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Abstract 

The Art Gallery Theorem and its lemmas have been used since the 1990s in the area of computer graphics to decompose orthogonal polygons 

into convex sub-regions. This paper extends and improvises Art Gallery concepts to non-orthogonal, generic polygons to perform a multiblock 

decomposition of  faces into a set of maximal, single-loop, convex sub-faces. Concepts such as staircase, dent and notch are used to categorize 

face concavities and virtual vertices are inserted on smoother concave boundary bends. Multiblocking is performed without the need for 

Delaunay triangulation with the aid of a notch diagram. A light-weight, mesher-native topology builder that uses virtual topological elements is 

proposed to construct a virtual topology network from a notch diagram. Subsequently, virtual faces are processed for transfinite meshing . 

Results indicate the advantage of the proposed  technique over existing procedures in terms of orthogonality and anisotropy. 
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1. Introduction 

The increased complexity of finite element analyses of structures, fluid flow and interaction problems lead to pressing quality 

requirements. Crash analyses limit the variation of element size in anisotropic meshes. A large range of boundary-flow and 

structural problems require meshes to be boundary structured or partially or completely transfinite. More and more general 

purpose mesh generators need to be able to cater to most classes of problems. Such meshes of high quality and constraint are 

often virtually impossible to generate directly on real, complex geometry. Manual partitioning of CAD geometry into well 

structured zones is time consuming. Submap meshing reduces that effort considerably by automatically “zoning” face sub-areas 

for transfinite mesh generation. 

2. Art Gallery theorem and its applications 

The Art Gallery Theorem (aka Watchman Theorem), first proposed by Chvatal [1],  provides ground for optimizing the 

surveillance of art galleries. It states that for a generic, single-loop polygonal floor with n vertices, n/3 floor guards g(n) or 

surveillance cameras are sometimes necessary and always sufficient. 

http://www.sciencedirect.com/science/journal/22120173
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 3/)( nng   Occasionally necessary; always sufficient (1a) 

 3/)( nng  Sometimes necessary    (1b) 

 3/)( nng  Always sufficient    (1c) 

 

Fisk [2] provided a more compact proof of the theorem, as described above in eqn. 1(a-c), which is best exemplified in Fig. 1(a-

b). Depending on the polygonal configuration, more specific inequalities and lemmas [3,4,5]  were  suggested. Figure 1a. shows 

for a 12- 

 

(a)   (b)  

Fig. 1. Concave Art Gallery polygonal floorplan with surveillance cameras mounted on the wall. Red corners indicate concave or reflex vertices. (a) Occasionally 

necessary number of of guards (g(n) = n/3 = 4; n=12) (b) Sufficient condition (g(n) = 4 < n/3 = 6; n = 18). 

sided  concave polygonal floor, how exactly (g(n) = 4 = n/3) 4 guards or surveillance cameras can cover the entire floor; where 

Fig. 1b demonstrates a “sufficient condition” scenario as only 4 guards (g(n) = 4  < n/3=6) or cameras are sufficient to cover the 

18-sided floor.  

 

Aggarwal’s [6] pioneering work in the application of the theorem initiated various subdivision/multiblocking algorithms for 

orthogonal polygons. The theorem and its lemmas explore the idea of visibility. The main goal of these algorithms is to 

efficiently decompose a concave orthogonal polygon to a set of maximal, convex sub-polygons. Reckhow & Culberson [7] used 

the concept of dents and staircases to build a dent diagram to achieve this in an optimal O(n2) algorithm. Breen [8] introduced the 

idea of staircase kernels as an intersection of all covering orthogonally convex polygons. Pape and Vassilev [9] extended the 

technique to multiloop polygons. Of the many families of lemmas resulting from Aggarwal’s Theorem, two relevant and 

important lemmas are presented in Fig 2. Orthogonal partitioning of a concave polygon from its reflex vertices can result in 

convex partitioning of the face. The two lemmas referred to here, for any generic polygon with r reflex vertices, can be combined 

into one and written as 

11
2

 rA
r

n ;      (2) 

where An is the number of resulting convex sub-areas. Figure 2a. shows how r (4) shortest orthogonals dropped from r (4) reflex 

vertices can partition a polygon into r+1 (5) convex sub-areas. Figure 2b. shows the minimal condition where r (8) reflex vertices 

occur opposite to each other and r/2 (4) shortest orthogonals are dropped to decompose a concave polygon with r (8) vertices into 

r/2+1(5) convex sub-areas. 

