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ABSTRACT

Generating large 3D unstructured meshes with over 1 billion elements has been a challenging task. Fortunately, for a large class of
applications with relatively simple geometries, unstructured octree-based hexahedral meshes provide a good compromise between
adaptivity and simplicity. This paper presents our recent work on how to extract hexahedral mesh structures from a class of
database structures known as balanced linear octrees. The proposed technique is not memory bound and is capable of extracting
mesh structures with billions of elements and nodes, provided there is enough disk space to store the mesh. In practice, our new
algorithm runs about 11 times faster than a conventional database search-based algorithm and uses only 10% of the storage space.

Keywords: balanced linear octree, unstructured hexahedral mesh, mesh database, two-level bucket sort, dangling and an-
chored nodes

1. INTRODUCTION

Rapidly evolving high-performance computer systems have
enabled scientists to simulate nature at ever increasing lev-
els of detail. For example, for the past decade, the CMU
Quake group has been modeling earthquake ground motions
in large sedimentary basins on parallel computers [1, 2, 3, 4].
Over the years, the earthquake simulation codes have run
on the Thinking machines CM-2, Intel iWarp and Paragon,
SGI Origin, Cray T3D and T3E, and most recently the HP
AlphaServer cluster. Each generation of architecture has
prompted and enabled a larger and finer model. In 1993, the
largest simulation code used an unstructured finite element
mesh with only 50K nodes (1.5MB). By 2003, the largest
simulation required a mesh with 1.37B nodes (45GB).

The dramatic increase in scales of such physical simulations
has made many routine tasks — such as generating unstruc-
tured meshes, defining source models, and visualizing mesh
structures — hard to accomplish on scientists’ desktop ma-
chines. This is because unstructured meshes often require
complex pointer-based structures to represent, thus require

massive main memory to manipulate. Desktop computers
with limited main memory are thus unable to accommodate
such massive meshes.

We envision that a database approach can effectively solve
such massive data problems. Our basic idea is to organize
meshes as indexed spatial database structures and use a spe-
cialized set of tightly-coupled and highly-optimized func-
tions to manipulate the mesh databases. It should be em-
phasized that our idea is to generate meshes directly from
databases, rather than merely storinggeneratedmeshes in
standard relational database management systems. Thus, as
long as there is enough disk space, scientists will be able to
generate massive unstructured meshes and interactively ex-
plore mesh structures by querying mesh databases stored on
their desktops.

For a large class of applications with relatively simple ge-
ometries, octree-based hexahedral meshes provide a good
compromise between adaptivity and simplicity. In our ear-
lier work [5], we introduced a new method on how to gen-
erate large octree-based hexahedral meshes from databases.
Since then, we have made major extensions and improve-



ments to the original design. Different (existing and new)
software components have now been incorporated into a pro-
totype system namedWeaver[6].

Figure 1 shows the structure of the Weaver system, which
consists of two parts:spatial databaseandmesh generation
logic. The spatial database manages unstructured hexahe-
dral mesh data such as elements and nodes on disk and in
memory. High-level applications can efficiently query and
manipulate the spatial databases through a runtime library
calledetree[7]. The mesh generation logic implements dif-
ferent mesh generation steps by exploiting the characteristics
of the underlying database structures. In particular, thecon-
struct step builds an indexed linear octree on disk [5]. The
sizes of the octants are determined by an application, for ex-
ample, by the density of the material they enclose. Thebal-
ancestep recursively subdivides octants as necessary to en-
sure that spatially adjacent octants (sharing an edge or face)
differ no more than 2-fold in their (edge) sizes [8]. The
extract step uses a balanced linear octree as a template to
generate mesh elements and nodes and store the mesh struc-
ture in a queryable mesh database. Finally, thetransform
step queries the data in the mesh database and generate aflat
mesh topology filethat establishes the element-node connec-
tivity relationship. Such files are needed by existing mesh
partitioning tools [9] and solver packages [10].
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Figure 1: Structure of the Weaver system.

The Weaver system has been successfully used to generate
unstructured octree-based hexahedral meshes with billions
of elements on the same desktop machine where previously
only meshes with tens of millions of elements could be gen-
erated [5]. For generating billion-element unstructured hex-
ahedral meshes and simulating earthquake ground motion in
the Los Angeles Basin using these meshes on terascale com-
puters at Pittsburgh Supercomputing Center, and for work on
inversion, the authors, along with our colleagues of the CMU
Quake team, received the 2003 Gordon Bell Award for Spe-
cial Achievement [4].

