
Parallel Smoothing for Grid-Based Methods

Steven J. Owen

†Sandia National Laboratories, Albuquerque, New Mexico, U.S.A.
sjowen@sandia.gov

Summary. We focus on the problem of mesh quality improvement for parallel grid-
based hex meshing from an implicit geometry representation. We outline a practical
set of tools that utilize a combined Laplacian and optimization approach using
Jacobi-based algorithms to improve element quality and achieve parallel consistency.

Key words: grid-based, overlay grid, hexahedral mesh generation, parallel
meshing, smoothing, optimization, mesh quality

1 Introduction

Generation of hexahedral meshes using grid-based approaches hold tremen-
dous promise for full automation and scalability. Among the challenges faced,
however is the critical mesh quality issue. Although grid-based methods can be
general purpose and fully automatic, typical results can often yield unusable
elements near the boundaries. In this work we present a practical approach to
mesh quality improvement through smoothing of hexahedral meshes. We also
focus, on the parallel problem and the challenges of smoothing in a distributed
environment.

To begin, we utilize the distributed meshing procedure, described in [1]
and limit our application to volumetric domains bounded by implicit surface
representations. Numerical procedures relying on a geometric decomposition
of the domain often generate small differences in the solution, based upon
the number of processors used or the selected decomposition strategy. For
this application, parallel consistency where the exact same result, to machine
accuracy, is expected, regardless of the number of processors used or decom-
position strategy employed.

This work advocates and leverages the excellent work of many authors and
practitioners in this field [2]-[6]. For our purposes, we define acceptable quality

†Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-
heed Martin Company for the United States Department of Energy’s National Nu-
clear Security Administration under contract DE-AC04-94AL85000



2 Steven J. Owen

in terms of the minimum scaled Jacobian, Js of the element. The eight scaled
Jacobian values, (Js)I at the nodes of a hex can be computed by taking the
determinant of its three ordered normalized edge vectors Ei,j,k as illustrated
in figure 1 and equation (1). The scaled Jacobian metric for a hex is then
taken as the minimum of the eight determinant calculations as in equation
(2).

Fig. 1. Ordered edges Ei, Ej , and Ek are used to compute Scaled Jacobian at 1

(Js)I = det
{
ÊiÊjÊk

}>
(1)

Js = min ((Js)I , I = 0, 1, ...7) (2)

A value of Js = 1.0, indicates an ideal element where all angles are precisely
90 degrees, however a value of Js ≤ 0.0 normally indicates an unacceptable
element for computational purposes. Initial projection of nodes to interfaces
and insertion of the boundary hex layer can result in many elements where
Js ≤ 0 or inverted. Depending on the requirements of the analysis, an accept-
able value for scaled Jacobian can vary, but normally a value of Js ≥ 0.2 is
permissible. Smoothing methods are intended to increase the value for Js for
all elements in the mesh to acceptable standards for computation.

2 Algorithm

Figure 2 summarizes the procedure we propose in this work. We begin with
a distributed grid-based mesh that we define as ΩM that contains the set of
mesh entities, M i, i = 0, 1, 2, 3 as nodes, edges, faces and hexes. We also be-
gin with an associated implicit geometry definition ΩG, containing geometric
entities, Gi, i = 0, 1, 2, 3, vertices, curves, surfaces and volumes respectively.
Individual processors within the distributed domain, ΩM are defined as Ωp

M

that have been established to include ghosted nodes and elements at their
boundaries, as outlined in [1].



Parallel Hex Mesh Smoothing 3

Following the establishment of mesh and geometry, parallel communication
is first initialized for ghosted nodes, followed by several iterations of smoothing
operations. The smoothing operations consist of curve and surface smoothing
operations that project to an implicit geometry, followed by volume smoothing
operations. Initial smoothing iterations smooth all nodes using a fast Laplace
method, while later iterations, focus only on hex elements that fall below a
designated threshold using an Optimization approach.

Fig. 2. smoothing procedure

Since we require a parallel-consistent result, differences in the node loca-
tions resulting from a particular distribution strategy are unacceptable for
our application. To meet this objective, we utilize a Jacobi-based approach
for smoothing, where initial node locations are used in the optimization proce-
dure. Node locations are only updated after an entire pass through the nodes
has been completed.

As outlined in figure 2, this work depends heavily on initial Laplacian
smoothing to improve node locations. In practice, applying only two itera-
tions of Jacobi-based Laplacian smoothing, appears to correct the majority
of inverted elements. This is followed by targeted optimization to those nodes
near elements that fall below a threshold quality metric. We choose Js ≤ 0.2 as
the threshold criteria and expand one layer of elements to include additional
nodes in the smoothing domain.



4 Steven J. Owen

For optimization, to facilitate parallel-consistent Jacobi-based smoothing,
we propose a simple node-by-node optimization method that attempts to
optimize the value of minimum scaled Jacobian at a node as outlined below:

1. Compute the minimum scaled Jacobian Js from the hexes attached to
node M0

i . Use this as the objective function we are optimizing.
2. Compute the numerical gradient, ∇Js by offsetting the location of M0

i in
the positive x, y, and z directions a small value, ε.

