
Adaptive Sweeping Techniques

Michael A. Scott1, Matthew N. Earp2, Steven E. Benzley3 and
Michael B. Stephenson4

1 Brigham Young University Provo, UT U.S.A. mas88@et.byu.edu
2 Brigham Young University Provo, UT U.S.A. mne2@et.byu.edu
3 Brigham Young University Provo, UT U.S.A. seb@byu.edu
4 M. B. Stephenson & Associates, Provo, UT U.S.A. mbsteph@sandia.gov

Summary. This paper presents an adaptive approach to sweeping one-to-one and
many-to-one geometry. The automatic decomposition of many-to-one geometry into
one-to-one “blocks” and the selection of an appropriate node projection scheme are
vital steps in the efficient generation of high-quality swept meshes. This paper iden-
tifies two node projection schemes which are used in tandem to robustly sweep each
block of a one-to-one geometry. Methods are also presented for the characterization
of one-to-one geometry and the automatic assignment of the most appropriate node
projection scheme. These capabilities allow the sweeper to adapt to the requirements
of the sweep block being processed. The identification of the two node projection
schemes was made after an extensive analysis of existing schemes was completed.
One of the node projection schemes implemented in this work, BoundaryError, was
selected from traditional node placement algorithms. The second node projection
scheme, SmartAffine, is an extension of simple affine transformations and is capable
of efficiently sweeping geometry with source and/or target curvature while approx-
imating the speed of a simple transform. These two schemes, when used in this
adaptive setting, optimize mesh quality and the speed that swept meshes can be
generated while minimizing required user interaction.

Key words: decomposition, hexahedra, mesh generation, node projection, smooth-
ing, sweeping, automatic

1 Introduction

With the use of Finite Element Analysis (FEA) growing across many disciplines,
the need for accurate underlying discretizations or meshes has become increasingly
important. Because of the inherent difficulty in generating an all-hexahedral mesh on
general three-dimensional geometry, methods of producing meshes on special classes
of geometry have become popular. One of the most common methods is “sweeping”

418 Michael A. Scott et al.

or “projecting.” Sweeping requires that the geometry in question be two-and-one-
half dimensional or decomposable into two-and-one-half dimensional sub-geometries
(e.g. generalized cylinders). This requirement ensures that the geometry can be
meshed with all-hexahedral finite elements [DTJ00].

1.1 One-to-One Sweeping

Sweeping of “one-to-one” geometry begins by identifying “source”, “target”, and
connected “linking” surfaces. The source surface is then usually meshed with quadri-
laterals using an unstructured scheme such as paving [T.91]. Each linking surface
must also be meshed with a mapped [WW82] or submapped [DLSG95] mesh. The
surface mesh on the source is then swept or extruded one layer at a time along the
mapped mesh on the linking surfaces toward the target mesh, which may or may
not be meshed. This type of sweep is termed “one-to-one” because of the one-to-one
correspondence between the source and target surface.

1.2 Many-to-One or Many-to-Many Sweeping

Because of sweeping’s strict requirements, few geometries satisfy the topological
constraints required to generate a swept mesh. This problem has resulted in the
exploration of various methods that decompose more complex geometry into two-
and-one-half dimensional sweep “blocks” or “barrels” which can then be swept [T.96,
LSGT96, JSPD00, P.98a, MSS, DSS04].

Two such methods, many-to-many and many-to-one, use an internal decompo-
sition approach to generate a series of individual one-to-one sweepable topologies
which are then processed by a one-to-one sweep engine. A many-to-many geometry
is characterized by multiple source and target surfaces. A many-to-one geometry is
characterized by multiple source surfaces and a single target surface. It is important
to note that actual decomposition of the geometry does not occur, only an internal
characterization of sweep blocks. Sweepable geometries or geometries that may be
decomposed into sweepable parts can be detected automatically with a fair amount
of success [DTJ00].

1.3 Interior Node Placement

A vital component of the sweep process is the accurate placement of interior points
in the volume. Although a number of projection schemes have been proposed for
sweeping [LSGT96, P.98a, MSS98, P.99], the problem of efficiently and accurately
placing nodes in all types of two-and-one-half dimensional volumes remains elusive.
Each scheme has strengths and weaknesses that need to be understood by the user
before a sweeping operation can be performed. Requiring the user to understand
the details associated with each scheme is a major weakness in current sweeping
algorithms. The problems associated with interior point placement schemes can be
grouped into three general categories.

