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ABSTRACT

We describe some extensions to the grid smoothing scheme described in [1, 2] that deal with the following issues:
1) the clustering effect of changing valence in an unstructured grid and, in particular, the choice of the shape and size
control weighting both locally and globally; 2) an analysis of the angle bounds achievable through the new smoothing
algorithm under shape control; 3) the extension of the approach to 3D with an application to a 3D grid generated by
CUBIT; 4) the use of alternative metrics to provide clustering based on an approximate solution; 5) the treatment
of constraints on boundaries and at hanging nodes introduced through adaptive refinement applied in conjunction
with interior grid smoothing. The results of numerical studies are included to demonstrate the performance of the
resulting schemes.
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1. INTRODUCTION

Grid generation and, in particular, the construction
of “quality” grids is a major issue in both geometric
modeling and engineering analysis. For realistic com-
plex applications the analysis problem can usually be
completed in less design time than the generation and
improvement of a quality grid. In fact, it often takes
an order of magnitude more time to construct a quality
grid than to solve the analysis problem. Consequently,
the problem of generating quality grids is becoming in-
creasingly important.

Automatically generated grids frequently contain over-
lapping and distorted cells. A number of techniques
have been directed towards smoothing the grid to cor-
rect these “abnormalities”. Some of the earlier grid
smoothing strategies are described in [3]-[9] and are
based on both local relaxation of the grid and on global
optimization strategies. Typically these earlier studies
involve either geometric concepts associated with local
cell quality such as the effect of obtuse angles or use

variational ideas to optimize an associated functional.
There have been several studies [10]-[12] that also fo-
cus on metrics to quantify cell quality and these have
also been utilized in the grid improvement algorithms
mentioned above.

The present approach is based on a global variational
approach (optimization strategy) where the optimiza-
tion functional utilizes local cell or patch properties
associated with the map from an associated reference
cell. Local contributions corresponding to both shape
and size control determine grid quality via an associ-
ated weighted functional. In this work we investigate
some of the properties of this weighted functional and
explore extensions to treat certain complications.

An outline of the paper is as follows: In the first sec-
tion we briefly review the local quality metric and vari-
ational problem. We then consider the effect of local
changes in the valence (number of cells surrounding
the grid vertex) and the use of variable weighting to
avoid pathological behavior such as singular cluster-



ing due to local valence changes. Angle bounds of
the shape control metric are developed and the ex-
tension of the scheme to 3D is described. Here we
also consider the effect of distortion on the condition
number for the subsequent analysis problem. In the
closing sections we briefly describe the treatment of
node constraints on the boundary and hanging node
constraints in adaptive refinement as well as discuss
one approach for adaptation with feedback from an
analysis solution.

2. SMOOTHING TECHNIQUE

The variational smoothing algorithm we are develop-
ing was described in [1] and has its origins in several
previous studies (see, for example, [3, 4, 6, 8, 13, 14]).
As an introductory background, we first briefly outline
the main idea of the approach below.

The method is based on a local cell distortion measure
which is defined as a function of the Jacobian matrix
S of a map between the reference and the physical cell.
More specifically, it is a convex linear combination of
measures of the element shape β and size distortion µ:

Eθ(S) = (1− θ)β(S) + θµ(S), 0 ≤ θ < 1. (1)

Eθ takes values from the interval [1,∞]. It achieves
its minimum 1 on the reference element and becomes
infinite on a degenerate element. The shape distortion
part in n-dimensions is defined by

β(S) =

(

1
n
tr(STS)

)n/2

detS
. (2)

The size control part can be computed, using a target
value v of the desired element area/volume defined a

priori, and is

µ(S) =
1

2

(

detS

v
+

v

detS

)

. (3)

The integral of (1) over the reference element Ω̂c is the
element contribution

Ic =
∫

Ω̂c

Eθ(S)d~ξ (4)

to the global distortion functional. The global varia-
tional grid smoothing functional is obtained by accu-
mulating all Nc element contributions as:

I =
Nc
∑

c=1

∫

Ω̂c

Eθ(S)d~ξ =

∫

Ω̂

Eθ(S)d~ξ, (5)

where Ω̂ is a reference domain (union of all reference
cells).

