Sparse Voronoi Refinement*

Benoit Hudson, Gary Miller, and Todd Phillips

Computer Science Department
Carnegie Mellon University

Summary. We present a new algorithm, Sparse Voronoi Refinement, that produces
a conformal Delaunay mesh in arbitrary dimension with guaranteed mesh size and
quality. Our algorithm runs in output-sensitive time O(nlog(L/s) 4+ m), with con-
stants depending only on dimension and on prescribed element shape quality bounds.
For a large class of inputs, including integer coordinates, this matches the optimal
time bound of ©(nlogn + m). Our new technique uses interleaving: we maintain a
sparse mesh as we mix the recovery of input features with the addition of Steiner
vertices for quality improvement.

1 Introduction

One of the main missing components in current tetrahedral meshing algo-
rithms research is the existence of refinement algorithms with good run time
analysis. Runtime analysis for some methods (notably those involving quad-
trees or octrees) has been straightforward [HPU05, MV00] due to the very
structured spatial decomposition. However, there are many practical meshing
algorithms with very poor run time guarantees.

The goal in designing Sparse Voronoi Refinement (SVR) was to create
a meshing algorithm that was similar in implementation and style to many
widely used meshing algorithms, but with the added benefit of very strong
worst-case bounds on the runtime complexity and space usage. An additional
achievement of SVR is that the algorithm can work in any fixed dimension d.
The most practical implementations of SVR will probably take advantage of
fixing d = 3, but higher dimensional meshing (spacetime methods, etc.) is a
growing area of future research to which SVR can contribute.

The three important aspects of a mesh that are addressed by SVR are
that the mesh resolve all the input features (conforming), that mesh elements

* This work was supported in part by the National Science Foundation under grants
CCR-9902091, CCR-9706572, ACI 0086093, CCR-0085982 and CCR-0122581.

340 B. Hudson et al.

be well-shaped (quality), and that the number of elements be small (size-
guarantee).

Quality: In this work, we will refer to a quality mesh as one in which
the radius-edge ratio is bounded by a constant for any mesh element. In three
dimensions, this metric is somewhat lacking, as it can admit a family of poorly-
shaped elements known as slivers, although it is known how to post-process a
radius-edge mesh and eliminate slivers. On the other hand, this criterion allows
better proof generalization and yields strong bounds on the aspect ratio of the
Voronoi Diagram, the dual of the Delaunay triangulation. Thus most of the
SVR operations and metrics are defined on the Voronoi diagram. This vastly
simplifies most of the proofs, especially for d > 3. An actual implementation
of SVR would likely only use the Delaunay, but the conceptual framework of
the Voronoi is essential to understanding the algorithmic design of SVR. We
further discuss mesh quality, Voronoi quality, and the elimination of slivers in
Section 2.1.

Conforming: Sparse Voronoi Refinement produces a Voronoi diagram
such that the dual Delaunay triangulation conforms to the input. That is,
every input feature is represented in the output Delaunay mesh by one or
several segments, triangles, and higher-dimensional facets.

Size Guarantee: We would like to say that our algorithm generates a
mesh whose size is at most a constant fraction larger than the smallest radius-
edge quality mesh. There are two problems with this goal. First, finding such
a mesh seems difficult. Two, it is not obvious that this is the correct goal for
meshing applications. To see the second concern consider an input of just two
edges of the same length forming a cross. Assume the edges do not intersect
but come arbitrarily close. An optimal radius-edge mesh would simply form a
sliver out of these two edges. While, a good aspect-ratio mesh would introduce
very small tetrahedra near where the two edges are close. Thus, it seems that
we would like to return a mesh such that the local feature size at every point
is bound both from above and below by a constant times the diameter of the
simplex containing it. In this paper we will only show that our algorithm will
return a mesh such that no tetrahedra is too small. That the distance between
any two vertices is bounded below by the local feature size of the input.

Time and Space Usage: Given a Piecewise Linear Complex (PLC) as
input [MTTWO95], we will use n to denote the total number of input features
(vertices, segments, triangles and larger facets, etc). We will use L/s to denote
the the ratio of the diameter of the PLC to the smallest pairwise distance
between two disjoint features of the PLC. The notation L/s is historic, and
the concept appears in many works under many names ([Eri01] contains a
long list of references).

Sparse Voronoi Refinement has worst case runtime bounded by O(n log L/s+
m), where m is the number of output vertices. This runtime bound is a vast
improvement over prior meshing algorithms for three and higher dimensions.
For almost all interesting inputs, this bound is equivalent to O(nlogn + m),

Sparse Voronoi Refinement 341

which is optimal (using a sorting lower bound). SVR also has optimal output-
sensitive space usage O(m).

Most versions of Delaunay refinement algorithms (Section 2 contains a
short survey of such methods) first construct the Delaunay triangulation of
the input points as a preprocess. Unfortunately, in dimension higher than
two, the complexity of the Delaunay triangulation (that is, the number of
edges, triangles, tetrahedra, etc.) can be super-linear in the number of input
vertices: £2(nf%?1) in the worst case. More concretely, in three dimensions
this implies that any such algorithm has worse case space and runtime £2(n?),
which is impractical for large inputs — furthermore, some of the classic worst-
case examples look very much like engineered surfaces one might want to
mesh.

However, it is well known that a quality Delaunay mesh with m vertices
has only O(m) elements [MTTW95, Tal97], implying that it should be possible
to break the O(n[d/ 2]) runtime barrier by avoiding the preprocessing step.