The breakthrough that has enabled us to generate much
larger meshes is a new method of extracting mesh structures
from balanced linear octrees, i.e., the extract step shown in

Figure 1. This step used to require massive disk space and
take a long time to run, severely limiting the size of meshes
we were able to generate. The main new algorithm we have
developed is calledTwo-level Bucket Sort. This new algo-
rithm not only significantly reduces the storage requirement,
but also greatly improves the running time of the extract op-
eration. The key ideas are: (1) treating mesh nodes as the
tiniest octants in the domain instead of volumeless geometric
points; and (2) converting the mesh node extraction problem
to a sorting problem.

It should be noted that the techniques presented in this paper
have other important applications besides merely generating
non-conforming unstructured octree meshes in the context
of the CMU Quake project. For example, an octree decom-
position can be first used to discretize a problem domain,
and the vertex coordinates of the octants (i.e., the product of
the extractstep) can then be used as the input point-set for
generating a conforming mesh structure such as a Delaunay
tetrahedralization.

The rest of the paper is organized as follows. Section 2 pro-
vides a brief overview of octree-based hexahedral mesh gen-
eration. Section 3 describes the problems we try to solve.
Section 4 presents the main new algorithm. Section 5 ex-
plains how to determine whether a mesh node isdanglingor
anchored, a property specific to unstructured octree (hexahe-
dral) meshes. Section 6 evaluates our new solution empiri-
cally.

2. BACKGROUND

Among the many types of meshes, octree-based hexahedral
meshes fall between the extremes of arbitrarily unstructured
meshes and regular structured meshes [11]. They provide
a compromise between modeling power and simplicity. On
the one hand, they are able to subdivide an octant to resolve
local heterogeneity and provide multi-scale resolution as do
other unstructured meshes. On the other hand, they produce
only one primitive shape for all elements. The recursive pro-
cess of subdivision leads to a relatively structured placement
of mesh nodes, similar to many regular structured meshes.
Due to these features, octree-based hexahedral meshes have
been used successfully by many scientific computing appli-
cations [12, 13, 14, 4].

We have developed a prototype system named Weaver (see
Figure 1) to generates octree-based hexahedral meshes. As
a first step, we embed a problem domain into a 3D uniform
grid consisting of�	��

���	��
�������
 indivisiblepixels. We refer
to this 3D grid as theetree address space[7]. Figure 2(a)
illustrates an example 2D�������	� grid and the embedding
of an octree decomposition. (For convenience, we only use
the termsoctreeandoctant in this paper, even when we are
referrring to 2D quadtrees and quadrants.) Figure 2(b) shows
the equivalent tree representation.

To represent octants in the etree address space, we use the
well-known linear octreetechnique [15, 16]. The basic idea
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Figure 2: Octree decomposition as a template to
generate meshes.

of the linear octree is to encode each octant with a scalar key
called alocational codethat uniquely identifies the octant.
A locational code can be easily derived by first interleaving
the bits of the coordinate of the lower-left corner of an octant,
and then appending thelevelof the octant [7]. The level of an
octant refers to its level in the equivalent tree representation,
Figure 3 illustrates how to compute the locational code for
octant� .

Given unique locational codes for each octants, we use the
well-known B-tree [17, 18, 19] to index and store octants.
As a result, octant records are laid out on disk (B-tree pages)
in locational code order (hence the term linear octree). It
is not difficult to verify that the ordering imposed by the
locational codes corresponds to apreorder traversalof the
leaf octants of the tree representation. There are two inter-
esting properties related to the preorder traversal property:
(1) It clusters spatially nearby octants on B-tree pages in the
locality-preserving Z-order [20]; (2) It supports an impor-
tant feature calledaggregate hits[7]. The idea of an ag-
gregate hit is that given the locational code of a pixel, we
can extract its bit-patterns and quickly locate the octant that
contains the pixel. Figure 3(b) shows an example of finding
octant � while searching for pixel��������� , the grayed pixel in
Figure 2(a). If we think of pixels as the tiniest representable
octants in the domain, a simple explanation of aggregate hits
is that a pixel would have been a descendant of the contain-
ing octant if the latter had been fully expanded to the deepest
level.

