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ABSTRACT

The problem of constructing surface meshes for the objects given on a set of discrete points or grid-nodes is addressed.
A heuristic algorithm for generating triangulated surface mesh is proposed. The resultant meshes do not inherit the
anisotropy of the underlying hexagonal grid but preserve the essential geometric features of the surface. This meshing
approach is suitable for creating grid-independent surface representations of objects given by discrete data sets, such
as are usually obtained from the measurements or arise in voxel-based graphical systems. Meshing strategies, such
as surface curvature estimates and neighbor-detection techniques are described. Examples of applications are given.
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1. INTRODUCTION

Mesh generation is a process of dividing a physical
domain into a large number of small elements with
relatively simple shapes. Typically the surface of an
object needs to be meshed before the application of
a 3D mesh generator, which often fills in the interior
of the object with tetrahedral or hexahedral elements.
The most common unstructured surface meshing algo-
rithms, which divide a surface into triangles, include
Delaunay meshing methods [1], and advancing front
methods [2].

While vector graphics dominate most CAD packages,
3D surfaces in many engineering and scientific applca-
tions are usually defined by means of parametric sur-
faces. Thus most surface meshing algorithms are de-
signed to deal with such. There are essentially two
types of surface meshing approaches: direct and in-
direct. With the indirect approach, the mesh is first
generated in a 2D parametric space, and then mapped
back to the actual surface in 3D space [3, 4, 5, 6]. In
contrast, the direct approach generates the mesh di-
rectly over the original surface in 3D space [2, 7]. With
this approach surface parameteriztion is not required.

The advancement in hardware, especially cheaper and
larger memories, has brought to the attention the tech-
nique of so-called voxel-based volume graphics [8]. A
voxel is a volume element which is the 3D counterpart
of a 2D pixel. Many geometric objects in engineering
applications can be modeled with voxels. Also a great
number of biomedical, geophysical and other scientific
data is typically given as a collection of grid points,
which can be classified as voxel-data. In all these cases
no parametric surfaces are available. Although many
mesh generation methods exist, few of them are de-
signed to deal with voxel-based geometric objects [9].

In this study, a 3d surface meshing method is proposed
to mesh the surface of voxel-based objects. Since no
parametric surfaces exist for an voxel-based object, the
algorithm proceeds directly with voxels, and in the
end the surface is extracted as a triangulated mesh.
Therefore, besides the purpose of generating quality
mesh for numerical methods, the meshing method also
serves another purpose: volume rendering, which is
the objective of many surface construction algorithms,
such as marching cubes algorithm [10].



2. METHOD

The main targets of the meshing method are voxel-
based objects, which can be created by some simple
volume graphics tools or obtained by measurements.
Each voxel has a value which represents some property,
such as color, texture, or material. These voxel-based
objects can be rendered in different modes, such as
cubes, wireframes or points.

The voxels are arranged in a regular 3D grid. For each
voxel, its neighbors can be esily reached by increment-
ing or decrementing the respective direction indexes.
Thus, the connectivity is given by one simple relation,
and global neighbor connectivity lists are not required.
The boundaries of an object can always be established
using this neighbor information.

Each object has an id-number, which is assigned to ev-
ery voxel representing that object. The meshing rou-
tine receives the id-number of the object as an input
parameter and starts by scanning the voxel set for the
first occurrence of this id. If such voxel was found the
routine invokes the surface meshing algorithm, which
creates the boundary mesh for that object. The rou-
tine continues then to search for voxels of the same

type.

The vozel grid itself is represented by a 3D array of in-
teger numbers, which can be 32 or 16 bit long depend-
ing on the required number of objects and memory
constraints. Surface mesh is a linked list of triangles,
where each triangle is represented by three vertexes,
each of which belongs to a set of boundary nodes. A
boundary node inherits the coordinates of the corre-
sponding boundary voxel. The three vertexes of each
triangle are oriented in a way such that the normal of
the triangle area points outward the object volume.

