
Available online at www.sciencedirect.com

Procedia Engineering 00 (2016) 000–000
www.elsevier.com/locate/procedia

25th International Meshing Roundtable (IMR25)

Constrained mesh generation on shared boundary curves
S. Davis Herringa,∗

aLos Alamos National Laboratory, Los Alamos, NM 87544, USA

Abstract

In multidimensional conformal meshing, the mesh on a curve may be subject to multiple constraints derived from the various
higher-dimensional geometric objects that include it as a boundary. Onecommon kind of constraint is the hardpoint, where a vertex
must be placed; another is the total number of vertices to use, which oftenmust be consistent with other curves for reasons of mesh
topology. This note describes algorithms for satisfying these constraints,as well as a third type that prohibits the introduction of
vertices on an interval, with the remaining degrees of freedom used to approximate an arbitrary goal mesh according to one of two
metrics. The algorithms have been implemented in a production meshing toolat LANL.
c© 2016 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of IMR 25.

Keywords: constraint satisfaction; multi-block meshing; curve meshing

1. Introduction

Boundary curves in a conformal mesh require a vertex at each endpoint. Since an endpoint of one curve may lie
amid another, and a curve may contain sharp corners that are to be resolved in the mesh, vertices may be required
anywhere on a curve.

In structured multi-block meshing, a curve typically must receive the same number of vertices as the one opposite
it on each block. Even with the flexibility afforded by specialized techniques such as dendritic meshing,sometimes
a constraint persists involving perhaps half or double the number of edges on an opposite curve. Such constraints
propagate along mesh lines, and so a block may come to requireone number of vertices on the entirety of a face and
another (smaller) number on a portion of it. (The portion mayin fact have a particular mesh specified to properly
capture a boundary layer or reflect a symmetry of the problem.)

This note presents algorithms for minimally perturbing a proposed mesh on a curve to satisfy constraints of these
types, including that the number of vertices is fixed. Minimal perturbation may be defined in terms of least-squares
distance (arc length along the curve) between the vertex positions proposed and adopted, or in terms of variation in
the edge lengths on the curve relative to those in the proposed mesh. These algorithms’ implementation in an existing
multi-block meshing library developed at Los Alamos National Laboratory (LANL) is also discussed.

∗ Corresponding author. Tel.:+1-505-667-1337 ; fax:+1-505-665-3470.
E-mail address:herring@lanl.gov

1877-7058c© 2016 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of IMR 25.

2 S. D. Herring/ Procedia Engineering 00 (2016) 000–000

2. Problem

Formally: given
1. aproposed distributionof parameters{ti}Ni=1,
2. a sequence ofhardpoints{h j}

H
j=1 (2 ≤ H ≤ N), including the endpoints of the curve, and

3. a sequence oflocked intervals{ek ∈ Z ∩ [1,H)}Lk=1

find afinal distribution{t′i }
N
i=1 such thatt′1 = h1, t′N = hH, ∄i, k ∋ t′i ∈ (hek ,hek+1), and either

N
∑

i=1

(t′i − ti)
2 (1)

is minimized (thesnappingcase), or the edge length on each hardpoint interval is multiplied by a number as close
as possible to unity (thesmoothcase). All these sequences are strictly increasing. Typically the parametrization is
equal-arc-length, so that the distance defined in (1) is (proportional to) the arc length betweenti andt′i .

In either case, we define the final distribution in terms of a strictly increasingmapping{mj ∈ Z ∩ [1,N]}Hj=1 (with
m1 = 1 andmH = N):

t′i :=















h j if ∃ j ∋ mj = i

ti else
(2)

in the snapping case, or in the smooth case

t′i := h j + (ti − tmj)
h j+1 − h j

tmj+1 − tmj

(3)

with the largestj < H ∋ mj ≤ i. The snapping treatment preserves the position of as many vertices as possible,
simplifying (1) as

H
∑

j=1

(h j − tmj)
2 (4)

In the smooth case, in general all (internal) vertices are moved in order to avoid large ratios between the edge lengths
on either side of a hardpoint. It is the absolute value of the logarithm of the fraction in (3) that is minimized.