3. PROBLEM STATEMENT

In this paper, we assume that we already have abalanced
linear octree that is indexed and stored in a B-tree (for ex-
ample, using thebalanceoperation shown in Figure 1). The
term “balanced” refers to the fact that any spatially adjacent
octants sharing an edge or a face differ no more than 2-fold
in their edge sizes, a condition to guarantee the quality of a
mesh.

Our goal is to extract the hexahedral mesh structure from a
balanced linear octree. Conceptually, mesh elements corre-
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Figure 3: Operations on octrees.

spond 1-to-1 to leaf octants, and have unique ids, i.e.element
numbers, drawn from a consecutive integer sequence. Mesh
nodes correspond 1-to-1 to vertices of the elements, and have
unique ids, i.e.node numbers, drawn from a separate consec-
utive integer sequence.

Finite element solvers that operate over octree-based hexahe-
dral meshes [13, 10] distinguish between two different types
of mesh nodes. Mesh nodes that are located at the middle
of an edge or at the center of a face are said to bedangling
nodes. All other mesh nodes areanchorednodes. For ex-
ample, in Figure 2(a), the dangling nodes are marked by the
dark dots while the anchored nodes are marked by the cross
signs. (Note that in 2D there only exist dangling nodes that
are located at the middle of some edges.)

As a part of the process of extracting mesh structure, the
mesh generator must identify each node as either dangling
or anchored. Furthermore, it must explicitly identify the an-
chored nodes each dangling node depends on. A dangling
node located on an edge is said to bedependenton the two
anchored nodes of the edge. Similarly, a dangling node lo-
cated at the center of some face is dependent on the four an-
chored nodes of the face. The arrows in Figure 2(a) illustrate
an instance of the dangling/anchored dependences.

Extracting mesh elements is simple. Since elements are sim-
ply the octants stored and indexed in the balanced linear oc-
tree, we can iterate octants one by one in their locational
code (key) order, and assign element numbers to octants in
ascending order as we encounter them. The difficulty lies
in two other operations: (1) extracting mesh nodes, and (2)
identifying whether mesh nodes are dangling or anchored.
Because a balanced linear octree does not contain any ex-
plicit information about mesh nodes, we must extract mesh
nodes by computing the coordinates of vertices as we en-
counter new elements. Since most mesh nodes are shared by
multiple elements, we need to make sure that a newly com-
puted coordinate indeed represents a new mesh node rather
than a duplicate one. In other words, we must get rid of du-
plicates while extracting mesh nodes. Furthermore, we can-
not determine whether a mesh node is dangling or anchored
by examining its coordinate alone. Instead, we need to check



the sizes and locations of the elements surrounding a mesh
node.

A straightforward solution to implement the two difficult op-
erations works by searching database B-tree index structures.
First, we index the coordinates of mesh nodes in anode B-
tree. On encountering each new elementelem, we compute
the coordinates of its eight vertices. For each coordinate,
we search the node B-tree to check whether a node with the
same coordinate exists or not. If so, the node must have been
generated due to some other element we have processed ear-
lier. In this case, we append the locational code ofelemto the
corresponding node record. If the coordinate does not match
that of any existing nodes, we create a new node record with
the coordinate as its key and the locational code ofelemas its
payload. After all mesh elements are processed, the node B-
tree must have stored and indexed all the mesh nodes. Then
we iterate through all the mesh nodes, assigning node num-
bers in ascending order as we encounter them (similar to the
element number assignment process). For each node, we de-
termine whether it is dangling or not by analyzing the loca-
tional codes of those elements recorded in its payload. A
separate collection ofdangling node recordsare produced
in this process. Each dangling node record contains the co-
ordinate of a dangling node, the number of dangling nodes
it depends on (either 2 or 4), and the coordinates of those
anchored nodes.

This database search-based algorithm works fine for rela-
tive small datasets with tens of millions of elements and
nodes. However, the algorithm’s time and space complex-
ity severely limit its scalability. First, the running time of
the algorithm is O(���� �!"� ), where� is the number of mesh
nodes. The dominant cost is due to the search operations on
the node B-tree. Since each computed coordinate incurs a
node B-tree search operation of cost O(�� �!"� ), the total cost
due to searches is O(���� �!"� ). Second, the storage require-
ment of the algorithm is roughly#%$&�	� . We emphasize
the constant factor� to show that besides the space to hold
the coordinates of mesh node, we also need to allocate ex-
tra payload space for each mesh node to hold up to' (ele-
ment) locational codes. Since locational codes are obtained
by interleaving the bits of coordinates (and append the level
information that is encoded in an extra byte), we can conve-
niently regard the size of a locational code as large as that of
a coordinate.