Adaptive Sweeping Techniques 419

Ineffective Capture of Source and Target Curvature If the curvature associated
with the source and target surfaces is different, it is important that each interior
point reflect this difference in curvature throughout the sweep. If a sweeping al-
gorithm begins at the source and blindly moves toward the target, unconscious of
target curvature, a mesh that poorly represents the curved geometry may be pro-
duced. Figure 1 shows an example where a node projection scheme did not account
for the differences in source and target curvature. Resultant hexahedral elements on
the last layer of the sweep (Figure 1(b)) are shown in this example. Notice that the
elements reflect the curvature of the source but not the target.

(a) Geometry
with source
and target
curvature

(b) Elements
near target

Fig. 1. Example of ineffective capture of source and target curvature

Ineffective Capture of Changes in Linking Curvature Perhaps an even more
serious shortcoming in a node projection scheme is the inability to effectively capture
changes in linking curvature. Figure 2 shows a geometry that has a drastic change
in linking curvature along the sweep axis. The sweep axis originates at the right of
the figure and moves toward the left. A node projection scheme that is unable to
resolve these changes in linking curvature as the sweep progresses may project nodes
outside the volume and produce degenerate elements.

Fig. 2. Geometry with changes in linking curvature

Efficiency Problems The more advanced node projection schemes may suffer from
performance problems due to the large number of calculations required to accurately

420 Michael A. Scott et al.

place interior nodes. For example, a basic node projection scheme may be used in
connection with a layer smoothing routine [P.98b, P.99]. As each layer of nodes is
placed, smoothing is used to reorient the points into a more optimal configuration.
These smoothing routines are characteristically slow and on large difficult meshes
may render the sweeper useless due to the tremendous slow-down imposed by the
smoother. Efficiency also becomes a concern when a geometry is composed of many
one-to-one sweep blocks. As the geometry is decomposed and each block is swept, one
block may be successfully swept with an efficient basic node projection algorithm
while another block may require a computationally intense algorithm because of
different, more complex geometric constraints. If a node projection scheme must be
selected by the user up front, then the worst case scenario will control and a less
efficient, more advanced scheme will be selected. This scheme will mesh both the
complicated block as well as the blocks that could be meshed with a faster projection
algorithm, resulting in an overall time loss.

1.4 Adaptive Sweeping

The adaptive sweeping approach described in this paper addresses the three general
shortcomings described above through the development and implementation of two
node projection schemes, SmartAffine and BoundaryError. Both these schemes are
used in a many-to-one context, or, in other words, a many-to-one sweep tool was built
around them that decomposes a given geometry into one-to-one sweep blocks which
are then passed to the most appropriate projection scheme. Each scheme is only used
on one-to-one sweep blocks that have been carefully characterized and found well-
suited to the relative strengths of that algorithm. In this way, the sweeping algorithm
is able to adapt and apply the most appropriate projection scheme on a block-by-
block basis. This process is formalized in this paper and called the AdaptiveSweeper.

2 Analysis of Existing Methods

A careful analysis of existing node projection schemes was conducted to understand
the relative strengths and weaknesses of each and to develop appropriate schemes for
the AdaptiveSweeper. The analysis centered on two main aspects of each algorithm.
First, the speed of each algorithm was compared. Second, the quality of the resulting
hexahedral elements was compared. Five projection schemes were implemented and
analyzed. They are:

• LinearAffine
• Faceted
• BoundaryError
• Smoothing
• Auto

2.1 LinearAffine

The LinearAffine method, developed by Knupp [P.98a], uses an affine transforma-
tion matrix and the centroidal locations of the current and next boundary loops to

Adaptive Sweeping Techniques 421

place interior nodes. This type of transformation robustly handles the translation,
rotation, and scaling of interior nodes in each sweep layer until the target is reached.
A brief explanation of how the transformation is developed and used to place interior
nodes follows. For a complete treatment of the subject see [P.98a].

