Available online at www.sciencedirect.com

SciVerse ScienceDirect Proced iCl
Engineering

www.elsevier.comocatgprocedia

Procedia Engineering 00 (2016) 000—-000

25th International Meshing Roundtable (IMR25)
Constrained mesh generation on shared boundary curves

S. Davis Herring*
aLos Alamos National Laboratory, Los Alamos, NM 87544, USA

Abstract

In multidimensional conformal meshing, the mesh on a curve may bedule multiple constraints derived from the various
higher-dimensional geometric objects that include it as a boundaryc@mmon kind of constraint is the hardpoint, where a vertex
must be placed; another is the total number of vertices to use, whichroftenbe consistent with other curves for reasons of mesh
topology. This note describes algorithms for satisfying these constramtsell as a third type that prohibits the introduction of
vertices on an interval, with the remaining degrees of freedom used toxapyate an arbitrary goal mesh according to one of two
metrics. The algorithms have been implemented in a production meshinat ioANL.

© 2016 The Authors. Published by Elsevier Ltd.

Peer-review under responsibility of the organizing committee of IMR 25.

Keywords: constraint satisfaction; multi-block meshing; curve meshing

1. Introduction

Boundary curves in a conformal mesh require a vertex at eadpant. Since an endpoint of one curve may lie
amid another, and a curve may contain sharp corners thabdre tesolved in the mesh, vertices may be required
anywhere on a curve.

In structured multi-block meshing, a curve typically musteive the same number of vertices as the one opposite
it on each block. Even with the flexibilityfiorded by specialized techniques such as dendritic mesbamgetimes
a constraint persists involving perhaps half or double thenlmer of edges on an opposite curve. Such constraints
propagate along mesh lines, and so a block may come to reauégraumber of vertices on the entirety of a face and
another (smaller) number on a portion of it. (The portion nrayact have a particular mesh specified to properly
capture a boundary layer or reflect a symmetry of the problem.

This note presents algorithms for minimally perturbing egmsed mesh on a curve to satisfy constraints of these
types, including that the number of vertices is fixed. Minimparturbation may be defined in terms of least-squares
distance (arc length along the curve) between the verteitigus proposed and adopted, or in terms of variation in
the edge lengths on the curve relative to those in the prapossh. These algorithms’ implementation in an existing
multi-block meshing library developed at Los Alamos Natibbhaboratory (LANL) is also discussed.

* Corresponding author. Tek:1-505-667-1337 ; fax+1-505-665-3470.
E-mail addressherring@Ilanl.gov

1877-70580 2016 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing comraittéIMR 25.

2 S. D. Herring/ Procedia Engineering 00 (2016) 000-000

2. Problem

Formally: given
1. aproposed distributiorof parameter$ti}i'i .
2. asequence difardpoints{hj}'j*:1 (2 < H < N), including the endpoints of the curve, and
3. asequence ddcked intervaldec € Z N [1, H)}{;:1

find afinal distribution{ti’}i"il such that] = hy, ty, = hy, Ai k> t € (N, hg+1), and either

N
D -ty (1)
i=1

is minimized (thesnappingcase), or the edge length on each hardpoint interval is ptieli by a number as close
as possible to unity (themoothcase). All these sequences are strictly increasing. Tifpit@e parametrization is
equal-arc-length, so that the distance defined in (1) iso@ntaonal to) the arc length betwegrandt;.

In either case, we define the final distribution in terms ofrizthy increasingmapping{m; € Z N [1, N]}}J':1 (with
my = 1 andmy = N):

y ::{hj if Jjom =i @
i else
in the snapping case, or in the smooth case
hj;1 — h;
t :=hj + (& —tmj)t'“—t‘ ®3)
My =

with the largestj < H > m; < i. The snapping treatment preserves the position of as matige® as possible,
simplifying (1) as

"
D hy - tm)? 4)
j=1

In the smooth case, in general all (internal) vertices areedan order to avoid large ratios between the edge lengths
on either side of a hardpoint. It is the absolute value of tlgatithm of the fraction in (3) that is minimized.