The functional (5) is minimized subject to related
boundary (or other) constraints. The discretized form

of the minimization problem (5) is: find the solution
to

R = argmin
R

Ih, Ih =
Nc
∑

c=1

Nq
∑

q(c)=1

σq(c)Eθ(S|q(c)), (6)

where contributions to the functional from each cell
c are approximated using a numerical integration rule
with quadrature points {q(c)}, and quadrature weights
σq(c); R is the vector of “free” coordinates of vertices
in the mesh.

3. VALENCE TREATMENT

Most, if not all, current smoothing algorithms produce
significant local dilation effects at vertices where va-
lence differs from the mean [1, 15]. The local valence
of a vertex is defined here as a number of elements or
cells that meet at that vertex. Since all unstructured
grids have varying interior valence, we examine this
case in detail.

Results from numerical tests in our previous works
[1, 2] demonstrate that significant dilation may occur
in such grids when smoothing with θ near zero; that is,
with the accent on the shape control metric (similar re-
sults are seen for Laplacian-type smoothers). Increas-
ing the size control θ alleviates this problem. It was
also noticed that minimization of a global functional
with more weight on shape control did not improve the
minimal values of the quality metric and the Jacobian
determinant compared to the initial state (although
the global functional value was decreasing). That is,
the value of such a functional depended more on the
global mesh structure than on any individual cell con-
tribution, as one might expect. On the other hand,
when the weight was shifted towards the size control
metric, all local quality metric values improved dur-
ing smoothing. Thus, adding weight to the dilation
metric makes our smoothing procedure less sensitive
to the varying valence of the mesh. Nevertheless, we
must always keep some nonzero weight on the shape
control part of the metric in order to preserve the prop-
erties and validity of the smoothing algorithm. In the
remainder of this section we will examine the effect of
varying valence on both shape and size control parts
of the functional.

3.1 Properties of the smoothing functional
on meshes with changing valence.

We first examine the local behavior of the functional
(6) on a patch of cells, then look at the global effect
of smoothing on meshes with varying valence.

Patch of triangular elements Following [15], let
us consider a patch of val > 2 equilateral triangular



elements shown in Figure 1 for the case val = 6.
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Figure 1: Patch of triangles.

For each element in the initial patch configuration we
have

φ =
2π

val
, β0 =

2− cosφ√
3 sinφ

, µ0 =
v
√
3

4 sinφ
+
sinφ

v
√
3
.

Now we move one vertex A0 a distance δ to a position
A. The functional for the new patch depends upon δ

Ih(δ) = (val − 2)Eθ(0) + 2Eθ(δ).

Its derivative w.r.t. δ is equal to

I′h(δ) =
1√
3 sinφ

(

2(1− θ) +
2θ sin2 φ

v
+
4(θ − 1)− 3θv
2(1 + δ)2

)

.

The minimum of this functional is achieved when
I′h(δ) = 0, that is when

δ =

√

1− (1− 3v/4)θ
1− θ + θ/v sin2 φ

− 1.

If θ = 0 (only shape control is imposed), the minimum
is at δ = 0, independent of valence val. If θ = 1 (only
size control), the minimum is at δ =

√
3v/(2 sin 2π

val
)−1

and controlled by the value of desired element area v.