So the problem we try to solve is more of a performance
issue than a functional one. More specifically,how can we
extract mesh nodes and determine their dangling/anchored
properties more efficiently both time-wise and space-wise?

4. TWO-LEVEL BUCKET SORT

This section presents the main algorithm we developed to
solve the problem. We refer to the algorithm asTwo-level
Bucket Sort. The basic idea is to convert the search-based
mesh node extraction process to a more efficient sorting pro-

cedure. Section 4.1 and 4.2 present the rationale of the de-
sign. Section 4.3 describes the algorithm itself.

(a) Mesh nodes as
volumeless points.

(b) Mesh nodes as pixels.

Figure 4: Two different ways of representing hexa-
hedral mesh nodes.

4.1 An Alternative Way of Representing
Mesh Nodes

Mesh nodes are typically defined as the vertices of mesh ele-
ments. That is, mesh node are volumeless geometric points,
shown as dark dots in Figure 4(a). (Ignore the difference
between dangling nodes and anchored nodes for the time
being.) However, the relatively regular placement of mesh
nodes of octree-based hexahedral meshes gives us an oppor-
tunity to represent mesh nodes in a different way. It can be
seen that in the etree address space where a problem domain
is embedded, the recursive subdivision process of octants en-
sures that the coordinates of vertices always have integer val-
ues. As a result, a mesh node must be located at the lower-
left corner of some pixel. Since different nodes have differ-
ent coordinates, each mesh node can be uniquely represented
by the pixel whose lower-left corner has the same coordinate
as that of the node, as shown in Figure 4(b) by the grayed
pixels. Note that the nodes on the far-side boundaries are
represented by pixels outside of the original address space.
We will discuss how to handle these cases in Section 4.3.

This alternative way of representing mesh nodes allows us to
approach the problem of extracting mesh nodes from a new
perspective: treat mesh nodes as pixels spatially distributed
in the etree address space. For simplicity, we refer to those
pixels asnodal pixels. Extracting mesh nodes and indexing
them in a node B-tree is thus equivalent to sorting nodal pix-
els according to their locational codes and bulk-load them to
a B-tree.

4.2 Buckets at Two Levels

It is well known that comparison based sorting algorithms
run in O(���( �!"� ) time [21]. Linear time (O(� )) algorithms
such as count sort, radix sort and bucket sort run faster by
exploiting the value information of the records being sorted.
Therefore, to develop an efficient algorithm to sort nodal pix-
els, we need to somehow make use the semantics of the lo-
cational codes.
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Figure 5: Treat octants as buckets to hold nodal
pixels.

As explained in Section 2, locational codes have an impor-
tant property called aggregate hit. That is, given the loca-
tional code of a pixel, we can extract its bit-patterns and tra-
verse down an octree to hit the octant that contains the pixel.
Therefore, we can treat octants (mesh elements) as buckets.
All nodal pixels except for those on the far-side boundaries
are distributed among the buckets. Note that different from
traditional buckets that represent equal-sized scalar value in-
tervals [21], the buckets we defined have spatial spans in the
etree address space. Given the way we define nodal pixels, it
can be verified that each bucket may contain at most 3 pixels
in 2D, and 7 pixels in 3D, as shown in Figure 5.

Since a balanced linear octree may contain billions of oc-
tants, what shall we do if the main memory is not large
enough to accommodate all the buckets (octants)? As the
name of our algorithm suggests, we solve this problem by
using buckets of different resolutions at two levels. The
fine-grained low-level buckets correspond to the leaf octants
(mesh elements) in an “active” region that we are process-
ing. These buckets are organized in a pointer-based octree
structure in memory to support aggregate hits and mesh node
sorting. The coarse-grained high-level buckets correspond
to (virtual) subtree roots that cover “inactive” regions in the
etree address space. Mesh nodes fall in those high-level
buckets are flushed to disk and processed later. We will ex-
plain what “active” and “inactive” mean and how to create
high-level buckets in Section 4.3.