3. Algorithms
3.1. Smooth case

The smooth case is the simpler. Define the function
() 1=ty + (X = LX)t = tixg) (5)

which extends the functioh : Z — R by linear interpolation. Then define quasi-indices for ttamdpointsﬁj =
t=%(h;) and (for 1< j < H) ashareof the proposed edges for each hardpoint intesyak F]j+l - ﬁj. We then have
n:= N — 1 edges that must be distributed amdng H — 1 hardpoint intervals, at least one each (because no vertex
can appear at both ends of an interval). Tagportionment problers precisely that solved by the Huntington—Hill
method[1]. Before applying it, the share for each lockedrivdl is replaced with some vanishiagcausing it to be
assigned only the one edge guaranteed by that method toreapient and to therefore contain no vertices.

The Huntington—Hill method minimizes thielative djferencebetween the cdicients applied to the edge length
on each pair of hardpoint intervals. The relativeelience o andb is here defined as

max(g, g) -1= exp' log %' -1

S. D. Herring/ Procedia Engineering 00 (2016) 000—-000 3

so the minimization may equivalently be said to bélad a/b| as stated previously. A trivial implementation based on
a heap apportions objects intob bins inO(b + nlogb) time; no account need be taken of the reductioj;jrs; for
locked intervals. The result is a sequence of aIIocat[am}#zl that sums ta; the mapping is simply its cumulative
sum (starting with 1).

3.2. Snapping case

The snapping case is more complex. Brute force is unworkahk mapping is a combination of the proposed
vertices, with a number of theoretical possibilities the easily b(ﬁ“l)go) ~ 2.6x107%. Most are inadmissible because
they produce a non-monotonic final distribution, but exteerases such &$ ~ N or the presence of a large locked
interval make it dificult to categorically reject large portions of the searchcgp The number even of admissible
mappings is exponential iH whenever the hardpoints are separated by pairs of propastdes.

3.2.1. Without locked intervals

Consider first the cade = 0; we will proceed by considering subsets of the hardpolfitst we establish a lemma
about those sets:

Lemma. If the optimal mapping for a set of hardpoirits } (with L = 0) is {m;}, then for a seth}} > {h;}, the optimal
mapping{mj} > {m;}.

Proof. We proceed by induction, adding hardpoints one at a timee&oh added hardpoiht, if the nearest proposed
vertext; ¢ {m;}, the optimal mapping is simply augmented by that vertex.

Otherwise, consider the longasin of consecutiven; values that containg. Note that increasing any one of the
h; values associated with the ritc Z n [1, H] monotonically increases the costiéirence of (4)

Doy = tm)? = D> Ny = tyia)? (6)

jeR jeR
(so long as maR < H) or else detachdsyaxg from the run.

The one or twdlankingvertices adjacent to the run must each lie outside the iatdrstween the first and last
hardpoint in the run, because otherwise it would improvectis for the run to (separate it and) use that vertex instead.
(There is but one if the run includes the first or last vertaere is at least one becaude< H’ < N.)

Consider the auxiliary problem(s) produced by adding a hairtt (to the original set) at the position of a flanking
vertex; plainly it is optimal to map that vertex onto it withiodisturbing the existing mappings. Since the thie
is closest to a vertex between the flanking vertices, it isvbeh them itself. The true ru{ﬂn]} jer can therefore be
produced by continuously deforming any auxiliary problengving hardpoints only in one direction.

When there are two auxiliary problems, they have adjacenwearssin terms of the position of the run of vertices
to be used; the optimal result for the true augmented proloferst be one of them. If there is but one, it is already
extremal and the continuous deformation can produce na attsver. In all cases, the new mapping is a superset of
the old. O

The greedyO(H log N) algorithm follows the proof exactly: for each hardpoinhdithe closest proposed vertex.
If itis unused, map it (tentatively) to that hardpoint. Qilise, if the contiguous run of used vertices containingit ¢
be extended in just one direction, do so. Otherwise, compareost (4) associated with each extension to determine
the correct direction of growth, even though all the mappintay be subsequently modified in considering further
hardpoints. (Nearby runs can grow together, in which case tlhalesce for the remaining steps of the algorithm.)