Patch of quadrilaterals The setting is similar to
the previous case (see Figure 2)
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Figure 2: Patch of quadrilaterals.

and the functional becomes

I(δ) = (val−2)Eθ(0)+θ/2

(

v

(1 + δ) sinφ
+
(1 + δ) sinφ

v

)

+

+(1−θ)/2
(

2 + 2(1 + δ)2 + δ2 − 2δ cosφ
2(1 + δ) sinφ

+
δ2 − 2δ cosφ
2 sinφ

)

,

with derivative

I′h(δ) =
1− θ

2 sinφ

(

3/2 + δ − cosφ− 3/2 + cosφ
(1 + δ)2

)

+

+
θ

2 sinφ

(

sin2 φ

v
− v

(1 + δ)2

)

.

The contours I ′h(δ) = 0 as functions of valence val are
shown in Figure 3 for different values of θ.

−0.5 0 0.5 1
4 

12

22

32

δ

va
le

nc
e

θ=0

−0.5 0 0.5 1
4 

12

22

32

δ

va
le

nc
e

θ=0.4

−0.5 0 0.5 1
4 

12

22

32

δ

θ=0.8

−0.5 0 0.5 1
4

12

22

32

−0.5 0 0.5 1
4 

12

22

32

−0.5 0 0.5 1
4 

12

22

32

δ

va
le

nc
e

θ=0 θ=0.8θ=0.4

δδ

va
le

nc
e

va
le

nc
e

va
le

nc
e

v=2 

v=0.5 

Figure 3: Optimal position δ as a function of valence
and θ. On top: v = 2, on bottom: v = 0.5.

From Figure 3 we can conclude that smoothing of the
quadrilateral grid with only shape control results in
attraction of points to a node of valence smaller than
regular and repulsion of points from a node of va-
lence larger than regular. The same behavior holds
for any Laplace-type smoothing. Addition of size con-
trol to the functional introduces control over this at-
traction/repulsion force through the values of desired
element area v and parameter θ. Figure 3 also demon-
strates that, as expected, large values of target cell
area v induce dilation, whereas small values of v pro-
mote attraction. The effect is more dramatic with the
increase of θ (weight shifted towards the size control
part of the functional).

Functional at a node Now, let us consider an in-
terior node of a quadrilateral grid in a different set-
ting, where all nodes on the patch boundary are fixed
and only the interior node is allowed to move. Let



us denote by l1, . . . , lval the lengths of all edges con-
nected to this node. Let the angles between these
edges be numbered in a counterclockwise manner as
α1, . . . , αval (see Figure 4). The angles satisfy an ob-
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Figure 4: Interior node of valence val = 6.

vious restriction
∑val

i=1 αi = 2π. The functional value
at the node is equal to

Ih(node) = (1− θ)

val
∑

i=1

li
li+1

+
li+1

li

2 sinαi
+

θ

2

val
∑

i=1

(

lili+1 sinαi

v
+

v

lili+1 sinαi

)

and acheives its minimum value

Ih(node)min = (1− θ)
val

sin( 2π
val
)
+ θ val

when α1 = . . . = αval =
2π
val
(due to symmetry) and

l1 = . . . = lval =
√

v/ sin( 2π
val
). Thus, such a symmet-

ric configuration is preferable when it can be achieved
under the given boundary and other constraints.

The position of any node influences the quality of the
whole patch of cells surrounding the node. Suppose
that in each cell of the patch the coordinates of three
nodes (the interior node and two connected with it by
edges) are determined by the conditions above. Let us
consider the functional sensitivity to the position of
the remaining vertices. It suffices to examine a typical
cell. The level sets of the shape control metric β, as a
function of coordinates of the fourth node (B in Figure
2) of a quadrilateral cell within the patch surrounding
nodes with valence 3 and 5 are shown in Figure 5. In
both cases the metric β has its minimum when the an-
gle χ at the free vertex is equal to π/2. Thus, the edges
forming this angle are forced to be 25% longer (than 1)
in the case of the valence 3 patch and 17% shorter in
the case of the valence 5 patch. Thus, the local dilation
or contraction effect near points of irregular valence is
caused by the tendency of a Laplace-type smoother to
(1) preserve symmetry, (2) keep edge lengths nearly
equal and (3) attain a maximum possible under these
conditions amount of right angles in the mesh.
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Figure 5: Level sets of β on a patch of valence 3 (top)
and 5 (bottom).