Sparse Voronoi Refinement accomplishes this by interleaving the tradi-
tional preprocess with the main body of the algorithm. We maintain a De-
launay mesh throughout the algorithm, but enforce that it is always a quality
radius-edge mesh. The input point set and features are gradually recovered
over the life of the algorithm, rather than at initialization.

By maintaining the quality of the mesh, SVR ensures that it is sparse: the
degree of any vertex is at most constant. This allows all the mesh modifications
to be performed in constant time, so that the runtime work for the refinement
process is only O(m) (Section 8.1), plus bookkeeping of O(nlog(L/s)) term
arising from point location costs (Section 8.2).

SVR expands the capabilities of existing analyzed meshing algorithms in
terms of practical output size and generalization to higher dimension. SVR
also represents the first analyzed 3D Delaunay refinement algorithm to achieve
the near-optimal bounds we claim. Nonetheless, SVR does not yet completely
solve the meshing problem because it has overly strict restrictions on the
geometry of the input. Future work in this regard is discussed in Section 9.

Section 2 discusses some related work, along with some of the design de-
cisions of SVR.

Some notation needed to understand the algorithms, proofs, and input
restrictions is presented in Section 3.

Section 4 presents a simplified, toy version of SVR that operates on an
input point set without input features or boundary concerns. Important new
algorithmic and proof techniques are discussed in this section. The goal is to
present the salient novel features of SVR, so that the reader can better under-
stand the general method behind SVR and the geometric intuitions behind
the proofs.

Section 5 presents the full SVR algorithm, with the added complications
for handling boundaries and input features. The approaches taken by SVR to
address these complexities are highly similar to previous works [MPWO02]. For
brevity we refer to earlier results for most of the proofs and only highlight the

342 B. Hudson et al.

novel portions; a technical report version of this paper presents the proofs in
full detail [HMPO06].

The results of Section 6 in particular provide fairly strong structural results
about quality Voronoi diagrams that may be applicable to other meshing
algorithm analyses; Sections 7 and 8 use the structural results to prove our
algorithm is correct, size-guaranteed, and fast.

2 Related Work

2.1 Mesh Quality and Well-Spaced Points

It has long been known that the Finite Element Method converges to a so-
lution if there are no large (almost 180°) angles in the mesh. The closely
related problem of ensuring there are no small (almost 0°) angles in the mesh
has proven to be more tractable using the Delaunay triangulation, which has
well-understood geometric and topological properties. In general, the smallest
angle in the Delaunay triangulation can be still very small, though it is max-
imal over all possible triangulations; therefore, to ensure a quality mesh, we
must add Steiner vertices. When all the angles in a simplex are large, the sim-
plex has good aspect ratio, which is variously described as the ratio between
the radius (or volume) of the minimum circumscribing ball to the maximum
inscribed ball, or the ratio between the volume of the simplex to the length
of its shortest edge.

In generalizing to higher dimension, it is much more convenient to use a
different definition of mesh quality than the aspect ratio. The radius-edge
ratio of a simplex is the ratio of the circumradius to the length of the smallest
edge of the simplex, where the circumradius of a simplex is the radius of the d-
dimensional circumball that passes through its vertices. It was observed more
than ten years ago that meshes with good radius-edge have the property that
the points from the mesh are well spaced in a precise technical sense. In
particular, the Voronoi diagram of the point set has the property that each
Voronoi polytope has good aspect ratio (since the Voronoi region may be
unbounded one has to carefully define its aspect ratio; see Definition 1). This
work has motivated research into efficient algorithms to generate these good
radius-edges meshes. Indeed, most methods related to Ruppert’s Delaunay
refinement algorithm generate meshes that explicitly satisfy the radius-edge
condition rather than the aspect ratio condition.

In two dimensions, the radius-edge ratio corresponds exactly with the as-
pect ratio. In three and higher dimension, this is not true: there are simplices
with good (small, near one) radius-edge ratio that have bad (large, near infi-
nite) aspect ratio. Because of their shape in 3D, these types of elements are
known as slivers. Many algorithms have been proposed that take as input a
good radius-edge 3D mesh, and refine it into a sliver-free, good aspect-ratio
mesh [Che97, ELM 100, LTO01].

Sparse Voronoi Refinement 343

In particular, using the results and techniques of our analysis, a very simple
timing analysis of the Li-Teng algorithm for sliver removal ([LT01], extended
by Li to higher dimension [Li03]) shows that it will work with linear time
and space requirements on point sets. Such an algorithm can easily be run as
a post-process to SVR in order to generate a sliver-free mesh. Therefore, we
henceforth ignore the issue of slivers.

2.2 Delaunay Refinement Algorithms

There have been several different approaches to the meshing problem. The
idea of generating a mesh whose size is within a constant factor of optimal
was first considered by Bern, Epstein, and Gilbert [BEG94] using a quadtree
approach. A 3D extension was given by Mitchel and Vavasis [Mit93].

Chew introduced a 2D Delauanay refinement algorithm [Che89] and
showed termination. Chew added the circumcenter of poor quality trian-
gles(Steiner nodes).

Ruppert [Rup95] extended this idea of adding circum-centers for 2D mesh-
ing to produce a mesh that was within a constant factor in size from the op-
timal and also handled line segments as input features. The extension of this
algorithm to 3D has been ongoing research. Some methods assume that that
Ruppert’s local feature size function is given [MTT*96]. Others refine a bad
aspect ratio mesh directly [She98, MPWO02]. These methods by them selves
do not give constant approximation size meshes since the may include sliv-
ers. But they do produce meshes that have size bounded below by a constant
times the local feature size.