(a)        (b)  
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Fig. 2. Orthogonal partitioning of polygonal floors from reflex vertices. All red corners represent reflex vertices, violet solid lines denote orthogonal partition 

lines. (a) orthogonals dropped from r (r=4) reflex vertices lead to r+1 (5) convex sub-polygons. (b) reflex vertices mirror each other and orthogonals dropped 

from r (8) reflex vertices produce r/2+1 (5) convex sub-polygons. 

3. Main objectives 

    The primary motivation behind the proposed algorithm is to subdivide concave faces that are predominantly but not 

necessarily orthogonal (Fig.3) into maximal convex sub-regions to facilitate transfinite meshing. This can be achieved by 

traditional multiblocking algorithms [10, 11]. However, such algorithms are costly as a fine constrained Delaunay mesh is 

required in the first place; secondly, the algorithms do not ensure that the Delaunay edges used to decompose the face are 

orthogonal and finally these algorithms do not guarantee that subdivision will lead to a set of maximal convex sub-regions.  

 

(a)       (b)  

Fig. 3. Orthogonal partitioning of predominantly orthogonal concave face - a) original face (b) desired partitioning in the parameter space. 

 A maximal convex sub-region is one that cannot be grown any further without crossing the boundary of the original polygon. 

The algorithm proposed in this paper has the following advantages over conventional multiblocking and submap meshing 

methods [10,11,12] : 

 

 It does not need a Delaunay mesh  

 Guarantees orthogonal partitioning into maximal convex polygons if not limited by boundary constraints. 

 Is not dependent on the isotropy of boundary discretization  

 Uses a mesher-native virtual topology builder and is thus able to support  anisotropic transfinite meshing. 

 

Along similar lines, one might ask why traditional submap meshing methods [11,12] cannot achieve the goals listed above? 

These methods depend on the isotropy of the boundary seeding; thus, they do not guarantee orthogonality, and as a result don’t 

work well on generic non-orthogonal faces; cannot guarantee face-decomposition  into maximal convex sub-regions and are not 

designed to honor face constraints both exterior (face edges with frozen nodes or hard points) and interior (face-interior hard 

points), mesh size variation or anisotropy.  

 

The main objectives of this multiblocking/submapping approach are listed as follows:-  

 

 To help generate structured, orthogonal meshes in orthogonal sub-regions of a face (as shown in Fig. 3b). 

 Is designed for submap meshing and are applied only to faces with concavity. It aims to subdivide the face into maximal 

convex polygonal regions.  

 Since a virtual topology network is constructed for the virtual faces, it is not controlled by the nature of the initial boundary 

seeding .  

 The virtual topology network allows for any number of face constraints (both interior and exterior) and easily permits 

anisotropic transfinite meshing within the face and on its boundary. Face-interior hard-points, face edges frozen with nodes 

from a neighbor face are some typical examples. 
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4. Art Gallery concept development for Submapping/Multiblocking 

    The Art Gallery concepts are used to multiblock concave faces for submap meshing via two major steps – first, certain Art 

Gallery elements are identified and second, these elements are used to create a notch diagram. The major lemmas used for a 

general face are described by eqn 2.  

 

4.1. Art Gallery elements 

One of the initial tasks of Art Gallery applications is to walk along the polygon (face) boundary, to identify concavities and 

categorize them. Concave points or corners, for a simple orthogonal polygon face, are face vertices or edge points that make a 

right-reversal angle (> 270o - θt, where θt is a variable angular tolerance defined in eqn.3) with its immediate neighbors. Some 

Art Gallery elements this algorithm will use are described in Figure 4. The blue arrows show the walking direction and the face 

side of the boundary. These elements are defined with respect to the positioning of the concave corners. Two such popular Art 

Gallery elements as defined by Reckhow and Culberson [7] are dent (Fig.4a) and staircase (Fig. 4b). The dent is characterized by 

a right-reversal angle at its start and end, the segment in between is called a dent seat.  

 

 (a)         (b)  (c)  

Fig. 4. Examples  of Art Gallery Elements – (a) Dent, (b) Staircase and (c) Notch 

The staircase is characterized by a right-reversal angle at the start and a right angle (90o ± θt,  θt = angular tolerance) at the end 

and the segment in between is called a staircase flat. Both the dent and the staircase are orthogonal elements. The more generic 

type of concavity is called a notch (Fig.4c) in this paper.  It is defined as a single corner with a right-reversal angle; the leading 

and trailing segment angles are generic. So the staircase becomes a special case of a notch.   