If we now suppose that all other vertices in the grid
have valence 4 and consider the layer of cells sur-
rounding the irregular valence patch, similar reasoning
implies that node clustering or unclustering near the
point of irregular valence is due to the restriction on
the sum of angles imposed by the global mesh connec-
tivity. In order to demonstrate that in this case clus-
tering is independent of the central (irregular valence)
node contribution (even of the patch contribution),
we performed smoothing of the test grid with deleted
patches of cells surrounding valence 3 nodes. That is,
we deleted the cells and considered different configu-
rations of the resulting inner boundary. Smoothing is
performed with value θ = 0.2, and boundary nodes are
allowed to “slide” tangentially along the outer bound-
ary. The results for a coarse grid are shown in Figure
6. Similar behavior is displayed on finer grids.

In other situations, irregular valence nodes tend to in-
duce mainly local dilation or contraction of the sur-
rounding cells, as in the following example. In this case
we consider a mesh of regular triangles and a uniform
mesh of square cells in a big enough domain. That
is, a domain big enough that boundaries do not affect
the behavior of the smoother on the interior patches of
interest. For the initial grid configuration we removed
one node in the center for each of the two meshes
and reconnected the remaining vertices (see Figure 7).
Thus, we obtained several vertices of varying valence
inside each mesh, with the majority of the vertices be-
ing of regular valence. The results of the smoothing
for these meshes with different values of θ are shown in
Figure 8, and in all these cases smoothing affects only
the patches of cells surrounding the irregular valence
vertices. That is, the effect of valence change attenu-
ates significantly under this smoother and weighting.
This suggests that the effect of local valence irreg-
ularity can be addressed appropriately in this way.
Hence, we anticipate the approach will improve ele-
ment shape and not be impacted adversely by valence
changes. This also suggests that local subgrid or patch
optimization may be computationaly efficient. How-
ever, in general, the exterior mesh will vary globally
unlike the uniform meshes of Figures 7 and 8.

3.2 Algorithm with varying θ.

One approach to deal with the valence problem is to
introduce an alternative target shape for the cells lo-
cated near the irregular valence nodes. The drawback
of this approach is that we do not know which shape
should be considered ideal for these cells (for example,
what is the best configuration of the patch boundary
in Figure 6?). A similar approach would be to enforce
more size control near these irregular valence nodes
and allow more shape control far from them. This can
be achieved by varying parameter θ throughout the do-

main. Simply increasing or decreasing θ at a node with
lower or higher valence is not enough. Our strategy is
to identify the irregular valence nodes vi, i = 1, . . . , I,
for each such node compute a radius of its “domain of
influence” rvi = minj{dist(vi, ∂Ω), 12dist(vi, vj)}, and
define the piecewise-constant function θ on each cell by
{

θ(c) = 1− dist(vi,c)
rvi

, if dist(vi, c) ≤ rvi

}

. The im-

plementation of this approach resulted in the central
grid shown in Figure 9. The grid obtained with vary-
ing θ does not show much clustering near valence 3
points, and it still has nearly square elements close to
the boundary of the domain.

3.3 Bounds on angles

We conjecture that, in general, the maximum and min-
imum angles occur in the smoothed grid at the vertices
with minimal (maximal) valence (excluding boundary
influence). We do not have a proof of this yet, but we
are able to obtain estimates on maximal and minimal
angles in terms of distortion measure β for the case
of triangular and tetrahedral grids, as described be-
low. (Size distortion measure µ does not provide any
control over the cells angles.)

For the triangular element with area A and edges l1 ≤
l2 ≤ l3, the shape distortion measure is reduced to [1]

β =
l21 + l22 + l23

4
√
3A

. (7)

Let us denote the smallest angle by α1, then we can
rewrite the distortion measure as

β =
l22 + l23 − l2l3 cosα1

2
√
3A

.

