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Geometry differentiation is necessary when using solid model representations
within design frameworks that employ gradient-based optimization. This pre-
requisite becomes a greater challenge if the solid model was obtained from
a Computer Aided Design (CAD) system. In these cases, the solid model
is usually a manifold boundary representation (BRep) created from a master
model that contains driving parameters and a three-dimensional (3D) feature-
construction recipe. Since access to the CAD system source code is normally
unavailable and a geometry differentiation capability is also unavailable within
the CAD system, other methods of differentiation must be employed.

With access to the master-model, parameters driving the solid model can
be perturbed by some step-size in order to determine the design velocity (i.e.
the mapping of a geometry feature from an initial to a perturbed domain)
of each feature. This translates into a design velocity for each face, trim
curve and node in the BRep. Armstrong et al. [1] utilized finite-differencing
to find the design velocity normal to the model boundary in this manner.
Although doing this for each driving parameter and topology feature in a
complex model is tedious (requiring at least one new instance for each param-
eter perturbation), others have attempted different approaches. For example,
to approximate geometry differentiation (assuming no topology changes) for
aerodynamics analysis of an aircraft outer mold-line, Nemec et al. [2, 3] used
centered finite-differencing of surface tessellations while tracking mesh nodes
to determine the design velocity w.r.t. model parameters. Chen et al. proposed
a method in [4] that required deriving implicit representations of active prim-
itives in a solid model to determine the design velocity of active boundaries
driven by model parameters.

In this research note, a method is presented for calculating the design
velocity of trim curves, or edges, w.r.t. model parameters that drive the inter-
secting surfaces. As noted in some texts, such as [5], the design velocity along
the intersection of parametrically defined surfaces can be determined using
a vector equation (obtained by noting that the intersection curve is common
to both surfaces) and an additional scalar constraint equation; however, the
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added constraint equation is not given. Herein a rigorous derivation of design
velocity for an edge is presented by specifying a reasonable constraint equation
and solving for the sensitivity to model parameters.

Derivation of the Sensitivity Along an Edge

(a) (b)

Fig. 1. (a) A trim curve defines the intersection of two surfaces. The point of
interest on the trim curve is labeled pi. (b) Perturbation of the trim curve and the
resulting movement of pi as viewed normal to the local tangent vector

Let two distinct surfaces in <3, named surface 1 and 2, that are at least
C1-regular share a common edge and be defined via the coordinates (u1, v1)
and (u2, v2), respectively. These surfaces are parameterized by parameters
{P1, P2 . . . Pj . . . PJ}, where each parameter Pj influences either surface 1, or
surface 2, or both. A point p = [x, y, z]T (in Euclidean space) on surface 1 can
be represented as ~r1(u1, v1;Pj), and on surface 2 a point can be described as
~r2(u2, v2;Pj).

The intersection of surfaces 1 and 2 is represented as a trim curve, ~rT ,
shown in Figure 1(a), where the vector equation ~r1i

− ~r2i
= 0 is satisfied

at each pi along ~rT . When one or more of the parameters Pj are perturbed,
surfaces 1 and 2 are perturbed as well by some δ~r1 and δ~r2, respectively. This
results in a perturbation of the trim curve to ~r′

T . Figure 1(b) illustrates a
perturbed trim curve and possible locations for the perturbed point p′

i. At
any p′

i along ~r′
T , we can then write

~r′
1 −~r′

2 = 0
~r1 + δ~r1 −~r2 − δ~r2 = 0

(~r1 −~r2) + (δ~r1 − δ~r2) = 0
⇒ δ~r1 − δ~r2 = 0 (1)
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Both δ~r1 and δ~r2 can be expressed by the linearized responses of ~r1 and ~r2 to
the parameter perturbations δPj at pi, giving

δ~r1 =
∂~r1

∂u1

∂u1

∂Pj
δPj +

∂~r1

∂v1

∂v1
∂Pj

δPj +
∂~r1

∂Pj
δPj (2)

δ~r2 =
∂~r2

∂u2

∂u2

∂Pj
δPj +

∂~r2

∂v2

∂v2
∂Pj

δPj +
∂~r2

∂Pj
δPj . (3)

Note that summation over the parameters Pj is implied in (2) and (3), meaning

δ ~r1 =
∂~r
∂u1

∑
j

∂u1

∂Pj
δPj +

∂~r
∂v1

∑
j

∂v1
∂Pj

δPj +
∑

j

∂~r
∂Pj

δPj

δ ~r2 =
∂~r
∂u2

∑
j

∂u2

∂Pj
δPj +

∂~r
∂v2

∑
j

∂v2
∂Pj

δPj +
∑

j

∂~r
∂Pj

δPj .