For example, the domain of Figure 4(b) consists of 4 high-
level buckets corresponding to the four quadrants of the do-
main. Since the high-level buckets constitute a partition of
the domain, each nodal pixel must belong to some high-level
bucket. (For simplicity, ignore those mesh nodes on the far-
side boundary of the domain.) Figure 6 shows the buckets at
the two different levels while we are extracting elements and
nodes from high-level bucket 1 (that is, the active region).
When we obtain the coordinate of a vertex, i.e. nodal pixel,
we can derive it locational code. This nodal pixel will either
fall in some inactive high-level bucket or fall in the currently
active high-level bucket. In the latter case, the pixel will
fall in some low-level bucket (octant) due to the aggregate
hit property. Either way, a nodal pixel will be assigned to a
proper bucket.

bucket
1

bucket
2

bucket
3

bucket
4

Order of processing high-level buckets

High-level 
buckets 
(on disk)

Low-level 
buckets     

(in memory)

Mesh node (pixel)

?

Figure 6: A nodal pixel falls in either a low-level
bucket or a high-level bucket.

4.3 Algorithm Outline

Figure 7 presents an overview of the two-level bucket sort
algorithm. Many (gory) details have been omitted. Our pur-
pose is to show the structure of the algorithm and highlight
the important steps involved.

The input, as mentioned earlier, is a balanced linear octree
indexed by a B-tree. The output is an indexed mesh struc-
ture. Because we use nodal pixels to represent mesh nodes,
we can treat mesh nodes as the tiniest octants in the domain
and index them in the same way as we index mesh elements.
Since we use the etree library [7] to manipulate B-tree in-
dexed linear octrees, we simply refer to the indexed mesh
structure as element etree and node etree.

Input:
A balanced linear octree indexed in a B-tree.

Output:
An element etree and a node etree.

Method:
Compute nodal pixels while creating mesh elements
and assign nodal pixels to proper buckets for sorting.

S1: Expand the domain on the far-side boundaries.
S2: Decide the size of high-level buckets.
S3: Partition the expanded domain into equal-sized

high-level buckets.
S4: Initialize to the first high-level bucket.
S5: Extract elements and nodes belonging to the cur-

rent high-level bucket.
S6: Move to the next high-level bucket in Z-order.
S7: Goto S5 if not NULL; otherwise, terminate.

Figure 7: Two-level Bucket Sort.

Step S1 conceptually expands the far-side boundaries of the
domain by adding a layer of the largest leaf octants. The
purpose is to provide a set of low-level buckets to accom-
modate the nodal pixels on the far-side boundaries as shown



in Figure 4(b). Note that this set of extra octants does not
physically exist in the input balanced linear octree.

Step S2 conservatively assumes that the problem domain is
filled with the smallest octants only, and compute the largest
subtree that can be cached in memory. The size of the high-
level buckets is set to be that of the correspond subtree root.
All high-level buckets are of the same size and are properly
aligned as subtree roots.

Step S3 uses an octree decomposition to partition the ex-
panded domain into high-level buckets. An easy way to un-
derstand this partition is to imagine a cut-off of a fully-grown
octree at the subtree root level calculated in S2. Each high-
level bucket covers a region corresponding to a subtree.

Steps S4 – S7 process high-level buckets in Z-order. A high-
level bucket currently being processed represents anactive
region where new mesh elements and nodes are originated.
Other regions are said to beinactive. The most important
step is S5, which extracts elements and nodes from an active
region. We outline the operations involved in Figure 8.

S5-1: Initialize a pointer-based octree to represent low-
level buckets.

S5-2: Create nodal pixel records.
S5-3: Assign nodal pixels to buckets.
S5-4: Set to the leftmost leaf octant in the pointer-

based octree.
S5-5: Create an element record and append to the ele-

ment etree.
S5-6: Sort nodal pixels (7 at maximum) assigned to the

current leaf octant.
S5-7: Set dangling/anchored properties for the nodal

pixels sorted.
S5-8: Create node records and append to the node

etree.
S5-9: Traverse to the next leaf octant in preorder.
S5-10: Goto S5-5 if not NULL, otherwise, terminate.

Figure 8: How to extract mesh elements and nodes
belonging to a high-level bucket (S5).