For the sine of the smallest angle we, thus, have

sinα1 =
2A

l2l3
=
l22 + l23 − l2l3 cosα1√

3βl2l3
≥

≥ 2− cosα1√
3β

. (8)

From the last inequality and using the fact that α1 ≤
π/3 it is easy to obtain the following estimate

α1 ≥ arcsin
(

2−
√

1− β−2√
3β + 1/(

√
3β)

)

. (9)

For the largest angle α3 in the triangle we can show
(repeating (8)) the estimate

sinα3 ≥
2− cosα3√

3β
.

If this angle is obtuse α3 ≥ π/2 then

sin(π − α3) ≥
2 + cos(π − α3)√

3β



and

α3 ≤ π − arcsin
(

2 +
√

1− β−2√
3β + 1/(

√
3β)

)

. (10)

For the tetrahedron with volume V , solid angles
γ1, . . . , γ4, and edges l1, . . . , l6 the shape distortion
measure is [1]

β =
(
∑6

i=1 l
2
i )
3/2

72
√
3V

. (11)

Using the estimates from [16], for the minimal solid
angle γ1 we get

1/(16β) ≤ sin(γ1/2) ≤ 4
√
8/
√

β.

Thus,

γ1 ≤ 2 arcsin
(

1

16β

)

. (12)

From [16] we also know that

γ1 ≤ γ2 ≤ γ3 ≤ γ4 ⇒

sin(γ1/2) ≤ sin(γ2/2) ≤ sin(γ3/2) ≤ sin(γ4/2).
The tetrahedron is poorly shaped if γ4 is close to 2π,
i.e. when 2π − γ4 is small. However, since

sin

(

2π − γ4
2

)

≥ sin(γ1/2),

consequently

γ4 ≤ 2π − 2 arcsin
(

1

16β

)

, (13)

which shows how the largest value of distortion mea-
sure for the grid can be used to estimate the bounds
on the smallest and largest angles.

Figure 6: From top to bottom: whole smoothed grid,
smoothed grid with free nodes on the boundaries of
deleted patches, smoothed grid with patch boundaries
fixed from initial grid, smoothed grids with vertex angle
χ equal to 120, 80 and 90 degrees.



Figure 7: Zoom on the initial regular grids with one node
removed.

Figure 8: Zoom on the smoothed grids: on top θ = 0.2,
on bottom θ = 0.8.

Figure 9: From top to bottom: grid smoothed with θ =
0.2, varying θ, and θ = 0.8.



4. 3D EXAMPLE

Now let us consider a 3D example of a grid with vary-
ing valence (Figure 10) that is comprised of hexahe-
dra and genereted by CUBIT [17]. Obviously, all the
difficulties discussed above for the 2D case are present
here as well. The problem domain is composed of three
tube segments that intersect as shown in Figure 10 and
the main area of interest is the interior grid near the
intersection. An expanded view of the 2D midplane
slice near this area is shown on the right of the lower
figure.

X
Y

Z

X
Y

Z

Figure 10: Initial 3D grid.

For this initial grid, the worst values of the Jacobian
determinant and distortion measure are

min (detS) |q(c) = 0.377v, v = 1.1710−3,

distortion maxE0.8 = 1.63, maxE0.2 = 2.26,

and β0,max = 2.50, µ0,max = 1.51.

Since we want to have a practical understanding of
the effect of mesh improvement on solvability after
smoothing, we also compute the condition numbers
for a representative mass matrix M and stiffness ma-
trix K for the Laplace problem on the initial mesh.
Dirichlet boundary conditions apply and both mass
and stiffness matrices are symmetric positive definite.
The associated condition numbers of the initial grid
are

κ(M) = 35.51, κ(K) = 44.31.