3. Algorithms

3.1. Smooth case

The smooth case is the simpler. Define the function

t̃(x) := t⌊x⌋ + (x− ⌊x⌋)(t⌈x⌉ − t⌊x⌋) (5)

which extends the functiont : Z→ R by linear interpolation. Then define quasi-indices for the hardpointsh̃ j :=
t̃ −1(h j) and (for 1≤ j < H) a shareof the proposed edges for each hardpoint intervalsj := h̃ j+1 − h̃ j . We then have
n := N − 1 edges that must be distributed amongb := H − 1 hardpoint intervals, at least one each (because no vertex
can appear at both ends of an interval). Thisapportionment problemis precisely that solved by the Huntington–Hill
method[1]. Before applying it, the share for each locked interval is replaced with some vanishingε, causing it to be
assigned only the one edge guaranteed by that method to everyrecipient and to therefore contain no vertices.

The Huntington–Hill method minimizes therelative differencebetween the coefficients applied to the edge length
on each pair of hardpoint intervals. The relative difference ofa andb is here defined as

max
(a
b
,
b
a

)

− 1 = exp
∣

∣

∣

∣

∣

log
a
b

∣

∣

∣

∣

∣

− 1

S. D. Herring/ Procedia Engineering 00 (2016) 000–000 3

so the minimization may equivalently be said to be of|loga/b| as stated previously. A trivial implementation based on
a heap apportionsn objects intob bins inO(b+ n logb) time; no account need be taken of the reduction in

∑

j sj for
locked intervals. The result is a sequence of allocations{a j}

b
j=1 that sums ton; the mapping is simply its cumulative

sum (starting with 1).

3.2. Snapping case

The snapping case is more complex. Brute force is unworkable: the mapping is a combination of the proposed
vertices, with a number of theoretical possibilities that can easily be

(

1000
10

)

≈ 2.6×1023. Most are inadmissible because
they produce a non-monotonic final distribution, but extreme cases such asH ≈ N or the presence of a large locked
interval make it difficult to categorically reject large portions of the search space. The number even of admissible
mappings is exponential inH whenever the hardpoints are separated by pairs of proposed vertices.

3.2.1. Without locked intervals

Consider first the caseL = 0; we will proceed by considering subsets of the hardpoints.First we establish a lemma
about those sets:

Lemma. If the optimal mapping for a set of hardpoints{h j} (with L = 0) is {mj}, then for a set{h′j} ⊃ {h j}, the optimal
mapping{m′j} ⊃ {mj}.

Proof. We proceed by induction, adding hardpoints one at a time. Foreach added hardpointh′, if the nearest proposed
vertexti′ < {mj}, the optimal mapping is simply augmented by that vertex.

Otherwise, consider the longestrun of consecutivemj values that containsi′. Note that increasing any one of the
h j values associated with the runR⊂ Z ∩ [1,H] monotonically increases the cost difference of (4)

∑

j∈R

(h j − tmj)
2 −
∑

j∈R

(h j − tmj+1)2 (6)

(so long as maxR< H) or else detacheshmaxR from the run.

The one or twoflankingvertices adjacent to the run must each lie outside the interval between the first and last
hardpoint in the run, because otherwise it would improve thecost for the run to (separate it and) use that vertex instead.
(There is but one if the run includes the first or last vertex; there is at least one becauseH < H′ ≤ N.)

Consider the auxiliary problem(s) produced by adding a hardpoint (to the original set) at the position of a flanking
vertex; plainly it is optimal to map that vertex onto it without disturbing the existing mappings. Since the trueh′

is closest to a vertex between the flanking vertices, it is between them itself. The true run{h′j} j∈R′ can therefore be
produced by continuously deforming any auxiliary problem,moving hardpoints only in one direction.

When there are two auxiliary problems, they have adjacent answers in terms of the position of the run of vertices
to be used; the optimal result for the true augmented problemmust be one of them. If there is but one, it is already
extremal and the continuous deformation can produce no other answer. In all cases, the new mapping is a superset of
the old.

The greedy,O(H logN) algorithm follows the proof exactly: for each hardpoint, find the closest proposed vertex.
If it is unused, map it (tentatively) to that hardpoint. Otherwise, if the contiguous run of used vertices containing it can
be extended in just one direction, do so. Otherwise, comparethe cost (4) associated with each extension to determine
the correct direction of growth, even though all the mappings may be subsequently modified in considering further
hardpoints. (Nearby runs can grow together, in which case they coalesce for the remaining steps of the algorithm.)

