carrier image

Conforming restricted Delaunay mesh generation for piecewise smooth complexes

Engwirda, Darren

Proceedings, 25th International Meshing Roundtable, Elsevier, Science Direct, September 26-30 2016


25th International Meshing Roundtable
Washington DC, U.S.A.
September 26-30, 2016

Darren Engwirda, Massachusetts Institute of Technology, US,

A Frontal-Delaunay refinement algorithm for mesh generation in piecewise smooth domains is described. Built using a restricted Delaunay framework, this new algorithm combines a number of novel features, including: (i) an unweighted, conforming restricted Delaunay representation for domains specified as a (non-manifold) collection of piecewise smooth surface patches and curve segments, (ii) a protection strategy for domains containing curve segments that subtend sharply acute angles, and (iii) a new class of off-centre refinement rules designed to achieve high-quality point-placement along embedded curve features. Experimental comparisons show that the new Frontal-Delaunay algorithm outperforms a classical (statically weighted) restricted Delaunay-refinement technique for a number of three-dimensional benchmark problems.

Download Full Paper (PDF)

Contact author(s) or publisher for availability and copyright information on above referenced article