A 3× 3 non-singular linear transformation T is computed between current and
next boundary loop nodes, xk and x̃k where k = 1, 2, · · · , K with K ≥ 3. This
transformation T is used with the loop center points, c and c̃, to project interior
nodes from the current layer to the next. Equation (1) shows how the transform is
used with the loop center points c and c̃ computed in (2) and (3). Notice that xk

and x̃k may be replaced with current and next layer interior points.

x̃k − c̃ = T (xk − c) (1)

c =
1

K

K#
k=1

xk (2)

c̃ =
1

K

K#
k=1

x̃k (3)

Because, in general, a single T may not exist between arbitrary loops, a least-
squares fit to the bounding loop data is performed by minimizing the non-negative
function (4) where uk = xk − c and ũk = x̃k − c̃

F (T) =
1

2

K#
k=1

|ũk − Tuk|2 (4)

Notice that if T is the identity matrix, then loop translation is achieved. Also,
if F is not zero at the minimum, then T does not necessarily send all xk to x̃k.

2.2 Faceted

The Faceted method is based on the one-to-one BMSweep method introduced by
Staten et. al [MSS98], but extended to be usable in a many-to-one setting [MSS]. The
Faceted method assumes that a topologically similar mesh is on both the source and
target surfaces. It then calculates a faceted mesh using the source surface boundary
loops. That faceted representation is used in two ways. First, it is used to calculate
the barycentric coordinates of each source interior node on its closest facet. Second,
the distance or offset between the newly calculated barycentric coordinate and the
source interior node’s actual location is determined. These two calculations are also
performed for the topologically similar target mesh. The sweep begins at the source
surface and the facets are transferred to the next layer of boundary nodes on the
linking surfaces. The sweep direction is calculated using the vertices of the facet on
the current layer and the vertices of the facet on the next layer. Using the sweep
direction, the interpolated barycentric coordinate of the point being projected on
the next facet and the interpolated offset information for the next layer, the node
can be projected to the next layer. This process is repeated for each node on each
layer until the sweep reaches the target surface, which is already meshed.

422 Michael A. Scott et al.

2.3 BoundaryError

The BoundaryError method, introduced in [T.96] and described in [DSS04], places
nodes using the LinearAffine algorithm described above and a subsequent least-
squares residual error correction. The BoundaryError method, to successfully cap-
ture source and target curvature, calculates the residual error twice, once sweeping
from the source surface and terminating at the target surface, and then sweeeping
from the target and terminating at the source. These two error distances are then
interpolated for final interior node placement. The critical step in this method is the
calculation of the residual error, E, defined by (5) which is applied to the current
interior node being projected. Once the affine transformation is computed between
the current and next layer it is used to project each of the nodes in the current
boundary layer to where it believes it should be placed on the next layer. Because
the actual location of the boundary node on the next layer is known, the difference,
e, between the actual location and the computed location can be computed. This
process is repeated for each node in the current boundary list. The next step is to
compute the corrected location of each interior node on the next layer. This is done
by first projecting the interior node using the affine transformation calculated above.
The error, e, associated with each boundary node, and the distance, d, from the cur-
rent interior node to each boundary node is then used to calculate a least-squares
weighted error, E, which is added to the location of the current interior node. Note
that n is the number of nodes in the boundary loop.

E =
n#

i=1

ei$n
j=1

di
dj

(5)

The final error, Efinal, is the linear interpolation of the error, Es, from the
source and the error, Et, from the target and is defined by (6). The value nlayers is
the total number of layers in the sweep and i is the layer we are currently creating.

Efinal = Es(1− i

nlayers
) + Et(

i

nlayers
) (6)

2.4 Smoothing

The Smoothing method introduced by Knupp [P.99], also uses the LinearAffine
method for initial interior node placement. Once the interior points are placed using
a simple transformation a traditional structured node smoothing scheme known as
weighted Winslow smoothing is used to calculate final point placement. The weight
functions associated with this smoother are calculated from the initial source mesh
and strive to ensure a faithful copy of the source mesh on all subsequent layers until
the target is reached. Specifically, without an attempt at weighting the initial source
mesh, any initial biasing of the source mesh would be destroyed by the smoother.
In this method the smoothing algorithm is run on every layer of the sweep.

2.5 Auto

The Auto sweeping method is a natural enhancement of the Smoothing method [P.99].
The Smoothing method performs a layer smoothing operation on each layer and is

Adaptive Sweeping Techniques 423

therefore inefficient in terms of algorithmic speed. Because the quality of the affine
transformation is determined by how successfully (4) is minimized, a scaled F factor
can be computed on a layer by layer basis. This factor will specify the quality of the
impending transformation, with zero being a perfect translation that will not require
any layer smoothing. This factor may be used to, in effect, turn layer smoothing on
and off, depending on the anticipated quality of the affine transformation.