4 S. D. Herring/ Procedia Engineering 00 (2016) 000-000

3.2.2. With locked intervals

It remains to treat the cade> 0. It is useful to rephrase the locked-interval constrainterms of the mapping:
every proposed vertex that lies within a locked interval tingsselected by the mapping. (Exactly the selected vertices
are replaced in the final distribution; the hardpoints tlegtlaice them are not in any locked interval. A vertex that
lies exactly on a hardpoint already must be selected, if émythat hardpoint, because the final distribution must
be strictly increasing.) The contiguous run of verticeshivita locked interval must be mapped onto a contiguous
run of hardpoints; to avoid a non-monotonic final distribati any proposed vertices between the first and last such
hardpoints must also be selected. All included hardpoitarials therefore may as well be locked intervals: the
original locked interval has infeectgrown, and the process repeats whenever new vertices come tolbdedc

Starting from some mapping of the vertices in a locked irgkrthe dfective growth of the interval can easily
overrun the array of hardpoints. That assumed mapping izltlgeknown to be inadmissible; in some cases, no
mapping is possible for a locked interval and the overalbfgm has no solution. In practice, this occurs when the
proposed mesh for a curve is more refined than the existindy imea region; every vertex displaced by the fixed
distribution displaces another until there are no moredvldcations for them. (The smooth case does not fail so
suddenly; the mesh on the unconstrained portions of theecigrmerely compressed to make room for the fixed,
lower-resolution section.)

When it does not prevent the solution of the problem altogethe inadmissibility of certain mappings for a locked
interval instead provides the means for solvingfitogently in most cases. The interval of admissible mappifiigets
for each locked interval is constructed by two binary seasgleach testing for runaway growth in a single direction.
Then, for each element of the Cartesian product of thd&ebintervals (for which none of the mappings overlap),
theL = 0 algorithm is executed with the mapping seeded with the mngggfor the locked intervals; the result with
the lowest cost (4) is retained.

While that algorithm may not produce optimal results in eaabec(because the optimality precondition for the
lemma is not satisfied), it will do so when the mapping for theked intervals is (accidentally) optimal; the result
from that case will of course defeat any erroneous results.

The cardinality of this Cartesian product can also be exptale(in L); while the algorithm can in fact take
exponential time, two mitigating factors make it usable nagtice. First, the alternate interpretation of locked
intervals in terms of requiring the mapping of all contaivedtices allows the coalescence of adjacent locked intgrva
reducing the ffective L typically to numbers not much greater than 10. Second, ibssjble to avoid considering
many elements by treating them as leaves of a tree and prbriamghes that produce an overlap between mappings.

4. Implementation

These algorithms have been implemented in Altair—the niltiek 2D meshing component of Ingen, the simu-
lation setup Python library developed at LANL—as part of a isaatomated system for matching edge counts on
opposing curves on a block. The snapping algorithm Witk 0 has been implemented since 2012 for copying
non-uniform meshes from one curve to another that mightaioritardpoints. In 2014, the smooth algorithm was
added to adjust simple uniform distributions on each hardpoterval to match an opposite curve.

Development started in 2014 on a new topology-baseds system for geometry development and meshing
in Ingen. It can construct many block topologies based onstdrae parts, and so places a strong emphasis on
propagating resolutions rather than requiring each mestkld boundaries to be explicitly named and meshed. Altair
can automatically create dendrites in only one directionijppeck, so the resolution propagation functions support
copying meshes (or simply their vertex counts) in the otheration (or in both to avoid dendrites altogether). This
year, the oft-requested feature was added of copying ontmiegcomposite) boundary from both sides, necessitating
locked intervals. Clients are currently experimentinghalitoth variations of the complete algorithm that supports
them.

S. D. Herring/ Procedia Engineering 00 (2016) 000—-000 5

5. Extensions

There are several obvious extensions to consider, esfyefuathe smooth case:

1. Other parametrizations: in the smooth case, tlEscathe rescaling in (3) as well as the apportionment.

2. (3) can be refined by using any monotonic interpolationictvicould be used to avoid sudden changes in edge
lengths at a hardpoint.

3. (5) can be similarly refined to measure shares in a smostfida.

Acknowledgements

Funding for this work was provided by the Simulation Setupjgct in the Advanced Simulation & Computing
program.

References

[1] E. V. Huntington, The mathematical theory of the apponi@mt of representatives, Proceedings of the National Acad#r8giences of the
United States of America 7 (1921) 123-127.