Finding refinement algorithms that have provably good run times has also
been of interest. Spielman, Teng, and Ungor [STUOQ] proved that Ruppert’s
and Shewchuk’s algorithms can be made to run in O(lg* L/s) parallel steps.
They did not, however, prove a work bound. Miller [Mil04] provided the first
sub-quadratic time bound in 2D with a sequential work bound of O((nlg I+
m)lgm), in which I' is a localized version of L/s (in particular, I" < L/s).
The extra lgm factor is related to a priority queue that was required for
the runtime proof in the presence of input segments. Har-Peled and Ungor
removed the lgm factor using a quadtree data structure [HPUO05].

Many algorithms for Delaunay refinement in 3D have been proposed [She(2,
CP03, PW04, CDO03], but so far have eluded nontrivial runtime analysis. Sim-
ple examples can usually give bad worst-case performance for naive imple-
mentations of these algorithms. As mentioned, they will all suffer from inter-
mediate size §2(n?) in the worst case.

3 Preliminaries

Throughout this paper, unless explicitly stated otherwise, all objects are in
E?. Given a set S, the convex closure of S, denoted CC(S), is the smallest
convex set containing S, while the convex hull is the boundary of CC(S).

344 B. Hudson et al.

Throughout, all balls will refer to topologically open balls. We say that a
point z encroaches on a ball B if x € B; that is, if « is interior to the ball.

A polytope is the convex combination of finite set of points P. The dimen-
sion of the polytope is the dimension of the affine subspace generated by P.
The boundaries as well as the domain we consider are a collection of poly-
topes. We formally use the formal definition of a Piecewise Linear Complex
(PLC) from [MTTW95].

For this paper, we place additional requirements on the input; we expect
that most if not all of these can be lifted with additional work drawing on
existing techniques. First, we make the usual Draconian requirement that the
angle between any two intersecting polytopes, when one is not contained in the
other, is at least 90°. We also require that polytopes have a convex hull that
is defined by O(1) vertices (although we place no restriction on the number
of interior vertices); and furthermore that the hull vertices are well-spaced.
Finally, the definition of a PLC requires that all input facets are convex. This
would be a minor restriction were input angles unrestricted, because one can
always decompose the PLC facets as needed to fulfill this condition. In the
Future Work Section 9 we discuss how to lift some of these restrictions.

We define a mesh M as a set of vertices in E? and the Voronoi diagram of
the vertices. The Voronoi cell of a mesh vertex v is denoted Vi, (v). We will
call the set of nodes of the Voronoi diagram the Voronoi nodes (these are not
the vertices of M). We define the outradius Rjs(v) to be the distance from
v to the farthest Voronoi node of its cell. We define the inradius r/(v) to be
the distance from v to the point of closest approach of the boundary of the
Voronoi cell. When the mesh in question is clear, we may write R, or r, for
brevity.

Given a set of points P, let CC(P) denote the convex closure of P, i.e.,
the smallest convex set containing P.

Definition 1. Given a mesh M and a mesh vertex v, the aspect ratio of the
Voronoi cell Vg (v) is Rar(v)/rar(v).

We say M has aspect ratio T if for each vertex v € vertices(M) the aspect
ratio of V(p) is at most 7. In this case, we will refer to M as a T-quality
Voronoi diagram.

We will assume throughout there are no degeneracies, that is, no sphere of
dimension k < d containing k + 2 points. Algorithms to address degeneracies
have been considered; incorporating these method into our framework will be
addressed in later work following Miller, Pav, and Walkington [MPW02].

A crucial definition is that of local feature size, as defined by Rup-
pert [Rup95]. Let Ifs(z) be the minimum distance from z to two disjoint
polytopes of the input PLC. We also define a closely related function, the
current feature size cfs);(x), which is the distance from z to the second-
nearest mesh vertex of M. We will simply write cfs when it is clear that only
one mesh M is involved. This notion of cfs has been written elsewhere as 1fsy,,
Ifsg, or Ifsg, s, however, in this work we will use cfs to strongly disambiguate

Sparse Voronoi Refinement 345

the two notions. The Ifs never changes and counts distance to any polytope.
The cfs decreases between intermediate meshes as refinement proceeds, and
only counts distance to vertices.

Given any point p in the convex closure of G we consider the lowest di-
mensional cell containing p. We call this the containing dimension of p,
denoted CD(p).

We will need a spacing function defined everywhere for our runtime
bounds. We use the gap size definition originally defined for mesh coarsen-
ing [MTT99, Tal97].

Definition 2. Let P be a point set in E¢. A gap-ball B of P is any d-ball
meeting the following two criteria:

e B is not encroached by any point in P.
o The center of B lies inside the convex closure CC(P).

Definition 3. Let P be a point set in E%. Let x be a point in CCO(P). The
gap size Gp(x) is the radius of the largest gap-ball B of P such that x lies
on the surface of B.

For brevity, we define that G () = Gyertices(m) ().

Clearly, the gap size is a monotone decreasing function as we add vertices
to the mesh: the shape of the convex closure does not change, but it gets
harder to satisfy the non-encroachment requirement.