2.6 Timing Results

Because the LinearAffine method is, by far, the least computationally complex of
the five methods it was always the fastest algorithm on all the tests conducted. For
this reason, it will not be included in the results that follow. It may be assumed that
it always outperformed its counterparts in terms of speed. The other four methods
were run on thirty test models three different times. Each time the average number
of elements required to mesh the model was increased. The timing results were then
recorded for all the tests and trends were identified. The results of the testing are
show in Table 1.

Table 1. Overall average timing results (seconds/1000 elements created)

Run Auto Smooth Boundary Faceted

Run 1 0.210 0.515 0.254 0.194
Run 2 0.259 0.568 0.229 0.123
Run 3 0.368 0.767 0.279 0.104

These results can be attributed to the difference in computational intensity of
the four algorithms. For example, the Faceted scheme only needs to be aware of
the current interior node’s location with respect to its matching node on the source
and target surface and the locations of the vertices of the current and next facet.
The BoundaryError scheme, while less computationally expensive than Smoothing
still needs to be aware of the location of all the boundary nodes on the current and
next layer and use this information in interior node placement. It is interesting to
note that the Auto scheme, while fast when only linear transformations are needed,
slowed down considerably because of the need, at times, to perform smoothing on
the current layer of interior nodes on complex or highly curved geometry.

2.7 Element Quality Results

Perfect element quality in a hexahedral mesh can only be obtained if all the elements
are perfect cubes [P.03]. Because this is impossible to obtain in all cases, the element
quality is instead maximized as much as possible to produce a mesh still suitable for
finite element analysis. It should be noted that for all types of shape quality metrics,
a perfect element will return a quality metric value of one and a degenerate element
will return zero. As was done in the timing tests, the results from LinearAffine are
not included because it will never outperform the other methods due to the fact it
is used as a basic building block in the other four schemes. The minimum element
quality was recorded for all the tests during three different runs. The number of
elements was increased in each run.

424 Michael A. Scott et al.

Minimum Element Quality Results

The minimum element quality results help identify where the “weak link” element
is in the mesh. If the result is zero, then a negative Jacobian element was produced.
The results for all the tests were analyzed and the results are presented in this
section.

Table 2 shows the averaged minimum results for the tests. The BoundaryEr-
ror method generated the highest minimum element quality. The Smoothing and
Faceted schemes were within a small percentage of one another.

Table 2. Minimum element quality results

Run Auto Smooth Boundary Faceted

Run 1 0.331 0.423 0.436 0.394
Run 2 0.299 0.397 0.425 0.387
Run 3 0.287 0.385 0.412 0.377

The BoundaryError method outperformed the other three methods in general.
The results for Smoothing and Faceted were within ten percent of the BoundaryError
method in every case.

3 Development of Adaptive Node Projection Schemes

The results obtained in Section 2 were used to select and develop the node projection
schemes to be implemented in the AdaptiveSweeper. Two schemes were implemented
in the sweeper. BoundaryError was selected from the list of existing methods. The
second scheme, SmartAffine, is a modification of the LinearAffine method and is
presented in Section 3.2. The ideas governing the selection and development process
are presented in this section.

3.1 Selection Criteria for BoundaryError

A surprising result of the analysis performed on the node projection methods was
the ability of the BoundaryError method to equal or outperform the Smoothing
method in terms of the minimum quality of elements generated. This is an impor-
tant result because it allows for the use of BoundaryError on difficult sweeps instead
of much slower smoothing routines. Table 1 shows that, as far as speed is concerned,
BoundaryError is, on average, twice as fast as the Smoothing method describe in 2.4.
BoundaryError is also able to capture changes in source and target curvature as op-
posed to Smoothing which is not. Figure 3 shows two cross-sections of a mesh swept
with Smoothing and BoundaryError. Notice the difference in the shape of the hexa-
hedral elements on the layers closest to the source and target. Smoothing produces
long rectangular elements of low quality while BoundaryError produces high quality
elements throughout the mesh. The Faceted method was not chosen over Boundary-
Error because it did not produce as high quality elements as BoundaryError even
though it does have an advantage in terms of speed. Resulting minimum element
quality was the controlling factor in the selection of BoundaryError.