An important data structure used by S5 is a hash table. We
create an empty hash table before each invocation of S5,
and then use the hash table to keep track of nodal pixels
encountered in the “active” region. Since each vertex is
shared by multiple octants (elements), the coordinate of each
nodal pixel will be computed multiple times (S5-2). We in-
stall a nodal pixel record in the hash table the first time we
encounter a coordinate. The record contains the following
fields: (1) the coordinate of the nodal pixel (i.e. the hash
entry tag), (2) the tree level of the octant (element) that pro-
duces the nodal pixel, and (3) a reference count that is ini-
tialized to 1. When we encounter the same coordinate again
while processing other octants, we simply increment the ref-
erence count associated with the nodal pixel by 1. The infor-
mation collected is later used to derive the dangling/anchored
properties of nodal pixels (S5-7) (see Section 5 for details).
Besides quickly identifying duplicates, a second main func-

tion of the hash table is to speed up the assignment of nodal
pixels to low-level buckets. Generally, a nodal pixel finds
its accommodating low-level bucket by traversing down the
pointer-based octree built in S5-1. Noticing that each low-
level bucket certainly encloses the nodal pixel located at its
lower-left corner, we let low-level buckets to directly adopt
their corner nodal pixels by searching the hash table.

Because two-level bucket sort outputs both mesh elements
and nodes in Z-order, which is the same as the locational
code ordering, we can safely use append operations (O(1)
cost) to add elements and nodes to the database. It can
be shown that the running time of two-level bucket sort is
O(�)$*�+�-,.#	�/�� �!��+�10	23�4$52��� �!
�+26� ), where � is the num-
ber of mesh nodes,# is the number of elements, and2 is
the number of high-level buckets. Besides, since we can re-
solve dangling/anchored property within the sorting proce-
dure, there is no need to store element locational codes with
mesh node records. The storage requirement of the algorithm
is O(#4$7� ).

5. IDENTIFYING DANGLING NODES

This section explains how we use the information collected
in nodal pixel records to determine whether a mesh node is
dangling or anchored (S5-7). The basic idea is to exploit
the fact that hexahedral meshes only yield nodes at the ver-
tices of the octants, and use modular arithmetic to identify
dangling nodes. For ease of illustration, we only discuss 2D
cases. Also, for clarify, we use geometric points instead of
nodal pixels in our figures to represent mesh nodes.

(a) First encountered due to
a larger octant.

(b) First encountered due to
a smaller octant.

Figure 9: A reference count of 4 indicates an an-
chored node.

Figure 9 illustrates the octants surrounding an anchored
node. These octants are part of a large mesh whose other
octants are not shown in the figure. The grayed octant is the
one that produces the anchored node (the cross sign) in the
first place. The arrows mark the octants that have the node
as a vertex and contribute to its reference count. It can be
seen that regardless which octant produces an anchored node
first, the reference count of the nodal pixel record is always
4. Therefore, we can conveniently determine that a node is
anchored if its reference count is equal to 4. The other two
fields of nodal pixel records are not used.

Besides a reference count of 4, the other possible values are



2 and 1 (in 2D). Note that only the four nodes at the domain
boundary corners have a reference count of 1. However, both
edge boundary nodes and dangling nodes may have a refer-
ence count of 2. Fortunately, because all (domain) boundary
nodes are anchored (in 2D), we can label their properties eas-
ily by checking their coordinates. The remaining problem is
how to identify dangling nodes.
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(a) On the left vertical edge
of a larger octant.

(b) On the right vertical
edge of a larger octant.

Figure 10: The reference count of a dangling node
is always 2.

Figure 10 shows the case of a dangling node (the dark dot)
that is located at the middle of a vertical edge. The cross
signs mark the anchored nodes the dangling node depends
on. Note that if the octant that produces the anchored node in
the first place (the grayed octant) is at octree level� , then the
other octant that has the dangling node as one of its vertices
must also be at at tree level� . Otherwise, the input linear
octree cannot be balanced.

Suppose the coordinate of the dangling node in our example
is (WX�ZY ), it is not difficult to derive thatW\[^]`_a��b3c 
 andY%[52d_e� b3c 
 $�� b , where]��X2�fhg c�i\j . Therefore, we can
use (WX��Y ) and � (the other two fields in the nodal pixel record)
to deduce that the dangling node is either at the middle of a
vertical edge ifW4[ j�k  �l�� b�c 
 and Ynm[ j�k  �l�� b�c 
 (the
case shown in our example); or at the middle of a horizontal
edge if Whm[ jok  �l�� b3c 
 and Y7[ j�k  �lp� b3c 
 . In either
case, the coordinate of the anchored nodes (cross signs) can
be easily derived.