The interior grid on the section after smoothing with
θ = 0.8 (size control) is shown in Figure 11. The
worst values of the Jacobian determinant and distor-
tion measure are improved to

min (detS) |q(c) = 0.48v, maxE0.8 = 1.39,

βmax = 2.32, µmax = 1.27.

The condition numbers for mass and stiffness matrices

X
Y

Z

Figure 11: Grid slice after smoothing with θ = 0.8.

become

κ0.8(M) = 34.76 = 97%κ(M),

κ0.8(K) = 36.37 = 82%κ(K).

The planar grid section after smoothing with θ = 0.2
(shape control), is shown in Figure 12. The values now
are

min (detS) |q(c) = 0.377v, maxE0.2 = 2.20,

βmax = 2.43, µmax = 1.52.

Condition numbers for mass and stiffness matrices be-
come

κ0.2(M) = 55.50 = 156%κ(M),
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Figure 12: Grid slice after smoothing with θ = 0.2.

κ0.2(K) = 59.63 = 135%κ(K).

The results follow the trend discussed in the begin-
ning of Section 3 above; that is, smoothing with shape
control does not improve the individual worst values
of quality metric that occur near the irregular valence
points. However, size control helps to improve all the
values of quality. The conditioning of mass and stiff-
ness matrices follows the behavior of the extremal val-
ues of quality and Jacobian determinant.

This observation leads us to develop the following the-
oretical estimates, concerning the relation between the
maximum value of mesh quality Eθ and the condition-
ing of mass and stiffness matrices for that mesh. First
recall that the mass matrix elements are computed as
follows:

Mi,j =

Nc
∑

c=1

∫

Ωc

ϕiϕjdx =

Nc
∑

c=1

∫

Ω̂c

ϕiϕj detS d~ξ =

(14)

=

Nc
∑

c=1

Nq
∑

q(c)=1

ϕi(q) ϕj(q) detS|q(c)σq(c) =

=





Nc
∑

c=1

Nq
∑

q(c)=1

aq(c) detS|q(c)



M ideal
i,j ,

where M ideal is a mass matrix computed on a refer-
ence mesh, ϕi, i = 1, . . . , N are the FE basis func-
tions, and the constant coefficients aq(c) ≥ 0 satisfy
∑Nc

c=1

∑Nq

q(c)=1 aq(c) = 1. Thus, the i
th eigenvalue of

the mass matrix satisfies

max(detS) ≥ λi(M)

λi(M ideal)
≥ min(detS), (15)

and the condition number is bounded above as

κ(M) ≤ max(detS)
min(detS)

κ(M ideal). (16)

Similarly, the stiffness matrix elements can be written
as:

Ki,j =

Nc
∑

c=1

∫

Ωc

(∇ϕi)
T∇ϕjdx =

=

Nc
∑

c=1

∫

Ω̂c

(∇ξϕi)
TS−1S−T∇ξϕj detS d~ξ

and we have the bounds

max

(

detS

γ2v2/n

)

≥ λi(K)

λi(Kideal)
≥ min

(

detS

Γ2v2/n

)

,

(17)
where Kideal

i,j is a stiffness matrix computed on a ref-
erence mesh and by γ, Γ we denote the smallest and
largest dimensionless singular values of the Jacobian
matrix:

γ2v2/nI ≤ STS ≤ Γ2v2/nI. (18)

Thus, the estimate for the condition number of the
stiffness matrix is

κ(K) ≤
max

(

detS
γ2

)

min
(

detS
Γ2

) κ(Kideal). (19)

From the definitions of µ in (3) and Eθ in (1) we get

µ−
√

µ2 − 1 ≤ detS/v ≤ µ+
√

µ2 − 1,

β ≤ Eθ − θ

1− θ
, µ ≤ Eθ − 1 + θ

θ
.