Definition 4. Let a mesh M and a point x € CC(M) be given. We define
the grading of M at = as:

This notion of grading is useful for capturing the relative quality of a
mesh, with the advantage that I' is defined everywhere in the convex clo-
sure, rather than just at vertices like many mesh metrics. This notion and
nearly-equivalent notions for grading have used before [MTT99, Tal97, Mil04,
HPUO05].

4 Simplified Algorithm

In this section, we describe a simplified version of our algorithm without any
input feature complications or boundary concerns. For the simple algorithm,
the input is a set of points in the infinite plane E? where the hypercube
[0, LY/4)? repeats. While this is not a particularly realistic model of compu-
tation, it does allow us to develop the intuition we use for the full algorithm,
while avoiding considerable distractions. Furthermore, the periodic point set

346 B. Hudson et al.

SIMPLIFIED-SVR/(P: d-dim point set, 7: mesh quality constant, k: 0 < k < 1))
1: Assume an initial Voronoi mesh M exists.

: Let U be the set of uninserted input vertices: U = P — V(M)
while U is non-empty do

Perform a break move

while M has aspect ratio worse than 7 do

Perform a clean

end while

end while

TRYINSERT(p: d-dim point, M d-dim mesh, U: set of uninserted d-dim points)
9: if Ju € Us.t.|pu] < kNNy(p) then

10: Yield: Insert v into M, updating U and the Voronoi diagram.

11: else

12: Insert p into M, updating the Voronoi diagram.

13: end if

Fig. 1. The simplified SVR algorithm on a periodic point set. The break and clean
moves are described in the text.

model can be simulated by embedding the input hypercube within a larger

bounding box.

For the purposes of this simplified exposition, we will not discuss initializa-
tion, except to note that it is only linear work, assigning uninserted vertices
to one of a constant number Voronoi cells. At a basic level, SVR operates
incrementally. At any point in time, we have a Voronoi diagram. Some of the
input points are Voronoi vertices, some of the input points are not yet recov-
ered. The Voronoi diagram also has Steiner vertices. Every input point that
is not yet recovered is contained in some Voronoi cell.

The algorithm iteratively plays one of three moves until none of the moves
apply:

e clean move: Pick a Voronoi cell of bad aspect ratio. Take one of its farthest
Voronoi nodes, and try to insert it using TRYINSERT.

e break move on an input: Pick an input vertex that has been recovered in
the mesh and whose Voronoi cell includes an input point. Take its farthest
Voronoi node, and try to insert it using TRYINSERT.

e break move on a Steiner vertex: Pick a mesh vertex that is not an input
(it is a Steiner point) and whose Voronoi cell includes an input point.
Unconditionally insert one of the input points.

Assuming this algorithm terminates, at that point there will be no cells of
bad aspect ratio, and all the input vertices will have been recovered, so the
algorithm will have produced a quality conforming mesh.

We add the additional constraint that clean moves take precedence over
break moves. One can then think of the algorithm as operating in phases.
Each phase, SVR starts with a quality mesh, “breaks” it with a break move;
then “cleans” using only clean moves, until quality is re-established.

Sparse Voronoi Refinement 347

Fig. 2. The cell of v is being destroyed by SVR (either because it is skinny, or
because p” is inside); SVR tries to add the farthest Voronoi node p. The outer circle
around p is of radius R,; the inner disc, in grey, is of radius kR,. (A) Because the
uninserted input point p’ is near p, SVR must yield — otherwise, an artificially small
feature will have been created, violating our size guarantees. (B) The uninserted
input point p” is too far from p, so SVR does not yield. Our size guarantees would
be maintained were SVR to yield to p”, but the time bounds would be violated
because p” may be arbitrarily close to v.

When the algorithm considers adding a Steiner point, it may instead yield
to an input vertex if there is one nearby. This ensures that no Steiner point
ever is inserted too close to an input vertex, which is critical for guaranteed
mesh size. Suppose SVR is cleaning a skinny Voronoi cell V(v) and considers
the addition of Steiner p. There is an empty ball around p of radius R,,. This
provides a natural definition of “nearby,” for yielding purposes. For reasons
related to runtime analysis, we must reduce the radius of this neighborhood
by a constant factor k, slightly smaller than 1. Expressed concisely, we will
yield to an unrecovered input point p’ if |pp’| < kR, (see Figure 2).

Why does the runtime argument need k < 17 If we relaxed to k = 1, p’
might be arbitrarily close to v (or some other vertex). Such a situation would
cause an arbitrarily bad break in the quality of the mesh. This would cause us
to lose sparsity guarantees, which would in turn destroy runtime guarantees.
For this reason, the constants in the runtime analysis will depend on 1/(1—k),
greatly increasing as k approaches 1. On the other hand, guarantees about
spacing and mesh size work best when we are most aggressive about yielding
to input vertices rather than adding more Steiner vertices: smaller k£ makes
for larger output. There is a tradeoff here, which we expect argues for setting
k close to 1.

The proof that the simplified SVR terminates with guaranteed mesh size
is almost verbatim from Ruppert [Rup95], albeit adapted to higher dimension
and with an additional case for yielding to input vertices. What is novel are
the proofs that bound the runtime and intermediate mesh quality.

348 B. Hudson et al.

Under appropriate settings of the user-given parameters 7 and k (namely,
kT > 24/2), we can guarantee that M never has aspect ratio worse than some
constant 7/ that depends only on 7, k, and d — even during the clean and break
phases. It is well known [MTTWO95, Tal97] that if the mesh vertices are well-
spaced, then the Delaunay and its dual Voronoi have size linear in the number
of vertices. In particular, every vertex has constant degree (its Voronoi cell
has a constant number of facets). This further implies that inserting a vertex
into such a mesh will take only constant time using an incremental algorithm;
this gives us the O(m) bound for refinement work.