Adaptive Sweeping Techniques 425

(a) Geometry
with source-
target curvature

(b) Cross-section
of Smoothing
swept mesh

(c) Cross-section
of BoundaryEr-
ror swept mesh

Fig. 3. Differences in quality of source-target curvature capture between Smoothing
and BoundaryError

3.2 The SmartAffine Method

In this section, the SmartAffine method is introduced. The SmartAffine method
closely approximates the speed of LinearAffine and is able to robustly sweep much
more general problems than the simple translations, rotations and scalings of the
source surface that the LinearAffine method is designed to handle. SmartAffine
uses simple affine transformations and their inverses to capture source and target
curvature. It is also able to, in a limited sense, handle problems that have linking
curvature through the interpolation and effective “spreading out” of sweeping errors.
Because both SmartAffine and BoundaryError robustly handle changes in source
and target curvature it eliminates the need to explicitly make this check during the
adaptive sweeping process.

Implementation Details for SmartAffine

The SmartAffine method assumes that the source and target are both meshed with
topologically similar meshes. It then performs LinearAffine transformations begin-
ning at the source and target simultaneously. These sweeps will each produce a layer
of nodes at the central layer of the volume. The positions of matching nodes on the
two layers can then be analyzed to determine the relative error between the source
and target sweeps. Let, ps and pt, be the positions of matching nodes at the central
layer of the sweep. The point ps is the point from the sweep that originated at the
source and pt is the point from the sweep that originated at the target. We can now
calculate two interpolating factors, ns = ntotal

2
and nt = ntotal − ns, where ntotal

is the total number of projections needed to sweep the geometry. It will always be
one less than the number of layers in the sweep. This step needs to be performed
carefully because ntotal may be odd.

The error terms to be applied to each half of the total sweep, es and et, are
calculated in (7) and (8). There will be one such error term associated with each
node in both the central source and target layers.

es = (pt − ps)
ns

ntotal
(7)

426 Michael A. Scott et al.

et = (ps − pt)
nt

ntotal
(8)

These errors are now applied to each layer of their respective sweeps starting
at the mid-layer and working backward to either the source or target surface. Be-
cause the error terms were calculated at the central layer they need to be scaled
appropriately on each layer of the sweep. This can be accomplished by inverting the
affine transformation matrix used to initially place the nodes and interpolating the
error term as each layer is processed. The adjusted error terms are presented in (9)
and (10), where i represents the current layer being adjusted.

es,adj = T−1(es
i

ns
) (9)

et,adj = T−1(et
i

nt
) (10)

SmartAffine Results

The SmartAffine method allows for the sweeping of one-to-one geometry that does
not meet the simple translation, rotation or scaling requirements of LinearAffine. It
also creates meshes nearly as fast as LinearAffine due to the fact that it only proceeds
half-way through the geometry before reversing and heading back to where it started.
Notice that SmartAffine and LinearAffine are of the same order in terms of algorith-
mic complexity. Most of the additional computational complexity in SmartAffine
can be attributed to inverting the 3 × 3 affine transformation matrices. Figure 4
shows an example of a geometry with changes in linking curvature. In Figure 4(a)
LinearAffine has projected nodes outside of the geometry and produced a degener-
ate mesh. In Figure 4(b) SmartAffine has produced a mesh with a minimum shape
metric of 0.3813, which is very good considering the highly variable curvature in the
linking surfaces.

(a) LinearAffine
projects points
outside of geometry

(b) SmartAffine
produces a high
quality mesh

Fig. 4. Differences in mesh quality between LinearAffine and SmartAffine

Figure 5 shows a mesh with changes in curvature in the linking, source and
target surfaces. SmartAffine produced a good quality mesh with a minimum shape
metric of 0.4144 and LinearAffine produced a degenerate mesh.

Adaptive Sweeping Techniques 427

(a) Geometry
with linking,
source and target
curvature

(b) Curvature
captured by
SmartAffine

Fig. 5. SmartAffine captures linking, source and target curvature

SmartAffine and LinearAffine are comparable in terms of speed, with SmartAffine
being, on average, within fifteen to twenty five percent of LinearAffine. For example,
a test was run on a model with one million elements and the time spent projecting
nodes in LinearAffine was 3.21 seconds while it took SmartAffine 5.51 seconds to
perform projections on the same model. This demonstrates that, even on very large
models, there is not a sharp divergence in speed between the two.