Also, from the definition of β in (2), it follows that
(

1

n
tr(STS)

)n/2

= β detS ≤

≤ βmaxv(µmax +
√

µ2max − 1).
Consequently,

Γn ≤ nn/2βmax(µmax +
√

µ2max − 1).
Thus, we can express the estimates for condition num-
bers (16) and (19) in terms of maximum values of β
and µ, or, equivalently, in terms of maximum value of
the distortion metric Eθ alone.

For the above example we estimate the change in the
condition number of the mass matrix as follows

κ0.8(M)/κ(M) = 74%, κ0.2(M)/κ(M) = 142%,

and for the stiffness matrix the estimated values (as-
suming Γγ = O(1)) are

κ0.8(K)/κ(K) = 77%, κ0.2(K)/κ(K) = 173%.

These theoretical predictions are in qualitative agree-
ment with the computed values. From these esti-
mates we can conclude that, for a highly distorted grid
(Eθ >> 1), the condition number of the stiffness ma-
trix is proportional to (maxEθ)

4/n.



5. TREATMENT OF CONSTRAINTS

Constraints on the grid points at boundaries, inter-
faces, or at hanging nodes in adaptive mesh refinement
can be treated by multiplier methods in the variational
smoothing formulation. In the following section, we
briefly describe a Lagrange multiplier approach which
is suggested for use in the cases mentioned above as a
postprocessing step. That is, this step is to be applied
after smoothing the grid (in n-dimensions) with hang-
ing nodes as interior unconstrained nodes and bound-
ary nodes as fixed. Let us define the Lagrangian for
constraints gi(R) = 0 as

Lh = Ih +
NC
∑

i=1

λigi(R) = Ih +ΛG, (20)

where the number of constraints NC is equal to n
times the number of hanging nodes plus the number
of the “moving” boundary nodes. Here Λ = {λi, i =
1, . . . , NC} are the discrete Lagrange multipliers. The
minimization of the Lagrangian proceeds by a damped
Newton method:

First specify the initial iterate

(

R

Λ

)

=

(

R0

0

)

for k = 0, 1, 2, . . .

Find minimization direction Pk from
(

H B
BT 0

)(

Pk
R

Pk
Λ

)

=

(

−∇Ih − BΛk

−G

)

,

where B(i, j) = ∂gj
∂Ri

; H(i, j) = ∂2Lh

∂Ri∂Rj
;

Solve approximately

τk = argmin
τ
Lh

((

Rk

Λk

)

+ τPk

)

;

R
k+1 = Rk + τkP

k
R;

if |min
q(c)

E−1θ (R
k+1)−min

q(c)
E−1θ (R

k)| < ε, stop.

The minimization direction can be computed using
only the diagonal part of the Hessian H from the sys-
tem

BTH−1BPΛ = −BTH−1∇Ih −G;

HPR = −∇Ih − BPΛ.
(21)

For the 2D case, the n = 2 constraints gk = 0 for a
hanging node j with adjacent edge nodes p1 and p2
defining the constraint for j are given by

gk = xk(j)−
xk(p1) + xk(p2)

2
, k = 1, 2.

For a “moving” boundary node j we first determine
whether this node j and its neighbour boundary nodes
b1, . . . , bnb lie on the same plane (line in 2D). In this

case, the constraint forbids node movement in the nor-
mal direction n

gi =

n
∑

k=1

(xnewk (j)− xk(j))nk.

For example, in 2D

n1 =
1

x1(b1)− x1(b2)
, n2 =

−1
x2(b1)− x2(b2)

.

In the case of a nonzero curvature boundary, the node
is allowed to move along the sphere (circle), going
through node j and its boundary neighbours.

gi =
nb
∑

k=1

(xnewk (j)− xk(center))
2 − r2.

Computation of this quadratic approximation to a sur-
face requires a minimal number of nodes, although
other forms (than the sphere/circle) might be prefer-
able.