4.2. Dent diagram vs Notch diagram  

Leveraging the Art Gallery concepts of dents and staircases, several researchers [7,8,9] have tried to decompose orthogonal 

polygons into maximal convex polygons. One popular method is the use of a dent diagram [7]. As described before, the dent 

seats and the staircase flats are extended to intersect with the face boundaries and each other. In the process the face gets 

decomposed into a set of maximal convex polygons or sub-faces (Fig.4). This paper proposes a different approach of face 

partitioning. It is called a notch diagram. Only orthogonal projections will be made from each notch to its closest edge. The 

resultant orthogonal projection  lines (OPL) will be used to decompose the face into sub-faces or virtual faces (Fig.5). The 

comparison of Figure 5a. and Figure 5b. clearly shows the efficacy and economy of the latter. The notch diagram, for most cases 

leads to the least number of edge-edge intersections and the least number of virtual faces representing a set of maximal convex 

sub-regions when compared to a dent diagram. The virtual faces it produces are maximal convex polygons which cannot be 

grown any further. The notch diagram shown in Fig.5b proves the lemma described by eqn. 2; that a polygon P with r unique 

concave vertices can be partitioned into at most r+1 convex sub-polygons p. Here, with a notch diagram  

  

r = 6;  p = 6 + 1= 7;  

 

and all convex sub-polygons have been maximized. With the corresponding dent diagram, however p = 11. The sub-polygons 

produced have not been maximized. That can be done as an extra step, either by stopping dent and staircase extensions at their 

first intersection, or by merging smaller convex regions with convex neighbors into maximal convex sub-polygons. Even when 

that is done, sometimes narrow sub-polygonal regions can occur.  
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     (a) (b)   

Fig. 5. In a dent diagram (a) for a simple orthogonal polygon (face), Staircase flats are in blue, dent seats are in red and all extension lines dotted violet. In a  

notch diagram (b) for the same face, all concave corners are in red. All orthogonal projection lines (OPL) are dotted violet. 

5. Proposed Multiblocking/Submapping algorithm 

    The proposed multiblocking/submapping algorithm (Algorithm I) is mostly procedural. It begins with a facetted face 

flattened to its 2d parameter space [13] and sent to the proposed algorithm which will eventually decompose it (if the face has 

concavity) into sub-faces or virtual faces which are then sent to the transfinite mesher for map-meshing.  

5.1. Concavity determination 

The face is first boundary discretized at a size slightly smaller than the user-driven element size which is read as intended 

feature size. This means if there are features on the face boundary much smaller than the element size, they are meant to be 

ignored. At each vertex i, the included angle φi is computed between the node at the vertex and its trailing and leading nodal 

neighbors. Based on this angle, a vertex is marked as concave or reflex following the rule  

t

o

i   270        (3) 

where φt is the variable angular tolerance (60o in all examples discussed in this paper). 

5.2. Virtual vertex insertion in concave blends 

Sometimes, faces can have smooth concave bends like fillets. There may not be a geometry vertex interior to the bend. 

Whether such bends should be considered “concave” or not is user-driven, by the element size. While traversing the boundary, 

included angles φi are computed at each i-th node. If a certain angle at a non-vertex node, obeys eqn. (3), that node becomes a 

candidate for virtual vertex insertion. If two successive non- vertex nodes get flagged as “concave”, only one virtual vertex is 

inserted at the average location. An inserted vertex is called reflex virtual vertex. Virtual vertex insertion clearly is a function of 

the size of boundary discretization. With a seed either too coarse or too fine, one would miss a concave bend. Using chordal 

tolerance to spot concave bends is also not desirable as it is completely decoupled from the meshing size which provides for 

user-intention. This is why, for the purpose of vertex insertion a heuristically determined element size factor of 0.7 is used to 

reduce the user driven mesh size for boundary discretization.                             

5.3. Building a Notch Diagram for multiblocking 

The notch diagram is never physically created but exists in the form of a relational data store. In order to develop the notch 

diagram, the face boundary is first discretized at element size. All reflex vertices are first projected orthogonally to their closest 

neighboring edge.  
 