The only charge left, then, is the point location: determining whether any
unrecovered vertices are included in the k-ball around p. The point location
structure we use is almost trivial: the algorithm simply stores the list of un-
recovered input vertices that each cell includes. When a new mesh vertex is
inserted, the insertion algorithm also recomputes the lists of affected Voronoi
cells. Then, to determine whether any unrecovered vertices are in the k-ball,
the algorithm merely queries each neighboring Voronoi cell in turn.

We use an amortized analysis for the point location charges that is remi-
niscent of the two-dimensional analysis of Miller [Mil04]: we charge the point
location not to the Voronoi node that is prompting the test, but to the unre-
covered vertex being tested. There are two sub-charges: the relocation charge
for updating point location information, and the charge for point location
queries. Both charges are computed similarly, so in this section we will merely
sketch out the former case.

Consider an unrecovered vertex u. Whenever the Voronoi cell that contains
u changes, a new vertex p was inserted nearby — at a distance related to
(within a constant factor of) cfs(u). Furthermore, when p is inserted, SVR
ensures via the yielding rules that the nearest neighbor of p is no closer than
a distance related to cfs(p). Finally, because u and p are close, cfs(p) is related
to cfs(u). Thus, for every p whose insertion affects u, p is both close (distance
O(cfs(u)) and has a large (radius £2(cfs(u))) empty ball around it. Therefore,
an adversary can only pack a constant number of vertices around u before the
feature size at u falls by half.

Later, we will prove that cfs(u) is at most the diameter L of the periodic
region, and never goes below {2(s). Thus, the adversary can force the algorithm
to halve the feature size at most log(L/s) times around u. So the number of
times that w is relocated will be at most log(L/s). Precise statements of the
lemmas are found in Section 8.2, while rigorous proofs appear in the tech
report [HMPO6].

As we develop the full algorithm, the important techniques of this section
will remain the same: as long as SVR ensures that no new vertex is ever
inserted too close to an existing mesh vertex, the algorithm always has a
quality mesh (not too broken). In turn, this implies that the insertion is fast
and that the gap size around unrecovered features falls exponentially, so that
the point location costs are also small.

Sparse Voronoi Refinement 349

TRYADD(p: i-dim Voronoi point, r: radius, M: i-dim mesh)

if 3¢g € U(M) such that |pg| < kr then
FORCEADD(q,M)

else if 3B € Balls(M) such that p € B then
SpLIT(B) for all such B
TRYADD(p, 7, M)

else
FORCEADD(p, M)

end if

SPLIT(B: protecting ball from a mesh M)

1
2

3:

4

: TRYADD(center(B), radius(B), M)
: while M has a skinny cell V(v) do
TrRYADD(far-node(v), R (v), M)
: end while

FORCEADD(p: i-dim point,M: i-dim mesh)

1

2:

11:
12:

5

: Run Bowyer-Watson or Edelsbrunner-Shah to insert p into the mesh M.
Reassign vertices in U (M) and protecting balls in Balls(M) to their new Voronoi
cells as needed.
for every higher-dimensional mesh M that contains M as a sub-feature do
Remove from Balls(M™) all the balls associated with Voronoi nodes that
were destroyed.
Add to Balls(M™) a ball for every Voronoi node that was created.
Add p to U(M™) if not already present.
end for
{The following only occurs if p was a vertex in P(M).}
If c¢d(p) < i then remove p from U (M)
: while 3B € F(M) such that p € B do
If p is the second encroachment on B, SPLIT(B)
end while

Fig. 3. The subroutines used in the SVR algorithm.

Full Algorithm

The input is described as a PLC, and must meet the criteria described in

Se

ction 3.
As scratch data structures, we maintain, for every input feature including

the complete domain:

A mesh M. We will prove that each mesh always has good quality (good
Voronoi aspect ratio).

A mapping U from each Voronoi cell in M to the list of uninserted vertices
in that cell of containment dimension < i.

A mapping Balls from each Voronoi cell in M to the list of balls intersect
the cell(these balls are used to protect lower-dimensional features).

350 B. Hudson et al.

A protecting ball is a ball B(p, NNy;-(p)) centered at a Voronoi node of
a lower-dimensional mesh M . This corresponds exactly to the circumball of
a lower-dimensional subfacet.

In the bootstrapping phase of the algorithm, we initialize the data struc-
tures for each feature in order of increasing dimension. We generate the
Voronoi diagram of the convex hull of each feature F', then partition each
sub-feature’s protecting balls among the cells of M (F') to create the S map-
ping. We also partition the vertex set similarly.

As in the point-set case, the algorithm will now iteratively perform break
and clean moves until it reaches a quality conformal mesh. The clean move is
identical to before (except for an updated version of TRYINSERT). The break
move is now expanded to try to break encroached balls using the new SpLIT
routine. Encroached balls correspond to lower-dimensional input features that
has not yet been recovered.

However, we must sequence the moves correctly across dimensions. In par-
ticular, we maintain the invariant that every mesh is always of good quality.
We first refine for quality (clean moves) from the bottom (lowest dimension)
up. Next, we refine for input (break moves) from top down. This approach
is critical to establishing the runtime bound, though it is irrelevant to the
correctness proof.