4 Development of the AdaptiveSweeper

Now that both projection methods are developed and implemented in a many-to-
one setting, the next step is the development of routines that automate the task of
selecting them so that the strengths of each are captured. To accomplish this, three
steps must be followed. First, a close copy of the source mesh must be placed on
the target surface. Second, the linking surfaces must be characterized to determine
how drastic the changes in linking curvature are from one layer of the sweep to the
next. Third, using the information generated in steps one and two, the projection
scheme best suited to the geometry is selected. This automated selection of projec-
tion schemes allows the sweeper to “adapt” to each sweep block as a many-to-one
or one-to-one geometry is processed.

4.1 Creation of the Target Mesh

A high quality copy of the source mesh to the target surface is vital to the overall
effectiveness of the projection schemes. If large discrepancies exist between the source
and target surface meshes then these errors will be propagated throughout the mesh
as the sweeper places interior points. The method used to create the target mesh
is based on the mesh morph/copy work of Knupp [P.99]. An affine transformation
is computed between the source and target boundary loops. The source interior
nodes are then projected as near to the target surface as possible. Because the

428 Michael A. Scott et al.

nodes most likely will not be on the target surface or even near it if the target
surface is highly curved, a simple vector calculation is used to iteratively move the
nodes in the sweep direction until the target surface is reached. This will ensure
that the nodes are in a near optimal position before smoothing is invoked. With the
nodes on the surface, they are then smoothed using a weighted Winslow smoothing
routine (see 2.4) which preserves biasing and attempts to produce a near copy of the
source surface. It is important to note that the iterative vector moving procedure
will greatly reduce the number of iterations required to smooth the target mesh and
ensure a more faithful copy of the source mesh. On a highly curved target surface,
without the iterative vector moving procedure, the smoother would begin with a
highly distorted representation of the source mesh and may be unable to recover
and produce a close match to the source surface mesh.

4.2 Characterization of Linking Curvature

A more difficult operation is the characterization of changes in linking curvature.
To do this (4) is used to measure the quality of the transformation from the current
layer to the next layer [P.98a]. As was stated, if F is zero simple loop translation
exists, and the larger the value of F the less accurate the affine transformation
will be. A layer-by-layer approach is not used in the AdaptiveSweeper because of
the efficiency of all the projection schemes. Instead, all the layers are evaluated
according to the criteria just described and the worst case transformation is used
in projection scheme selection. An additional check that is made is how large the
Fst (source-to-target) value is when calculated from the source boundary layer to
the target boundary layer. It is possible, especially on a very fine mesh, that the
layer-by-layer F values remains small while the overall change in shape from the
source to the target surface is large. Both checks need to be made in order to fully
capture what is occurring on the linking surfaces throughout the sweep.

4.3 Selection of Projection Scheme

Using the results from 4.2, an appropriate projection scheme can be selected for the
current sweep block. Conservative threshold values of F were determined experi-
mentally and the results are presented in Table 3.

Table 3. Threshold values of F

F Value Projection Scheme

0 � F < 0.03 and Fst � 10 SmartAffine
0.03 � F < ∞ or Fst � 10 BoundaryError

The values in Table 3, coupled with the source and target curvature capture ca-
pabilities of each projection method fully define a way to select both node projection
schemes in the AdaptiveSweeper on a block-by-block basis. BoundaryError will be
used if the F or Fst threshold values of the sweep block are exceeded. SmartAffine
will be used if neither the F or Fst values are exceeded. Notice that, through this
method, a complicated many-to-one geometry with multiple blocks can be meshed
efficiently without user intervention on a block-by-block basis.