When the mesh is being constructed the algorithm op-
erates on nodes and edges, which can be of 2 types:
open or closed. An open edge is an edge that belongs
to only one surface triangle. An open node is a node,
which is not completely surrounded by triangles. Open
edges and open nodes are simply edges or nodes which
are at the front of the newly constructed surface mesh,
that is, the part which is currently under construction
(Fig.1). We call the front-edges open because each of
them belongs to only one triangle, whereas every edge
inside the mesh belongs to two triangles. Likewise, ev-
ery node at the front (open node) belongs to at least
two open edges, whereas each node inside the mesh
doesn’t belong to any open edges. When the mesh is
completely done all the nodes and edges should be-
come closed and the front reduces to a zero-set. The
mesh front is essentially a one-dimensional segmented
line. Each open node has two pointers pointing to 2
neighboring open nodes, designated as prev and next,
The direction from the prev node to the next node
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Figure 1: Node this,its prev, next nodes and open an-
gle.

following the unmeshed area is in counter-clock wise
direction with respect to the surface outward normal
vector. The angle between node’s two open edges on
the unmeshed area side is called the open angle. Fig-
ure 1 shows an active node A, its prev node B and
next node C, and its open angle. A closed node is
also shown in this figure.

One step of the algorithm consists of closing a single
node. For this purpose the algorithm selects a cur-
rent node from the set of open nodes, which is called
this node, and performs the closure operation. The
selection of active nodes can be done in a preferen-
tial manner so as to provide for a more uniform angle
distribution inside the surface triangles.

The very first node of the mesh selected on the bound-
ary has its prev and next pointers point to itself, and
its open angle is set to 27'. When a node is closed,
its open angle is 0. The set of open nodes is stored as
a linked list. Each closure operation of the node may
lead to the appearance of other open nodes, which are
newly introduced nodes of the mesh. The meshing
algorithm repeats the closure operation on all open
nodes until the list becomes empty.

The meshing algorithm can be summarized as the fol-
lowing:

1. Construct the first triangle, and add its three
nodes to the linked list;

2. Select the node from the list with the smallest
open angle. Call it this node;

3. Recursively create surrounding triangles until
this node is closed; In this procedure use either

1Strictly speaking, it can be less than 27 depending on
the curvature of the surface at that point.



Figure 2: Estimating surface normal of a boundary point

existing open nodes for new triangle vertexes or
introduce new open nodes;

4. When this node is closed, remove it from the list,
and consider if its neighbor nodes should be re-
moved as well.

5. If there are open nodes in the list repeat from
step 2.

The essential procedures performed by the algorithm
are the following:

Construction of a surface normal. Surface nor-
mal vector is needed to determine the node-closure
direction. Given a rigid character of the surface in a
voxel-based representation when looked at in the vicin-
ity of only few grid-nodes, one needs to perform some
averaging to get a fair estimate of the surface normal
direction at each voxel. A quick way to do this esti-
mate is to account of all the neighboring voxels, which
don’t belong to the current object (outside voxels).
For each such voxel the distance vector, 15;-, between
this node and the neighbor node, ¢, is calculated. The
sum of these vectors will approximately point in the
surface normal direction. Thus, the normal vector 7 is
estimated using the following equation (see also Figure
2):
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Open angle estimates. The open angle estima-
tion procedure is illustrated in Figure 1. First the dot
product of the two vectors AB and AC is computed to
find the angle 6 between them. Then the actual open
angle could be this angle or its complimentary of 2.

To decide on this we need extra information, which
comes from the normal vector 7 and the cross product
P of vectors AB and AC. If 7% and P are on the same
side of the surface, i.e. their scalar product is positive,
then the open angle is 6, otherwise the open angle is
27 — 0. Thus, we have:

0=arccos(A_, .A_, ) (2)
|AB||AC|

P = AB x AC (3)
if(R-P<0)=>0=2r—6 (4)

Quality of a triangle. The quality of triangles
is important for the accuracy of numerical methods.
Generally speaking, having small angles is bad. One
measurement for the quality of a triangle is called as-
pect ratio, which is defined as the value of the longest
edge divided by the smallest height. We know the
smaller the aspect ratio, the better the quality. And
the best triangle is a equilateral triangle.