When we consider adding a Steiner point, as before, we may have to yield
to an input vertex. However, we may also have to yield to lower-dimensional
input features; this is a common technique in mesh refinement. Unlike in
standard Delaunay mesh refinement techniques, for runtime reasons we are
required to occasionally allow input protective balls to be encroached by mesh
vertices; however, we only allow a single encroachment, and only by vertices
that have containment dimension less than dim(M). The need for this is based
on the fact that while we can charge according to the spread (L/s) of the input
for the point location of features the user input, we want the charge on sub-
features the algorithm creates to be only linear in the size of the output.
Allowing singly-encroached input features allows the algorithm to ensure it
never performs point location on any non-input protective balls until the gap
size around the protective ball is related to its diameter.

6 Structural Properties of Quality Voronoi Diagrams

In this section we present several structural lemmas about good radius-edge
meshes. These lemmas are crucial for our analysis and may be well suited for
timing analysis of future algorithms. For brevity, proofs are omitted, but can
be found in [HMPOG6].

Let M be a 7-quality Voronoi diagram in EZ. Our first main goal in this
section is to show that the cfs of any point in a gap-ball is bounded below by
a constant times the ball’s radius.

Sparse Voronoi Refinement 351

Lemma 1. Suppose that M is a T-quality Voronoi diagram, and suppose that
B is a gap-ball of V(M) with center ¢ and radius r. If x € BN CC(M) then

cfs(x) > eyr
where ¢ depends only on T and is independent of dimension.

We now a state a lemma that is functionally equivalent to Lemma 1, but
allows the gap-ball to have one vertex encroaching it.

Lemma 2. Suppose M is a T-quality Voronoi diagram and p is a Voronoi
vertex. Define M’ as the Voronoi diagram of V. (M)\{p}. Suppose B is a gap-
ball of radius v in M’', then for all x € B:

>
chs(ac) > cor

We now state two lemmas that relate the grading I" of a Voronoi diagram
to the quality 7. These lemmas are not really new, but we include more simple
formulations than prior work.

Lemma 3. (Quality Gives Bounded Grading)
Suppose M is a T-quality Voronoi diagram. Then there exists a constant c3
depending only on T such that I'n(z) < ¢z for any x € CC(M).

Lemma 4. (Bounded Grading Gives Quality)
Suppose we have a Voronoi diagram M, and suppose that I'n(p) < 7 at every
vertex p € M. Suppose further that every Voronoi node of M is contained in
CC(M). Then M is a 27-quality Voronoi diagram.

We note that the hypothesis for Lemma 4 is satisfied when we have a 7-
quality mesh such that the diametral ball of every mesh simplex on the convex
hull is unencroached.

7 Spacing

The key lemma that Ruppert used in his paper stated that the algorithm will
never insert two points more than a constant factor closer to each other than
what is dictated by the Ifs function over the input — in fact, it will never even
consider inserting a point too close to a neighbor. By controlling the spacing
of output vertices, Ruppert could then prove that his algorithm terminates
with a mesh of guaranteed size. We will do the same; and we also need to
control the spacing in order to achieve our time bounds.
The statement of the theorem is as follows:

Theorem 1. For any point p considered for insertion into a mesh M, whether
or not p is eventually inserted, we have that lfs(p) < CNN(p)

352 B. Hudson et al.

From this we get a corollary which allows us to bound the nearest neighbor
of a mesh vertex at any time — in particular, at the end of the algorithm:

Corollary 1. In any mesh M produced during the run of the algorithm, for
any mesh vertex v € M, we have that lfs(v) < (1 4+ C)NNps(v)

The proofs herein are somewhat simplified from those presented by many
prior authors, even as they are generalized to higher dimension. As in most
such analyses, we split the single constant ¢ into a constant C; for every
dimension 1...d. In our algorithm, unlike in most, we need an additional
constant C for the spacing of input vertices when they are inserted.

Lemma 5. Let p be an input vertex being inserted by SVR. Then:

Ifs(p) < (1 + %)NNM(p)

Proof. Let v be the vertex in whose cell p lies. If v has containment dimension
0, then the lemma is obvious. Otherwise, we know lfs(v) < Cy NNy, (v) by the
usual inductive argument. Furthermore, we know that v did not yield to input
vertex p when v was inserted, which means that |vp| > kNN, (v). Finally, we
use the Lipschitz condition and some algebra to prove the result. This shows

that | Cy Zl—l—Cl/k .

The bounds on C; for ¢ > 0 are exactly analogous to prior work but with
a 1/k factor. This gives a linear program which we can solve for Cp, which

shows that the sizing theorem holds whenever . In other words,

for any 7 > 29-1/2 there is a k close enough to 1 that allows the proof to
go through. Setting k = 1 gives a correct algorithm, but we will see that the
algorithm will run in time proportional to (1 —&)~! which suggests a tradeoff
between solution quality and runtime.

7.1 Size Optimality

A proof due to Ruppert shows that, so long as the sizing condition is guar-
anteed — as it is for SVR, according to Theorem 1 — then on point set input,
the mesh is within a constant factor of the smallest mesh that respects the
input vertices. As shown by Shewchuk [She98], this proof fails in the presence
of input features (even just segments) in dimension at least 3: by using sliv-
ers, on certain inputs, we can produce an arbitrarily smaller mesh than what
is dictated by the local feature size. Given that slivers are undesirable, it is
unclear exactly what the correct definition of size optimality is, when in the
presence of features.