Next a relationship is established between each reflex vertex VR and its pair vertex VP.  Some of the reflex vertices can be 

virtual (VRv) and typically most of the pair vertices are virtual (VPv). When all VR are linked with their VP the notch diagram is 

complete as shown in Fig. 6. In the particular example described in Fig. 6, all red reflex vertices  are real geometry vertices 

whereas all orange projected pair vertices are virtual. In mathematical notations  the notch diagram ND can be expressed as a 

collection of links between n reflex vertices and their orthogonally projected pair vertices given by eqn. 4. 

 piri

n

i

VVND 
1

      (4) 
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Once all virtual vertices are created and the notch diagram has been generated, all nodes on the face boundary are deleted. It 

should also be mentioned that in some situations when virtual edges intersect, eqn.2 may not be valid as An > r + 1. 

 

 

Fig. 6. Notch diagram depicting the linking between vertex pairs – reflex (in red) and their orthogonally projected pairs (in orange) walking the face boundary in 

a counterclockwise direction. 

5.4. Determining the best split line 

The notch diagram provides vertex links or maps that can now be used to determine 2D split lines that will subdivide the face 

into maximal convex sub-regions. However, the notch diagram may not always be the final vertex map or link used to build the 

virtual topology. Other split line candidates may exist very close to the projected vertices. To achieve this, the boundary is 

discretized a second time at user-driven element size.  

 

(a)                                                          (b)   

Fig. 7. Use of split line criteria to determine the best split line - (a)Reflex vertex close to OPL; (b) Two closely spaced OPLs 

Fig.7  describes two examples of OPLs getting close to other reflex vertices (a) or other OPLs (b). If such OPLs are honored, 

wafer-thin sub-faces can result leading to undesirable element size reduction in the final mesh. In such scenarios, thus, a 

compromise needs to be made between orthogonality and proximity. This is achieved, for a candidate split line IJ (Fig. 7b), by a 

split line factor described as 

c

IJ
lii aiIJ

l

l
WWW  

)cos(
4

1
     (5) 

where αi are the 4 angles made by the split line IJ with its connecting boundary edges (Fig. 7b), Wai are weight factors for each 

angle and can be made to vary for element types (0.1-0.9; 0.25 for all i, for this paper), Wl is a length factor (1.0-5.0; 2.0 for all 

examples used in this paper ), lIJ is the length of the IJ line and lc is the characteristic length, i.e. the longest diagonal of the 

bounding box of the face in 2D. The split line with the smallest  WIJ becomes the best selection. If an orthogonally projected 

vertex is rejected in favor of another reflex vertex as shown in the examples in Fig. 7 (the red dotted line representing the best 

split line), the VP’s are rejected and it can be written 
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ALGORITHM I 

 

 
Fig. 8. Flowchart explaining the flow of data and command showing how a single face is processed using the proposed multiblock 

decomposition technique for submap meshing.   

pirjpjri VVVV  ;       (6) 
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The notch diagram is updated in the end with new vertex links and all unused virtual vertices are deleted along with the 

boundary nodes. The overall algorithm (Algorithm I) is described in a nutshell by the flowchart in Fig. 8. 

 

5.5. Multiblocking for multiloop faces 

For multiloop faces, the face boundary is first discretized as usual at element size. Next, the parameter space  is tiled with a 

2D voxel model or Cartesian grid. All boundary nodes are ‘grid-marked’ and a standard and previously described spatial search 

algorithm [14] is used to locate proximate node-pairs between loops. The best node-pair is selected based on the split line factor 

described in eqn. 5. These nodes are now connected with a straight line in the parametric space and discretized further based on 

element size. As the first inner loop joins the outer, it becomes part of a gradually lengthening outer loop. Every time an inner 

loop is joined/connected this way with the growing outer loop, the number of unconnected inner loops reduce by one as the outer 

loop grows. Finally, there is only one long loop with some repeated nodes as shown in Fig. 9. All nodes on the join lines repeat 

in the final node loop as one has to stop at these nodes twice while walking the loop.  

 

Circular inner loops are always split in four parts and reflex vertices are inserted as discussed in 5.2. 

 

(a)                       (b)   

Fig. 9. A multiloop 3D face (a) is boundary discretized and placed in its 2D parametric space against a Cartesian grid which is used to locate 2 nearest nodes (in 

black) that are connected to form a single node loop where only those 2 nodes repeat. 

As soon as the multiloop face is reduced to a single connected nodeloop, a notch diagram is constructed as explained in section 

5.2, 5.3 & 5.4 and the problem of multiblocking the face thereafter is exactly as same as that of a single-loop face. 