Adaptive Sweeping Techniques 429

5 Results

The following three examples demonstrate the capabilities of the AdaptiveSweeper.
One-to-one and many-to-one geometries were selected that demonstrate each al-
gorithms capability to robustly handle the three types of general problems most
common in sweeping (see Section 1.3). Two one-to-one and one many-to-one geome-
tries were selected. Notice that the Faceted method was not included in the tests
that follow. It has been demonstrated that, in almost all cases, Faceted produces
lower quality elements than BoundaryError (see Table 2). Smoothing was included
because traditionally, smoothing schemes coupled with linear projections have been
the default method for sweeping difficult geometry. The comparisons that follow be-
tween Smoothing and BoundaryError demonstrate why BoundaryError may safely
replace Smoothing as a projection method. LinearAffine is included in the tests to
demonstrate the similarities in speed between LinearAffine and SmartAffine and
SmartAffines superior ability to mesh general one-to-one geometry.

5.1 Test Case 1

Test Case 1 (Figure 6) exhibits changing curvature on a linking surface (Note: The
sweep axis is from the top to the bottom of the page). There are no changes in
curvature on the source and target, but the target surface is not a scaled version of
the source due to the linking curvature change.

Fig. 6. Test Case 1: Variable curvature on a linking surface

Table 4 shows the results for the sweep of Test Case 1. The results demonstrate
the ability of SmartAffine to mesh more general geometry than LinearAffine and
to approximate the results of the more computationally intense BoundaryError and
Smoothing routines. It should also be noted that SmartAffine approximates the re-
sults of LinearAffine in terms of speed, and produces a valid mesh while LinearAffine
does not. Smoothing produced the highest quality mesh but required 22.36 seconds.
The methods in the AdaptiveSweeper for automatic scheme selection chose Bound-
aryError for Test Case 1 because of a worst-case F value of 0.121 and a Fst value
of 17.72. 17, 525 hexahedral elements were produced for this geometry.

5.2 Test Case 2

Test Case 2 (Figure 7) has variable curvature on the source and target surfaces.
Notice that the curvature is slight and the linking surfaces do not have variable
curvature.

430 Michael A. Scott et al.

Table 4. Results of projection methods on Test Case 1

Scheme Min Ave Speed(sec)

Linear 0.0000 0.9071 0.28
Smart 0.3262 0.9089 0.31

Boundary 0.3261 0.9087 1.09
Smooth 0.3814 0.9168 22.36

Fig. 7. Test Case 2: Variable curvature on source and target surfaces

The weaknesses in LinearAffine and Smoothing are highlighted in this example.
Even with only slight curvature on the source and target, the resultant quality of
the mesh in both cases is very poor. Also, Smoothing required 54.41 seconds to
sweep the volume. This is much more than the other methods required. SmartAffine
and BoundaryError produced the same mesh with SmartAffine completing in 0.68
seconds as opposed to 3.52 seconds for BoundaryError. As expected, the Adap-
tiveSweeper selected SmartAffine as the projection scheme of choice to take advan-
tage of the time-savings it provides in this example. The worst-case F value is 0.0
and the Fst value is 0.0. 61, 422 hexahedral elements were produced in this example.

Table 5. Results of projection methods on Test Case 2

Scheme Min Ave Speed(sec)

Linear 0.05178 0.9129 0.55
Smart 0.6404 0.9368 0.68

Boundary 0.6404 0.9368 3.52
Smooth 0.1017 0.9456 54.41

5.3 Test Case 3

Test Case 3 shows the results on a many-to-one geometry. As can be seen in Figure 8,
Test Case 3 is a many-to-one geometry with six sweep blocks. Notice there are five
blocks protruding from the top of the geometry. In the results that follow, the larger
of the five protruding blocks will be called block one, the four smaller identical
protrusions will be called blocks two through five and the large base will be block
six.

Table 6 shows the results for the tests run on Test Case 3. The time required to
complete a sweep on each block as well as the overall time were recorded. The overall

Adaptive Sweeping Techniques 431

Fig. 8. Test Case 3: Many-to-one sweep

minimum and average quality are also reported. The automation schemes in the
AdaptiveSweeper assigned BoundaryError to the first five blocks and SmartAffine to
block six. In this way the more complicated sweeps one through five took advantage
of BoundaryError’s residual error correction and block six, which is a simple sweep,
benefited from the speed of SmartAffine. As can be seen in Table 6, if BoundaryError
had been used on block six, it would have required 34.37 seconds to complete just
that block. The AdaptiveSweeper successfully balanced speed and quality in this
example. Test Case 3 was meshed with 202, 688 elements.