Equations (2) and (3) are then substituted into (1) to yield

∂~r1

∂u1

∂u1

∂Pj
δPj +

∂~r1

∂v1

∂v1
∂Pj

δPj +
∂~r1

∂Pj
δPj

−
[
∂~r2

∂u2

∂u2

∂Pj
δPj +

∂~r2

∂v2

∂v2
∂Pj

δPj +
∂~r2

∂Pj
δPj

]
= 0.

This equation must hold for any set of chosen δPj ’s, therefore we require that
the coefficient of each δPj is zero:

∂~r1

∂u1

∂u1

∂Pj
+
∂~r1

∂v1

∂v1
∂Pj
− ∂~r2

∂u2

∂u2

∂Pj
− ∂~r2

∂v2

∂v2
∂Pj

=
∂~r2

∂Pj
− ∂~r1

∂Pj
. (4)

Equation (4) is a vector equation containing the three [x, y, z] component

equations. Since the unknowns we desire to compute are
∂u1

∂Pj
,
∂v1
∂Pj

,
∂u2

∂Pj
and

∂v2
∂Pj

, a fourth equation is needed. The chosen fourth equation also needs to

represent the trim curve that each pi pertains to. One way of identifying this
added relation is by using the tangent vector, ~s, at pi on the trim curve ~rT .
We choose to use a perturbation δ~rT that lies normal to ~s to create some
point p′

i, which gives δ~rT · ~s = 0. Since ~rT = ~r1, we can substitute (2) into
this fourth equation and obtain the scalar equation(

∂~r1

∂u1

∂u1

∂Pj
δPj +

∂~r1

∂v1

∂v1
∂Pj

δPj +
∂~r1

∂Pj
δPj

)
·~s = 0

⇒
(
∂~r1

∂u1
·~s
)
∂u1

∂Pj
+
(
∂~r1

∂v1
·~s
)
∂v1
∂Pj

= − ∂
~r1

∂Pj
·~s. (5)

At this point, the sensitivity of point pi on the trim curve ~rT to parameters
Pj can be determined by combining (4) and (5) into
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∂x1

∂u1

∂x1

∂v1
−∂x2

∂u2
−∂x2

∂v2
∂y1
∂u1

∂y1
∂v1

− ∂y2
∂u2

−∂y2
∂v2

∂z1
∂u1

∂z1
∂v1

− ∂z2
∂u2

−∂z2
∂v2

∂~r1

∂u1
·~s ∂~r1

∂v1
·~s 0 0
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i
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∂Pj

∂u2

∂Pj

∂v2
∂Pj
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i

=
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∂x2

∂Pj
− ∂x1

∂Pj

∂y2
∂Pj
− ∂y1
∂Pj

∂z2
∂Pj
− ∂z1
∂Pj

− ∂
~r1

∂Pj
·~s


i

, (6)

which is a 4 × 4 linear system with multiple righthand sides, one for each
parameter Pj . The coefficient matrix and the righthand sides are readily eval-
uated from CAD data. It is understood that if ~r1 does not depend on one
particular Pj , then

∂~r
∂Pj

=
∂x1

∂Pj
=
∂y1
∂Pj

=
∂z1
∂Pj

= 0

in the j’th righthand side expression, and likewise for ~r2.
The system (6) is readily solved using pivoting LU decomposition and

multiple back-substitutions, which yields the sensitivities of u1, v1, u2, v2 w.r.t.
Pj at point pi on the trim curve:

⇒



∂u1

∂Pj

∂v1
∂Pj

∂u2

∂Pj

∂v2
∂Pj


i

, j = 1 . . . J (7)

These derivatives can then be used in (2) or (3) to compute the linear displace-
ment of point pi in response to any set of chosen δPj ’s. All of these operations
are repeated for each point pi on the trim curve, thus allowing the calculation
of the overall trim curve’s linear displacement in response to the δPj ’s.
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