 

6. Mesher-native topology builder 

Once the notch diagram has been finally updated the virtual edges (dotted violet lines in Fig. 5, 6 & 7) are first generated 

between linked vertex pairs. If virtual edges intersect with each other, they are split at those locations and face interior virtual 

vertices are created at the intersection points. Given the notch diagram, the virtual edges and vertices and the original face 

geometry, the mesher-native topology builder constructs the virtual faces. All temporarily generated nodes on the face boundary 

are deleted at this point. The topology engine is extremely light-weight, contains very little data – mostly pointers/references to 

nodes/vertices/ edges – and runs in the parameter space. When the final mesh is generated on the virtual faces, the 

nodes/elements of all virtual faces are associated with the original parent face/edges and the virtual topology is discarded. 

6.1. Topology elements 

The main topology elements of this multiblock model are listed here –  

 

1. Virtual Vertex – dummy vertices created in three ways – a) by insertion at concave bends on the boundary, b) by 

orthogonally projecting reflex vertices on edges and c) at the intersection of virtual edges. These are nodes in 

disguise that have a data-free topological signature assigned to them for identification as vertex.  

2. Sub-Edge – when a virtual vertex is introduced on an edge, the edge is topologically split up into two sub-edges, which 

are references to parts of a geometry edge. 

3. Virtual Edge – dummy edges representing split lines (straight lines in 2D) running between reflex vertices and their 



 Nilanjan Mukherjee/ Procedia Engineering 00 (2014) 000–000 9 

 

pairs. Its data comprises its end points.  

4. Virtual Face – subdivision or multiblocked faces into which the virtual edges break the original face. 

 

 

 

 

 

 

6.2. Virtual topology network 

Once all the virtual edges are created, the virtual face topology is constructed via an edge walking algorithm – 

  

                                                  

Fig. 10. Topological elements of a multiblocked face with real reflex vertices shown in red, virtual vertices in orange and virtual edges as black dotted lines. 

 

ALGORITHM II 

 

The input to this algorithm is a notch diagram (as shown in Fig. 10) and the virtual topology elements – edges, vertices, v-

vertices, v-edges and sub-edges. All face-edges are oriented in a counterclockwise direction. First an STL (Standard Template 

Library) MAP is formed of all face-edges (EList) and an empty vertex queue, VQ 

 

While  EList > 0 

{ 

1. Starting with the face-interior virtual edges an attempt is made to build virtual faces. When all virtual edges (v-edge) are 

connected to 2 virtual faces (v-face) virtual topology is established. 

2. Starting with a v-edge (vEx) as a walking edge vEw(= vEx ) going in any direction or edge use EUi, a start vertex Vs and 

an end vertex Ve are fixed. The walk starts with Ve in the loop-direction (CCW) & returns to Vs using the shortest path. 

3. Ve is added to the v-queue VQ if not already added.  

4. To determine the shortest path, first, get all adjacent edges connected to Ve. 

5. Going over all adjacent edges ∑Ea we select edge vEf  

a. If only one of those edges is a v-edge, its adjacent vertex Va is selected.  

b. If all edges are real edges and exist in EList, get the one that is farthest along the loop direction. Get its end 

vertex (going in the original face-loop direction) Va. 

c. For the very first vertex Ve of all the adjacent edges, only the ones need to be considered that make a face 

normal parallel to that of the original face. A cross product of the tangents at the meeting point of the two 

edges is used to compare with the face normal. 

d. If more than one of the edges are v-edges, the face normal comparison is used to rule out the incorrect ones. If 

more than one v-edge is correctly oriented with respect to vEx, the edge that makes the smallest included angle 

with vEx, is selected.  

 

6. When the adjacent vertex Va is found,  it is added to the vertex tree VQ. This becomes the new Ve. The walking edge is 

vEw = vEf. We go back to step 3. 
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7. The walk stop when Vs is found. The vertex tree VQ has  a chain of vertices (and thus edges) that will form the v-face 

loop. The v-face is now created. The vertex Tree VQ is cleared. 

8. As the v-faces are formed,  the real-edges used in the face-loop are removed from the Edge STL MAP EList. When this 

Edge Map EList is emptied, the process ends. This means all the boundary edges are part of the newly created v-faces. 

9. If the v-edge is still not connected to 2 v-faces, flip its direction, get the other edge-use EUj and go back to step 2. 

} 

 

7. Transfinite meshing 

To set up the transfinite meshing problem pseudo-edges are constructed along the sides of a four/three sided virtual face; a 

series of pseudo-edge clans [15] are built next and element count conflict is resolved by means of a Corrector-Constrainer 

solution [15]. Face interior hard-points are honored [16] and anisotropic Transfinite Interpolation or TFIs are commonly used. 