4 S. D. Herring/ Procedia Engineering 00 (2016) 000–000

3.2.2. With locked intervals

It remains to treat the caseL > 0. It is useful to rephrase the locked-interval constraint in terms of the mapping:
every proposed vertex that lies within a locked interval must be selected by the mapping. (Exactly the selected vertices
are replaced in the final distribution; the hardpoints that replace them are not in any locked interval. A vertex that
lies exactly on a hardpoint already must be selected, if onlyfor that hardpoint, because the final distribution must
be strictly increasing.) The contiguous run of vertices within a locked interval must be mapped onto a contiguous
run of hardpoints; to avoid a non-monotonic final distribution, any proposed vertices between the first and last such
hardpoints must also be selected. All included hardpoint intervals therefore may as well be locked intervals: the
original locked interval has in effectgrown, and the process repeats whenever new vertices come to be included.

Starting from some mapping of the vertices in a locked interval, the effective growth of the interval can easily
overrun the array of hardpoints. That assumed mapping is thereby known to be inadmissible; in some cases, no
mapping is possible for a locked interval and the overall problem has no solution. In practice, this occurs when the
proposed mesh for a curve is more refined than the existing mesh in a region; every vertex displaced by the fixed
distribution displaces another until there are no more valid locations for them. (The smooth case does not fail so
suddenly; the mesh on the unconstrained portions of the curve is merely compressed to make room for the fixed,
lower-resolution section.)

When it does not prevent the solution of the problem altogether, the inadmissibility of certain mappings for a locked
interval instead provides the means for solving it efficiently in most cases. The interval of admissible mapping offsets
for each locked interval is constructed by two binary searches, each testing for runaway growth in a single direction.
Then, for each element of the Cartesian product of those offset intervals (for which none of the mappings overlap),
theL = 0 algorithm is executed with the mapping seeded with the mappings for the locked intervals; the result with
the lowest cost (4) is retained.

While that algorithm may not produce optimal results in each case (because the optimality precondition for the
lemma is not satisfied), it will do so when the mapping for the locked intervals is (accidentally) optimal; the result
from that case will of course defeat any erroneous results.

The cardinality of this Cartesian product can also be exponential (in L); while the algorithm can in fact take
exponential time, two mitigating factors make it usable in practice. First, the alternate interpretation of locked
intervals in terms of requiring the mapping of all containedvertices allows the coalescence of adjacent locked intervals,
reducing the effectiveL typically to numbers not much greater than 10. Second, it is possible to avoid considering
many elements by treating them as leaves of a tree and pruningbranches that produce an overlap between mappings.

4. Implementation

These algorithms have been implemented in Altair—the multi-block 2D meshing component of Ingen, the simu-
lation setup Python library developed at LANL—as part of a semi-automated system for matching edge counts on
opposing curves on a block. The snapping algorithm withL = 0 has been implemented since 2012 for copying
non-uniform meshes from one curve to another that might contain hardpoints. In 2014, the smooth algorithm was
added to adjust simple uniform distributions on each hardpoint interval to match an opposite curve.

Development started in 2014 on a new topology-basedparts system for geometry development and meshing
in Ingen. It can construct many block topologies based on thesame parts, and so places a strong emphasis on
propagating resolutions rather than requiring each mesh block’s boundaries to be explicitly named and meshed. Altair
can automatically create dendrites in only one direction per block, so the resolution propagation functions support
copying meshes (or simply their vertex counts) in the other direction (or in both to avoid dendrites altogether). This
year, the oft-requested feature was added of copying onto a single (composite) boundary from both sides, necessitating
locked intervals. Clients are currently experimenting with both variations of the complete algorithm that supports
them.

S. D. Herring/ Procedia Engineering 00 (2016) 000–000 5

5. Extensions

There are several obvious extensions to consider, especially for the smooth case:

1. Other parametrizations: in the smooth case, they affect the rescaling in (3) as well as the apportionment.
2. (3) can be refined by using any monotonic interpolation, which could be used to avoid sudden changes in edge

lengths at a hardpoint.
3. (5) can be similarly refined to measure shares in a smooth fashion.

Acknowledgements

Funding for this work was provided by the Simulation Setup project in the Advanced Simulation & Computing
program.

References

[1] E. V. Huntington, The mathematical theory of the apportionment of representatives, Proceedings of the National Academyof Sciences of the
United States of America 7 (1921) 123–127.