Table 6. Results for Test Case 3 (Time in seconds)

Scheme Block 1 Time Block 2–5 Time Block 6 Time Total Time Min Qual Ave Qual

Linear 0.11 0.01 1.22 1.40 0.0000 0.9178
Smart 0.14 0.01 1.67 1.85 0.4613 0.9529

Boundary 0.63 0.015 33.68 34.37 0.4618 0.9529
Smooth 12.99 0.22 40.3 54.17 0.01381 0.9348
Adaptive 0.63 0.01 1.61 2.28 0.4618 0.9529

6 Conclusion

The main contribution of this work is the effective automation of node projection
schemes on a block-by-block basis. This allows for the optimization of both speed and
quality in the generation of finite element meshes on many-to-one geometry. Through
the careful characterization of existing projection techniques, two node projection
schemes, each having unique strengths were implemented in the AdaptiveSweeper.
BoundaryError effectively replaces more computationally intense smoothing rou-
tines, while maintaining the quality of the mesh and providing a speed advantage. It
is also capable of capturing source and target curvature. SmartAffine, introduced in
this work, approximates the speed of LinearAffine while robustly capturing source,
target and, to a limited extent, linking curvature. Because both schemes capture
source and target curvature, only linking curvature needs to be characterized. This
is done through the use of empirically determined F threshold values for the two
node projection schemes. All these techniques enhance the automation, speed and
quality of swept meshes.

432 Michael A. Scott et al.

[DLSG95] White D., Mingwu L., Benzley S., and Sjaardema G. Automated Hex-
ahedral Mesh Generation by Virtual Decomposition. In Proceedings 4th
International Meshing Roundtable, pages 165–176. Sandia National Lab-
oratories, 1995.

[DSS04] White D., Saigal S., and Owen S. CCSweep: Automatic Decomposition of
Multi–Sweep Volumes. Engineering with Computers, 20:222–236, 2004.

[DTJ00] White D., Tautges T., and Timothy J. Automatic Scheme Selection for
Toolkit Hex Meshing. International Journal for Numerical Methods in
Engineering, 49:127–144, 2000.

[JSPD00] Shepherd J., Mitchell S., Knupp P., and White D. Methods for
MultiSweep Automation. In Proceedings 9th International Meshing
Roundtable, pages 77–87. Sandia National Laboratories, 2000.

[LSGT96] Mingwu L., Benzley S., Sjaardema G., and Tautges T. A Multiple Source
and Target Sweeping Method for Generating All Hexahedral Finite El-
ement Meshes. In Proceedings 5th International Meshing Roundtable,
pages 217–225. Sandia National Laboratories, 1996.

[MSS] Scott M., Benzley S., and Owen S. Improved Many-to-One Sweeping.
Submitted for publication.

[MSS98] Staten M., Canaan S., and Owen S. BMSweep: Locating Interior Nodes
During Sweeping. In Proceedings 7th International Meshing Roundtable,
pages 7–18. Sandia National Laboratories, 1998.

[P.98a] Knupp P. Next–Generation Sweep Tool: A Method for Generating All–
Hex Meshes On Two–And–One–Half Dimensional Geometries. In Pro-
ceedings 7th International Meshing Roundtable, pages 505–513. Sandia
National Laboratories, 1998.

[P.98b] Knupp P. Winslow Smoothing on Two–Dimensional Unstructured
Meshes. In Proceedings 7th International Meshing Roundtable, pages
449–457. Sandia National Laboratories, 1998.

[P.99] Knupp P. Applications of Mesh Smoothing: Copy, Morph, and Sweep on
Unstructured Quadrilateral Meshes. International Journal for Numerical
Methods in Engineering, 45:37–45, 1999.

[P.03] Knupp P. Algebraic Mesh Quality Metrics for Unstructured Initial
Meshes. Finite Elements in Analysis and Design, 39:217–241, 2003.

[T.91] Blacker T. A New Approach to Automated Quadrilateral Mesh Gen-
eration. International Journal for Numerical Methods in Engineering,
32:811–847, 1991.

[T.96] Blacker T. The Cooper Tool. In Proceedings 5th International Meshing
Roundtable, pages 13–29. Sandia National Laboratories, 1996.

[WW82] Cook W. and Oakes W. Mapped Methods for Generating Three Dimen-
sional Meshes. Computers in Mechanical Engineering, pages 67–72, 1982.
CIME Research Supplement.