6. ADAPTIVITY AND MAPPING
CONTROL

The shape control part of the functional (6) achieves
its global minimum when the shape of each cell in the
mesh is closest (under the given mesh connectivity and
boundary constraints) to the shape of the reference
cell. This is a necessary property for a smoothing al-
gorithm, based on a “geometric” approach to element
quality. On the other hand, one may define desired
shape and size of the elements from the point of view
of improving the accuracy of interpolation of a func-
tion or of approximating a solution to a FE problem.
Such an approach is called adaptive redistribution, and
in our case it can be achieved by describing the tar-
get shape and size of the cells in terms of an adaptive
function.

6.1 Introduction of adaptivity into the
smoothing formulation

One approach for adaptive mesh redistribution is to
adaptively control the areas of the elements by intro-
ducing a weight function into the size control part of
the quality metric. Examples of such techniques can
be found in [4, 18, 19, 11, 9]. The use of several met-
ric coefficients (instead of the single weight) improves
the technique, since it allows for directional adapta-
tion. The metric coefficient matrix G can be deter-
mined from the relation between the physical domain
and an adaptive vector-function [20, 21, 8].

The previous variational problem, generalized for
adaptation, is formulated as follows: minimize

I =
∫

Ω̂

Eθ(SG1/2)d~ξ. (22)



This problem is equivalent to the construction of a
good quality mesh on the surface of values of an adap-
tive function and the result is the projection of this
mesh onto the computational domain Ω.

We perform several exploratory numerical tests with
a piecewise constant definition of the adaptive metric
(see, for example [18, 13])

G =
√

1 + |∇u|2 I,

where u is the adaptive function, I is the unit ma-
trix. The role of G is to weight the integrand where
|∇u| is large. The shape control part β of the distor-
tion measure is independent of this type of metric, so
adaptive redistribution is due only to area (volume)
change. Thus, the technique is equivalent to those
described in the beginning of the section, since only
desired element volume v = v0/

√

1 + |∇u|2 is depen-
dent upon the adaptive function. In the tests, the
initial grid is a uniform 3D hexahedral mesh inside
the unit cube. Figure 13 shows horizontal layers of
cells extracted from the middle section of the domain
of redistributed grids.

Figure 13: On top: adaptation to

u =exp

(

− |x−0.5|+|y−0.5|+|z−0.5|
ε

)

, on bottom: adap-

tation to u = sin(2π(x+ y + z)).

6.2 Combining adaptive refinement and
redistribution

We can expect that combination of r- and h-adaptivity
will yield reduction in the number of degrees of free-
dom in the optimal mesh compared to the results
of pure adaptive refinement. This approach will re-
quire the use of all smoothing algorithm extensions
described in this paper. As an illustrative example
we include Figure 14 which demonstrates the result of
smoothing a mesh with hanging nodes and “sliding”
boundary nodes with an adaptive metric.

Figure 14: Adaptive smoothing step, on top: grid before
smoothing, on bottom: smoothed grid.

7. CONCLUSIONS

In this study we have proposed and investigated sev-
eral extensions to the grid smoothing strategy in [1, 2].
Specifically we investigate the effect of varying the
weighting of shape and size control to address valence
effects and demonstrate that the scheme can be ad-
justed to effectively treat the irregular valence issues



in both 2D and 3D grids. Theoretical bounds on the
minimum and maximum angles for the triangular and
tetrahedral grids and condition numbers estimates in
terms of the distortion measure are obtained. The
latter are shown to be consistent with results of a nu-
merical test. In particular, this analysis implies that
estimates improve when the described smoothing al-
gorithm is applied. Finally, the idea of applying redis-
tribution in conjunction with adaptive refinement has
been implemented and some preliminary results are
included for the L-shaped domain problem. In partic-
ular, we extend the metric to allow adaptive control
based on the behavior of the solution to an associated
approximation problem and we demonstrate the treat-
ment of hanging nodes for problems where an adap-
tively refined grid is subsequently redistributed using
this algorithm.
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