3. Find an improved Js by incrementally moving M0
i in the direction ∇Js

These steps are repeated until a convergence criteria is achieved or a max-
imum number of iterations has been reached. For our purposes, 2 or 3 itera-
tions were sufficient to raise the mesh quality to a computable range. Although
the basic approach does not deviate significantly from standard optimization
techniques, some significant differences are noted.

The objective function used for optimization is the scaled Jacobian at the
node from equation 1. Since only the node will be in motion, we can neglect
the Jacobian at other nodes of the adjacent hexes. The objective function is
therefore:

Js = min ((Js)I , I = 0, 1, ...nhex) (3)

where (Js)I is the scaled Jacobian at the node for the Ith adjacent hex and
nhex is the number of adjacent hexes. To control for mesh size, a size scale
factor Sf on the scaled Jacobian as shown in equation 4 is also used.

(Js)I = Sfdet
{
ÊiÊjÊk

}>
(4)

Sf =

{
es ≤ St,

es
St

es > St,
St

es

}
(5)

es = min(‖Ei‖ , ‖Ej‖ , ‖Ek‖) (6)

where St is a target edge size.
We also point out that the objective function, Js is continuous through

zero, which allows us to optimize node locations, even when the initial Js < 0.
This avoids having to compute a separate optimization step for untangling as
is needed by some applications.

The numerical gradient ∇Js is computed by offsetting the location of the
node in the x, y and z directions and recomputing Js at three locations. For
example the x component of ∇Js is computed as:

(∇Js)x =

{
Js(x0 + εx)− Js(x0)

ε

}
(7)

where x0 is the initial location at the node and εx is the vector {ε, 0, 0}.
The components, (∇Js)y and (∇Js)z are computed in a similar manner using
εy = {0, ε, 0} and εz = {0, 0, ε}.



Parallel Hex Mesh Smoothing 5

When applying optimization to nodes on surfaces, the same steps can
apply, however, the movement of the node must be restricted to the surface
manifold. We can also utilize the Js of the adjacent hexes to the surface
as the objective function for the optimization. To restrict the motion of the
node to the surface manifold, we can compute ∇Js on a tangent plane to the
surface. Orthogonal tangent vector Tu and Tv are computed numerically based
upon the surrounding facets on the surface to the node. Offsets εu and εv are
applied to compute gradients on the surface. where εu = εT̂u and εv = εT̂v.
Surface node optimization can then proceed in the same manner as volume
optimization, except that following computation of a new xn, the location is
updated by relaxing to the surface approximation prior to computing Js(xn).

Once a vector gradient ∇Js is established, we can begin searching for a
new location xn that provides an improved value for Js along the gradient
direction, xn = x0 + α∇Ĵs. We choose a maximum value for α as the initial
average edge length at the node and do a few iterations of a binary chop to
locate an improved value for Js. Since only the minimum (Js)I is optimized,
it is necessary that we do not severely distort other surrounding elements in
the process. To do so, we count the initial number of (Js)I < 0 and do not
update the node location unless the number of negative (Js)I is maintained
or improved. For our application, 4 to 6 iterations were normally sufficient.

3 Observations

The proposed method was implemented in the context of the system de-
scribed in [1]. Although many test cases were employed and validated, figure
3 illustrates one typical problem we were attempting to address. In this exam-
ple, the boundary layer hexes wrap a high curvature feature. We integrated
the Mesquite [7] ShapeImprover method and compared with the proposed ap-
proach. In this case, and many others, we were unable to untangle and improve
the quality using Mesquite. Furthermore, the Mesquite methods, from our ex-
perience, did not achieve parallel consistency. The proposed method however,
was able to improve mesh quality in this case and other similar cases, as well
as achieve parallel consistency.

Fig. 3. Comparison of smoothing results



6 Steven J. Owen

References

1. Owen SJ, Staten ML, Sorenson MC (2011) Parallel Hex Meshing From Volume
Fractions, In: Proceedings, 20th International Meshing Roundtable 161–178

2. Canann SA, Tristano JR, Staten ML (1998) An Approach to Combined
Laplacian and Optimization-Based Smoothing for Triangular, Quadrilateral,
and Quad-Dominant Meshes, In: Proceedings, 7th International Meshing
Roundtable 479–494

3. Knupp PM (2000) Achieving finite element mesh quality via optimization of
the Jacobian matrix norm and associated quantities. Part II: A framework for
volume mesh optimization and the condition number of the Jacobian matrix,
International Journal for Numerical Methods in Engineering, 48:1165–1185

4. Freitag LA, Jones M, Plassmann PE (1995) An Efficient Parallel Algorithm
for Mesh Smoothing, In: Proceedings, 4th International Meshing Roundtable
47–58

5. Knupp PM (2001) Hexahedral and Tetrahedral Mesh Untangling, Engineering
With Computers, 17:261–268

6. Knupp PM (2003) A method for hexahedral mesh shape optimization, Inter-
national Journal for Numerical Methods in Engineering, 58:319–332

7. Brewer M, Freitag-Diachin L, Knupp PM, Leurent T and Melander D (2003)
The Mesquite Mesh Quality Improvement Toolkit, In: Proceedings, 12th Inter-
national Meshing Roundtable 239–250