We note that in 3D, the possible reference counts of a mesh
node is 8, 6, 4, 2 and 1, and not all boundary nodes are
anchored. The analysis is more complicated (and tedious).
Nevertheless, the basic principle of modular arithmetic is
still applicable.

6. EVALUATION

This section evaluates the effectiveness of our techniques
empirically. We have conducted experiments to answer the
following two questions: (1) How much faster can we ex-
tract hexahedral mesh structures from balanced linear octrees
using two-level bucket sort than using a search-based algo-
rithm? (2) How much storage space can we save by using
modular arithmetic to identify dangling/anchored nodes?

6.1 Methodology

The meshes we generated are used for earthquake ground
motion simulations. The purpose of such simulations is
not to predictwhenan earthquake would occur, but rather
what would happenif that earthquake would occur. In het-
erogeneous geological structures such as sedimentary basins
where material properties vary significantly through the do-
main, multi-resolution unstructured hexahedral meshes al-
low a tremendous reduction (approx. three orders of magni-
tude) in the number of mesh nodes (as compared to uniform
grids), because element sizes can adapt locally to the high-
variable wavelength of propagating seismic waves.

The target region of our experiments is the Los Angeles
Basin (LAB), which comprises a 3D volume of 100km x
100km x 37.5 km. The material model we used to drive the
mesh generation process is the Southern California Earth-
quake Center (SCEC) 3D velocity model [22] (Version 3,
2002). Meshes of different resolutions are generated for
simulations with different frequency requirements. Roughly
speaking, the higher the frequency, the finer the mesh. Fig-
ure 11(a) summarizes the characteristics of the mesh struc-
tures of our experiments. Each mesh is tagged with the fre-
quency it can resolve. “Elements” records the number of
elements, “Nodes” records the number of nodes, which in-
cludes both the dangling and the anchored, and “Danglings”
records the number of dangling nodes, which is a subset of
“Nodes”.

Our experiments were conducted on a desktop machine with
a Pentium III 1GHz processor running Linux 2.4.17. The
memory subsystem consisted of 3GB physical memory and
1GB swap space. Each experiment took a balanced linear
octree (produced by thebalancestep of Figure 1) as input
and produce a mesh database (stored and indexed in etrees)
as output.

Mesh 0.2Hz 0.5 Hz 1Hz 2Hz
Elements 433k 9.92m 113m 1.22b
Nodes 556k 11.3m 134m 1.37b
Danglings 125k 1.43m 20m 147m

Figure 11: Summary of LAB meshes.

One caveat is that for the purpose of our experiments, we
only create node etrees, which is what the two-level bucket
sort algorithm does. The element etrees are exactly the same
as the input linear octree since no other information (physical
quantities) needs to be associated with element records in our
experiments.

6.2 How much faster can we extract
mesh structures?

Figure 12 shows the running time of two different algo-
rithms. “Search-Alg” represents the conventional database
search-based algorithm described in Section 3. “Sort-Alg”



represents the two-level bucket sort algorithm introduced in
Section 4.2. “T” shows the execution times of a particular
algorithm and “q ” shows the corresponding throughputs in
terms of nodes/second. “Speedup” is calculated by divid-
ing the running time of Search-Alg by the running time of
Sort-Alg. It quantifies how much faster we can extract mesh
structures from balanced linear octrees using the two-level
bucket sort algorithm. Note that the running time for extract-
ing the structure of 2Hz mesh using the conventional search-
based algorithm is unavailable (n/a) because it ran out of disk
space (120GB) on the desktop machine where we conducted
the experiment. In addition, the running time of the search-
based algorithm does not include the time of post-processing
nodes to determine their dangling/anchored properties. So
the speedups reported are conservative.

We can see that two-level bucket sort runs much faster than a
search-based algorithm, achieving an average speedup of 11.
From Figure 11, we can see there are only about 15% more
nodes (� ) than elements (# ). Thus, it is expected the contri-
bution of the second term in the time complexity of two-level
bucket sort (O(�r$5�+�s,�#	�/�� �!
�+�10	26�t$u2��� �!t�+23� )) is signifi-
cantly discounted. Besides, the number of high-level buckets2 is actually very small. The contribution of the third term
is negligible. In contrast, the search-based algorithm always
run in O(���( �!"� ) (see section 3). The drastic improvement
in empirical running times indicate that two-level bucket sort
is a much more efficient algorithm in practice.