Sparse Voronoi Refinement 353

8 Timing Analysis Overview

8.1 Mesh Update Work

We claim that the entire refinement process modifies only O(m) Voronoi cell
boundaries over the life of the algorithm. Hence, the cost of maintaining the
mesh is O(m).

Proof (see [HMPO06]) proceeds by first showing that the mesh is always
a quality mesh at any point during the algorithm. It is then shown that the
mesh is always sparse. Finally, a charging argument to count the total number
of edges.

Lemma 6 (Always Quality). At any point during Sparse Voronoi Refine-
ment, the intermediate mesh is a T'-quality mesh.

Theorem 2 (Sparse Mesh). Any intermediate mesh during the lifetime of
Sparse Voronoi Refinement is sparse, i.e. there is a constant depending only
on T and k that bounds the degree of every vertex.

Corollary 2 (Mesh Update Charge). The number of Voronoi facets that
are ever created is O(m), so that the overall time spent updating the mesh is

O(m).

Proof. Any time a Voronoi facet f is created, it is adjacent to a freshly inserted
vertex v. We will charge the cost of creating f to the insertion of v. Consider
the intermediate mesh immediately after the insertion of v. By Theorem 2, v
is of constant degree, hence the number of facets charged to v is constant, so
the total number of Voronoi facets that are ever created is linear in the total
number of vertices ever inserted, hence O(m).

8.2 Accounting for Point Location and Relocation

We sketch a basic overview of the timing analysis for point location work. A
rigorous analysis is omitted for brevity, but can be found in [HMPO06].

Consider a feature and the sequence of meshes of that feature that the
algorithm produces: My, My, ... M;,...M;,...M,,. We claim that through
this sequence, no more than O(1) point location events affect any ball B with
center ¢ before cfs(c) falls by half, i.e.:

Lemma 7. If cfsy; (¢) > cfsyy, (c) /2 then B was relocated at most O(1) times
during the insertion of points p; through p;.

Lemma 8. If cfsys; (c) > cfsyr, (¢)/2 then B was searched or tested for en-
croachment at most O(1) times during the insertion of points p; through p;.

354 B. Hudson et al.

Together, these lemmas tell us that point location events must be in some
sense “packed” around the points being located. It follows that the number
of point location events around a point (or ball) to be inserted is bounded by
the log of the ratio between the farthest and the nearest event.

For input points and features, this bounds the number of events to
log(L/s). For created balls and queued points, it can be shown that the num-
ber of events is only a constant. Together this gives a bound on point location
costs of O(nlog(L/s) + m).

9 Conclusions

We have shown how to produce, in near-optimal time, a conformal mesh of
the input domain, in arbitrary dimension. While this is a first, there are many
remaining questions.

Firstly, we allow the user to demand a value of 7 > 2971/2 equivalent to
a radius-edge ratio of p > 2973/2. With some proof work (without changing
the algorithm at all), we know how to improve this slightly in d > 2, but
not substantially. In two dimensions, our bound matches Ruppert’s original
bound of 20.7°, or p > 2v/2 — and indeed it should, since our proof is based
on the same precepts. In the decade since the publication of Ruppert’s result,
his proof has been improved to allow the user to demand angles of more than
25°; and it is believed that the correct answer is that the user should be able
to demand almost 30° on any input (of course, on some inputs, the user can
demand even larger angles). It is less clear how the bound changes according
to dimension, but we believe our stated bound is much too conservative.

Most egregiously, we have demanded that the user must give us a PLC
with all angles orthogonal or obtuse. Several recent papers have begun ad-
dressing the issue of removing the 90° angle restriction [CP03, PW04]. These
techniques seek to create, at initialization, a protective region around small
angles, requiring an oracle that will provide the algorithm with the Ifs at many
points. This requirement leads to very poor runtime bounds with any naive
analysis. To incorporate these methods into SVR, the natural method would
be to create some protective region that could adapt as SVR recovers more
input features. Indeed, the recent work of Pav and Walkington [PWO04] ap-
pears to be moving in this direction, as they attempt to reduce the oracular
requirements. We believe that as algorithms for three dimensional meshing
with arbitrary domains continue to mature, they can be incorporated into
SVR to achieve better runtime guarantees.

Certainly, future work will include the parallelization of SVR, which is
important for any modern large-scale meshing algorithm. All of the mesh
modifications in SVR are local, so basic shared memory algorithmic techniques
involving a conflict graph will most likely suffice. This analysis is in progress,
and we do not foresee any major difficulties.

Sparse Voronoi Refinement 355

The last possibility is the reduction of the point location costs from
O(nlog(L/s)) down to O(nlogn) for inputs with pathological spread. This
is mainly of theoretical concern. One possibility would be to cluster together
several small input features and point locate them as a conglomerate, until
the mesh is refined down to a relatively polynomial spread. It is quite unclear
how to properly define such a clustering strategy, but vague intuitions sug-
gest that something akin to well-separated pair decompositions [CK92] might

suffice.

References

[BEG94]

[CDO03]
[Che89]
[Che97]

[CK92]

[CPO3]

[ELM™T00]

[Eri01]

[HMP06]

[HPUO5]

[Li03]

[LTO1]

Marshall Bern, David Eppstein, and John R. Gilbert. Provably Good
Mesh Generation. Journal of Computer and System Sciences, 48(3):384—
409, June 1994.

Siu-Wing Cheng and Tamal K. Dey. Quality meshing with weighted
delaunay refinement. SIAM J. Comput., 33(1):69-93, 2003.