Construction of a triangle. To construct a new
triangle for an open node, the following procedure is
used (Fig. 3). We consider that at this point an open
node was selected as this node:

1. Check nearby open nodes to this node, and see if
there is one suitable for constructing a triangle,
consisting of that node, this node and prev node,
or consisting that node, next node and this node.
A suitable node is a node which will lead to a tri-
angle with good quality, e.g, from the respective
of aspect ratio. If such node is found:

e Then construct such triangle and call the
newly found node the old node. Check if
this, old node, and prev (or next) nodes are
now closed. Remove any closed node from
the open node list.

2. Otherwise:

e create a new open node by searching an ap-
propriate boundary voxel, such that the dis-
tance to that voxel is consistent with the
current mesh length-scale, and the angle be-
tween this — prev and this — new direc-
tions is around 60° (see below).

3. Change prev and/or next pointers of any involved
node.

As can be seen this algorithm takes care of the meet-
ing front problem, when the open nodes from differ-
ent parts of the front begin to converge on each other.
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Figure 3: Constructing a new triangle

That’s why the existing nodes are tried first before cre-
ating new nodes in step 1 instead of generating new
nodes to form a triangle.

Generating a new node. A new node is to be
generated from a boundary voxel, inheriting its coor-
dinates. Two parameters are used in searching for a
suitable boundary voxel. One is a control angle. We
try to make it close to 60 degrees by dividing the open
angle by an integer:

open_angle
round(open_angle/60.0)

(5)

control_angle =

Another parameter is a control distance, which is re-
lated to local mesh length-scale (see below).

Figure 3 illustrates the searching process. Start-
ing from the prev node, the searching process walks
through the boundary voxels from neighbor to neigh-
bor in counter clock wise direction keeping the distance
from this node in a narrow strip, until a point with
the right angle is found.

Mesh length-scale control The local mesh
length-scale is selected on the basis of two control sizes:
one is a global size, set by the user and serving as an
upper bound of mesh-size; and another is local size,
related to the local surface curvature. Highly curved
surfaces should use triangles of smaller sizes. There-
fore, to achieve the goal of local size control, surface
curvature evaluation is necessary.

To find the local curvature one can first fit a surface
patch with a set of local points around the point of
interest, and then estimate curvature on the fitted sur-
face. Many different surfaces can be used for this pur-
pose. In the current implementation a quadric surface

Figure 4: Locating the closest point.

patch fit with least square method is used (Appendix
A).

After the quadratic surface fit was found the closest
point on that surface patch from the point of inter-
est is identified (since the fitted patch does not have
to pass though that point) and the curvature at that
point is used to approximate the curvature at the point
of interest. The closest point is assumed to lie on
the intersection between the boundary normal at the
point of interest computed earlier and the fitted sur-
face (Fig.4).

If P is the coordinate vector to the point of interest
and N is the boundary normal vector at that point
then the intersection point P’ can be represented as:
P’ = P+ kN, where k can be obtained by substituting
the coordinates of P’ into the fitted surface equation.
This will give a quadratic equation, which is easy to
solve.

Curvature evaluation. The curvature evaluation
method used for 3D implicit quadric surface is shown
in Appendix B.

