
can impose additional constraints over element quality, which only makes sense in the geometry-aware setting.

Therefore, the geometry-aware version of this tetrahedral subdivision problem gives rise to further challenges and
requires extra e� ort to solve. It is beyond the scope of this work, but could be an interesting direction for future
exploration. Nevertheless, the combinatorial result of this paper will serve as a foundation and guidance for that
future work.
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