 

8. Results and discussion 

Transfinite mesh on the face displayed in Fig.3 is presented in Fig.11. Following the proposed Art Gallery based 

multiblocking algorithm, the face with 9 reflex vertices decomposes in its parametric space into 10 virtual faces which are map-

meshed.  

Two other examples are presented to illustrate the efficacy of the proposed algorithm. Fig. 12 (a-d) presents the 

decomposition of the multiloop face described in Fig.9. Fig. 12a shows the concave vertices (in red) identified from the joined 

nodeloop and their orthogonally projected virtual vertex pairs (in orange). Accordingly the 2-loop face is decomposed into four 

virtual faces (Fig. 12b) and eventually map-meshed (Fig. 12c-d). 

The element count propagation algorithm gives maximum weight to the most curved split line (in 3D) in the radial direction. 

This example illustrates the advantages of the proposed algorithm over traditional submap meshing methods [11,12]. In the latter,  

initial isotropic boundary discretization determines the splits and often the final mesh and thus cannot submap mesh such fillet 

surfaces with intended anisotropy arising from radial curvature. 

Fig. 13 shows a concave face with 4 reflex vertices multiblocked into 5 virtual faces and submap meshed with a constant 

global element size. 

 

 
Fig. 11. Submap mesh created by Art Gallery decomposition of the face shown in Fig 3. 
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(a)                                           (b)                                      (c)                                                                        (d) 

 

Fig. 12. Steps showing the multiblocking and mesh generation of the multiloop face described in Fig 9. 

     

 

Two of the OPLs (shown in dotted red) in Fig. 13b do not project to the closest edge, rather they are projected to the next best 

choices (solid black lines). This is because of constraints on those closest edges. The candidate edge for OPL generation can have 

constraints – edges frozen with nodes of a neighboring mesh, hard-points, boundary conditions or edge-end-vertices coming too 

close to the virtual vertex etc. In this case, the virtual vertices due to the OPLs come too close to the edge-end-vertices (less than 

the global element size), hence the closest edge is rejected and next closest edge is selected for orthogonal projection.   

The Art Gallery based multiblocking technique leading to mesher-native virtual topology also makes it possible to create an 

anisotropic submap mesh. This is a clear advantage over traditional submap meshing methods. Fig.14 illustrates the anisotropic 

transfinite meshing capability of the proposed multiblocking algorithm on the same face.  The concave face is decomposed the 

exact same way into 5 virtual faces but 5 different sizes, s1,s2,s3,s4 and sg are applied to different edges of the face resulting in an 

anisotropic transfinite mesh. Mainly because of the virtual topology network, this algorithm becomes a great enabler of such 

anisotropic TFIs. 

 
                                 (a)                                                             (b)                                                                        (c) 

Fig. 13. A facetted concave face (a) with 4 reflex vertices is submap meshed (c) via Art Gallery multiblocking into 5 virtual faces shown in parametric space (b). 

 

 

 

                                                                  
Fig. 14. An example of anisotropic transfinite mesh on the art gallery multiblocked face that uses 4 different sizes on certain edges and a global size (sg) for 

the rest of the boundary and interior. 

9. Conclusion 

In this paper Art Gallery lemmas and concepts are used to decompose concave faces into a set of maximal, single-loop, 

convex virtual faces. The face is discretized at a size slightly lower than the user driven size and virtual vertices are inserted on 

smoother concave regions. A notch diagram is next built by orthogonally projecting all reflex vertices to their nearest edges. Best 

split lines are selected based on a split line criteria that conjointly weighs its length and orientation. Virtual faces are constructed 

by a lightweight, mesher-native topology builder; these faces are subsequently processed for transfinite meshing. Results indicate 

four clear advantages over previously reported submapping techniques – firstly, this method does not need a Delaunay mesh; 

secondly, it does not depend on the isotropy of the boundary seed - it is only used as a first pass to determine the reflex vertices;  

s2= 2 
s1= 1 

s3= 5 

sg= 3 

s4=1.5 
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thirdly, it has the capability of introducing virtual vertices at points of concavity devoid of real CAD vertices; and finally, it 

guarantees orthogonal decomposition into maximal convex polygons and allows for a virtual topology network that can provide 

for several flavors of anisotropy in the transfinite meshes generated.  
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