3. DISCUSSION

The surface meshing method described here uses an
advancing front technique, which is similar to tradi-
tional advancing front methods [2]. However in our
method the front does not start from the boundary of
a surface. Instead it can start from a random point.
Mesh quality might be improved if the front starts
from corners and edges of the object volume, but in
that case corner detection and edge detection need to
be addressed before the meshing process. Another dif-
ference in the proposed method is that it relies on the
node closure routine introduced in the previous sec-
tion. This routine constitutes a single step of the al-



gorithm, which is repeated until no open nodes are left
in the mesh. A conventional approach to front prop-
agating uses edge closure rather than node closure, in
which for each open edge a new mesh triangle is con-
structed with this edge making one side of the triangle

(Fig.5).

Comparing the two approaches one may note that the
node closure algorithm is more complex in implemen-
tation than the edge closure one. However, the for-
mer has a potential for a better control of the angles,
which may lead to a higher uniformity of the mesh.
This is because the open angles for each node at the
front are constantly computed and sub-divided into
the appropriate number of sub-angles. This means
that the node-closure algorithm will require less post-
processing steps of mesh quality improvements.

The node-closure algorithm has also a wider range of
visibility when it looks out for other front nodes as po-
tential candidates to be joined with a current node.
This is because the lookout radius for each node is
about the size of the local edge-length of the mesh,
whereas the lookout radius for the edge in the edge-
closure case is usually smaller (Fig.5). It is still pos-
sible to employ the same strategy in the edge-closure
case of using a larger lookout radius for both nodes of
a given edge. However, this will lead to a considerable
increase of the processing time, since each node will be
processed as many times as there are edges connected
to it, which may be on the order of 4 to 6 times more
for surface meshes.

Even though each step of the node-closure algorithm
takes more operations to accomplish, the overall ef-
ficiency may be comparable to the edge closure pro-
cedure, since several new mesh triangles can be gen-
erated during one step of the former, while the latter
only leads to the creation of one new triangle at a time.
This is a consequence of the fact that there are usually
several times more edges than nodes in a typical mesh.

The advantage of using node-cloure operation as com-
pared to an edge-closure operation used in a conven-
tional advancing front method is that on the average
it spans a larger area while examining a neighborhood
of the node as compared to the edge. Indeed, to close
an edge one needs to create a single node that will
form a triangle with other two nodes on the edge. To
close a node one needs to create more than one new
nodes, therefore there is a wider range of possibilities
and in fact an optimization can be used to select the
new nodes. There is also a larger area examined in
the process of selection of several nodes compared to
just one. This all amounts to an improved distribution
of nodes with respect to the selected mesh optimality
criteria (aspect ratios, angles, etc.)

Speaking about the accuracy of surface representa-

(a) Edge closure: new triangle

CBD is to be constructed to close
edge CB

(b) Node closure: new triangles
AFG, AGH, and AHB are to be
constructed to close node A

Figure 5: Edge vs node closure approaches to front prop-
agation.



Ezxp. Grid N Amazx Qmin Tmazx

70 x 70 x 70 1158 | 114° 24° 3.35

100 x 100 x 60 | 1342 | 112° 25° 3.21

Wi~ 8

40 x 60 x 100 | 1880 | 113° 20° 3.08

Table 1: Characteristics of example meshes.

tions, the mesh generated in the present approach pro-
vides the resolution of surface details down to 4 to 6
voxels in size. This is because the node closure op-
eration requires a certain minimum separation of the
open nodes to provide a more even angle distribution
and to avoid inheriting the hexagonal unisotropy of
the voxel grid. Although this property sets a limit on
the resolution of surface details, such as sharp angles,
it provides for the grid independence of the mesh.

4. RESULT

Figures 6, 7 and 8 show surface meshing examples
of spheres, joint spheres and other composite objects.
The voxel grid size, the number of tiangles, the maxi-
mum/minimum angle, and the maximum aspect ratio
r are shown in Table 1. The global mesh length-scale
was chosen to be 6.

The quality of triangles are affected by the resolu-
tion of the object and the selected global length scale.
Since all coordinates of voxels are integer values, dur-
ing the procedure of searching a new node, we can-
not make the angle exactly equal to the control an-
gle. The smaller the control distance (or the global
length scale), the larger the error from the control an-
gle. Therefore if we have high resolution voxel grid for
the object, we can then choose larger length scale, and
thus make the mesh quality better.