Mesh 0.2Hz 0.5 Hz 1Hz 2Hz
Nodes 555k 11.3m 134m 1.37b
Search-Alg T 00:00:28 00:12:59 02:51:57 n/a

q
19.8k 14.5k 13.0k n/a

Sort-Alg T 00:00:03 00:01:03 00:14:19 02:38:44

q
185k 166k 152k 144k

Speedup 9.3 11.5 12.0 n/a

Figure 12: The running time and throughput of two
different algorithms.

Another interesting conclusion we can draw from Figure 12
is that two-level bucket sort is quite scalable. The throughput
of the algorithm is about 185k for extracting mesh structure
for the 0.2Hz mesh (with 555k nodes), and 144k for the 2Hz
mesh (with 1.37b nodes), dropping by only 22% while the
latter is about 2,500 times larger than the former.

6.3 How much storage space can we
save?

Figure 13 summarizes the disk space usage of node etrees
produced by the two different algorithms. “Optimal” shows
the sizes of flat files if we would store node records one after
the other sequentially without any overhead. “Actual” shows
the sizes of node etrees, each of which include node records,
B-tree index structures and B-tree page internal fragmenta-
tions. “Overhead” represents the percentages of the “Actual”
storage space used for B-tree index structures and B-tree

page internal fragmentations. “Storage saved” indicates the
percentages of actual disk space saved when using two-level
bucket sort (“Sort-Alg”) as compared with the case of using
the conventional search-based algorithm (“Search-Alg”).

Mesh 0.2Hz 0.5 Hz 1Hz 2Hz
Search-Alg Optimal 68.7mb 1.29gb 16.5gb 169gb

Actual 104mb 2.17gb 25.1gb n/a
Overhead 33.9% 40.6% 34.3% n/a

Sort-Alg Optimal 10.0mb 204mb 2.41gb 24.7gb
Actual 10.1mb 206mb 2.44gb 25.0gb
Overhead 1.00% 1.00% 1.23% 1.20%

Storage saved 85.3% 90.5% 90.3% n/a

Figure 13: Storage requirements of two different al-
gorithms.

Since two-level bucket sort does not store elements’ loca-
tional codes with node records, it is not surprising that we
can save about 90% of the disk space that would otherwise
have been used. In other words, by using modular arithmetic
to determine the dangling/anchored properties of mesh nodes
in context of the sorting procedure, we can extract mesh
structure using 1/10 of the disk space required by a search-
based algorithm. The fact that the search-based algorithm
ran out of disk space (n/a) while extracting mesh structure
for the 2Hz mesh indicates that we should still conserve disk
storage space even if we are designing algorithms to run di-
rectly on databases.

The difference between the “Optimal” size and the “Actual”
size is the overhead associated with database structures. For
the search-based algorithm, the overhead is approximately
36%. This is because the search-based algorithm loads the
database via standard B-tree insertion operations. And it
has been shown that the disk space utilization of B-trees is
69% [23] on average under random insertions. Therefore,
the excessive overhead is due to the internal fragmentations
of B-tree pages. In contrast, two-level bucket sort appends
node records in ascending order to the database (B-tree). The
disk space utilization is optimized, with only very small in-
ternal fragmentations per B-tree page. Thus, the extra 1%
disk space overhead is mainly used by B-tree index pages,
which is a reasonable price for efficient (O(�� �!v� )) query ca-
pabilities.

7. SUMMARY

Generating meshes directly from databases will not only al-
low scientists to generate much larger meshes on their desk-
tops, but also provide query capabilities at no extra cost. The
challenge is how to design database-aware mesh generation
algorithms that are both efficient and scalable.

This paper has presented our recent work on how to ex-
tract mesh structures from balanced linear octrees, the most
resource-intensive step for generating unstructured hexahe-
dral meshes from databases. By exploiting the characteris-
tics of linear octrees, in particular, the clustering property



and the aggregate hit property of the locational codes, we
are able to approach the problem from a database perspec-
tive and develop an efficient new algorithm calledTwo-level
Bucket Sort. In addition, we employ modular arithmetic
in the context of the sorting procedure to identify dangling
mesh nodes, thus save storage space that would otherwise be
used to record the locational codes of surrounding elements.
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