L. Paul Chew. Guaranteed-quality triangular meshes. Technical Report
TR-89-983, Department of Computer Science, Cornell University, 1989.
L. Paul Chew. Guaranteed-Quality Delaunay Meshing in 3D. In Proceed-
ings of the Thirteenth Annual Symposium on Computational Geometry,
pages 391-393, Nice, France, June 1997. Association for Computing Ma-
chinery.

P. Callahan and S. Kosaraju. A decomposition of multi-dimensional
point sets with applications to k-nearest-neighbors and n-body potential
fields, 1992.

Siu-Wing Cheng and Sheung-Hung Poon. Graded Conforming Delau-
nay Tetrahedralization with Bounded Radius-Edge Ratio. In Proceed-
ings of the Fourteenth Annual Symposium on Discrete Algorithms, pages
295-304, Baltimore, Maryland, January 2003. Society for Industrial and
Applied Mathematics.

Herbert Edelsbrunner, Xiang-Yang Li, Gary L. Miller, Andreas
Stathopoulos, Dafna Talmor, Shang-Hua Teng, Alper I“Jngér, and Noel
Walkington. Smoothing and cleaning up slivers. In Proceedings of the
32th Annual ACM Symposium on Theory of Computing, pages 273-277,
Portland, Oregon, 2000.

Jeff Erickson. Nice point sets can have nasty delaunay triangulations.
In Symposium on Computational Geometry, pages 96-105, 2001.
Benoit Hudson, Gary Miller, and Todd Phillips. Sparse Voronoi Refine-
ment. Technical Report CMU-CS-06-132, School of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania, June 2006.
Sariel Har-Peled and Alper Ungér. A Time-Optimal Delaunay Refine-
ment Algorithm in Two Dimensions. In Symposium on Computational
Geometry, 2005.

Xiang-Yang Li. Generating well-shaped d-dimensional Delaunay meshes.
Theor. Comput. Sci., 296(1):145-165, 2003.

Xiang-Yang Li and Shang-Hua Teng. Generating well-shaped Delau-
nay meshed in 3D. In Proceedings of the twelfth annual ACM-SIAM
symposium on Discrete algorithms, pages 28—-37. ACM Press, 2001.

356 B. Hudson et al.

[Mil04]

[Mit93]

[MPW02]

[MTT*96]

[MTT99]

Gary L. Miller. A time-efficient Delaunay refinement algorithm. In
Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
400-409, New Orleans, 2004.

Scott A. Mitchell. Refining a Triangulation of a Planar Straight-Line
Graph to Eliminate Large Angles. In 34th Annual Symposium on Foun-
dations of Computer Science, pages 583-591. IEEE Computer Society
Press, 1993.

Gary L. Miller, Steven E. Pav, and Noel J. Walkington. Fully Incremen-
tal 3D Delaunay Refinement Mesh Generation. In Eleventh International
Meshing Roundtable, pages 7586, Ithaca, New York, September 2002.
Sandia National Laboratories.

Gary L. Miller, Dafna Talmor, Shang-Hua Teng, Noel Walkington, and
Han Wang. Control Volume Meshes Using Sphere Packing: Generation,
Refinement and Coarsening. In Fifth International Meshing Roundtable,
pages 47-61, Pittsburgh, Pennsylvania, October 1996.

Gary L. Miller, Dafna Talmor, and Shang-Hua Teng. Optimal coarsening
of unstructured meshes. Journal of Algorithms, 31(1):29-65, Apr 1999.

[MTTWO95] Gary L. Miller, Dafna Talmor, Shang-Hua Teng, and Noel Walkington.

[MV00]

[PWO04]

[Rup95]

[She9s]

[She02]

[STU02]

[Tal97]

A Delaunay based numerical method for three dimensions: generation,
formulation, and partition. In Proceedings of the 27th Annual ACM
Symposium on Theory of Computing, pages 683—692, Las Vegas, May
1995. ACM.

Scott A. Mitchell and Stephen A. Vavasis. Quality mesh generation
in higher dimensions. SIAM J. Comput., 29(4):1334-1370 (electronic),
2000.

Steven E. Pav and Noel J. Walkington. Robust Three Dimensional De-
launay Refinement. In Thirteenth International Meshing Roundtable,
pages 145-156, Williamsburg, Virginia, September 2004. Sandia Na-
tional Laboratories.

Jim Ruppert. A Delaunay refinement algorithm for quality 2-
dimensional mesh generation. J. Algorithms, 18(3):548-585, 1995.
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)
(Austin, TX, 1993).

Jonathan Richard Shewchuk. Tetrahedral mesh generation by delaunay
refinement. In Proceedings of the Fourteenth Annual Symposium on
Computational Geometry (Minneapolis, Minnesota), pages 86-95. ACM,
June 1998.

Jonathan Richard Shewchuk. Constrained delaunay tetrahedralizations
and provably good boundary recovery. In Eleventh International Mesh-
ing Roundtable, pages 193-204, Ithaca, New York, September 2002. San-
dia National Laboratories.

Daniel Spielman, Shang-Hua Teng, and Alper Ungpr. Parallel Delaunay
refinement: Algorithms and analyses. In Proceedings, 11th International
Meshing Roundtable, pages 205-218. Sandia National Laboratories, Sep-
tember 15-18 2002.

Dafna Talmor. Well-Spaced Points for Numerical Methods. PhD thesis,
Carnegie Mellon University, Pittsburgh, August 1997. CMU CS Tech
Report CMU-CS-97-164.