5. CONCLUSIONS AND FUTHER
WORK

The proposed mesh generation scheme belongs to a
family of propagating front methods, but exploits the
idea of using nodes and their triangle closure as ba-
sic steps in building the surface mesh. The extension
of this idea to 3D meshing is relatively straightfor-
ward. In this case the node has to be closed by the
envelop of tetrahedral elements filling in the spherical
region around the node. The construction of these el-
ements can be done using a 2D algorithm described
here for meshing the surface of the sphere, with sub-
sequent connections of each newly generated node to
the sphere-central node. Implementation of this idea
will be the logical continuation of this work.

The method suggested here works best on smooth sur-
faces of objects, since it has a minimum resolution

Figure 6: Example 1: Surface mesh on a sphere
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Figure 7: Example 2: Surface mesh on two overlaying
spheres



Figure 8: Example 3: Surface mesh on overlaying cylin-
der and cube

limit of several voxel sizes. Thus the method may not
preserve the sharp corners and edges. To correct this
situation some improvements in curvature evaluation
algorithms may be needed, as well as edge detection
methods.

The method can be used to create grid-independent
surface representations of data given on discrete set of
points, and in voxel-based sculpting systems.

A. LEAST SQUARE QUADRIC
SURFACE FITTING

One approach to fit a set of 3d points is least-squares
surface fitting with a quadric function:

f(z,y,2)=CV" (6)

where C is a vector of coefficients:

C = (c0,cl, c2,c3, ¢4, b, cb, cT, 8, c9) (7)

and

V:(x2’y21Zzaxy:yzaxz:wzyaz’1) (8)

‘We need at least 10 points to find the ten unknown co-
efficients. Suppose the number of points NN is greater
than 10 points, generally they cannot be on the same
quadric surface. To fit the best surface, we can at-
tempt to choose vector C' to minimize the error func-
tion:

E(C)=CMCT 9)

M=D"D (10)

where D is a Nx10 matrix whose ith row is:

(x127y127 Z?,xi’yi, YiZiy TiZiy iy Yiy Ziy 1)52 = 1, 2..N
(11)

When all coefficients are 0 the error function has the
minimum value zero. Therefore there is a degree of
freedom in this function. To get rid of it, we can choose
C to be a unit-length vector as a constraint. Now
this problem is an eigenvalue problem. The minimum
error will be the smallest eigenvalue of M. And the
eigenvector corresponding to the smallest eigenvalue
is the coeflicient vector C.

In the above construction, none of the sample points
is guaranteed to be on the fitted surface.

B. CURVATURE EVALUATION FOR AN
IMPLICIT QUADRIC SURFACE

Let F(z,y,2) = az® + by®> + c2* + exy + fyz + gzz +
lz + my + nz + d = 0 represent an implicit quadric
surface in R3. F;, Fy, and F), are the first order partial
derivatives of F. Fyy, Fyy, ..., F. are the second order
partial derivatives of F. The following equations are
used to calculate the curvature of surface F(x, y, z)
[11]:

|AF|=+/F2+ F? + F? (12)

1 Favw FZJZ FIE
L=———| F., F.. F (13)
F2IAFT | 57 5
) F,, F,. F,
M=———|F, F. F (14)
EIAFI 5° B
1 Fyy Fyz F?J
N=——_|F, F. F 15
F2|AF| F;’ 0 (15)
1
E=1+%; (16)
F.F,
H =5 (17)
F2
G=1+ F_Zz (18)
L M
as[2 %] w
E H
B= [ 0o ] (20)



The engenvalues of B~ A are the principle curvatures
k1 and k2. The values of the Gaussian curvature K
and the mean curvature H are then given by:

(1]

[5]

[10]

[11]

K=kl k2 (21)
H= %(m +k2) (22)
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