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Abstract

In this paper, we provide a fine-grained parallel scheme for anisotropic mesh adaptation on NUMA1 architectures.
Data dependencies are expressed by a graph for each kernel, and concurrency is extracted through fine-grained graph coloring.
Tasks are structured into bulk-synchronous steps to avoid data races and to aggregate shared-data accesses.
To ensure performance prediction, time cost and load imbalance are theoretically characterized.
The devised scheme was evaluated on a 4 NUMA node (2-socket) machine, and a mean efficiency of 70% was reached on
32 cores for 3 kernels out of 4. The impact of irregular degree distribution and data layout on scalability is highlighted.
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1. Introduction

Numerical simulations of complex physical phenomena (such as turbulence, noise propagation) may require bil-
lions of mesh elements to achieve a high level of accuracy. Coupled with a parallel numerical scheme, mesh adap-
tation is a relevant alternative to reduce the computational effort while maintaining the required accuracy. By equi-
distributing the error of the solution field while modifying the domain discretization, it decreases the required number
of degrees of freedom. That said, the whole computational chain must be efficiently parallelized to be applicable,
according to Amdahl’s law [1]. But mesh adaptation is known as being irregular [2] and difficult to parallelize at a
fine granularity level. Indeed, mesh topology is explicitly stored but evolves in an unpredictable way. Data depen-
dencies cannot be resolved statically, involving a poor cache locality due to irregular memory access patterns. On the
other hand, manycore architectures have been recently emerging in high performance computing platforms, with an
increasing number of cores per node but a decreasing memory/clock rate per core, and a deep cache hierarchy. Fur-
thermore, inter-socket memory accesses have higher latency than intra-socket ones in a NUMA multicore machine.

1 Non-Uniform Memory Access
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Therefore, coarse-grained schemes based on serial kernels are no longer suitable, as pointed out in [3]. The challenge
is to devise an efficient fine-grained scheme which exhibit a high degree of concurrency and a high locality to ease
memory accesses penalties. The idea is no longer to process larger mesh in a given time frame T , but to shorten T .

Related works. Parallel meshing is an active field of research [4]. Most of up-to-date schemes are coarse-grained
ones, and rely on serial kernels, domain decomposition and dynamic cell migration for load balancing. In this case,
the parallelization effort mainly focuses on domain interfaces management in order to reduce the synchronization
between submeshes, and efficient heuristics for load balancing [5]. Fine-grained schemes have also been developed,
but many of them concerns lock-based Delaunay remeshing [6].

In [7], a lock-free scheme for the isotropic case was proposed. Mesh operations were expressed by a graph, and an
independent set I is extracted to ensure topological conformity and data updates consistency. The critical point is the
extraction of I in the swapping stage because it involves a distance-2 vicinity for each vertex. Such a choice greatly
reduces the degree of concurrency since a 2-coloring requires more colors.

In [8], an extension to the anisotropic case was given with an additional contraction kernel. It uses a node-to-node
and node-to-element data structure and a unique graph was considered for all kernels. To ensure data consistency,
adjacency lists updates are deferred to the end of each remeshing iteration in a way that a unique thread k commits
the list of a given point p, even if Np is partially updated by other threads. It was designed in a practical way and no
theoretical guarantees were provided.

Contributions. We provide a fine-grained scheme for anisotropic remeshing on NUMA architectures based on [7,8].
Data dependencies are expressed by a graph G = (V,E) and concurrency is extracted through fine-grained graph
coloring. Locality is the key-point of our scheme and its originality relies on:

• kernel-specific graphs to increase |V| and the degree of concurrency |I|, and to reduce |E|, unlike [8]. (sec. 3.1)
That said, no graph is required for refinement and only distance-1 edges are considered, unlike [7].

• a locality-aware data layout management in order to ease cache and NUMA effects (sec. 3.2)
• a bulk-synchronous task structuring in order to avoid data races and to aggregate data accesses (sec. 4).
• the use of a bridging model to ensure performance portability, unlike [8] (sec. 5).

2. Serial adaptive scheme

The purpose is to control the discretization of the domain Ω to accurately capture characteristic features of a given
solution field (up)p∈Ω (such as shocks, flows, interfaces motion), while reducing the number of degrees of freedom. It
aims at building a discretization M of Ω where the interpolation error ε = ||u−Πu|| is bounded and equally distributed,
with Πu the interpolate of u on M. It can be expressed as the following optimization problem:

find (u,M) = arg min
(ui,Mi)

||ui − Πui || subject to a fixed number of nodes N (1)

This non-linear problem is resolved by applying an iterative procedure involving both a finite element/volume solver
and a adaptive remesher. The convergence of the couple mesh-solution is achieved when the error is smaller than a
given threshold. The sequence of operations we use is given in Algorithm 1.

2.1. Metric construction

The error of the solution field is closely related to mesh quality: a control of elements size is required to reduce it.
For this purpose, one may use a local a posteriori error estimate from which a nodewise metric tensor field (Mp)p∈Ω
is derived, and will guide the remeshing procedure. In addition, phenomena involved in computational fluid dynamics
often admit anisotropic features: the solution field evolves differently depending on the considered direction.
To properly capture them, a direction prescription is thus necessary. For each tensor, its eigenvalues (λi)i=1,d give the
local size prescription hi = 1/

√
λi in the direction of their related eigenvectors (vi)i=1,d, with d is the dimension of Ω.

Then a gradation procedure may be applied in order to smooth out sudden changes in size requirements [9].
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Many error models can be found in the literature, each one being suitable to a specific class of numerical schemes.
In our case, we use a generic multi-scale model based on the continuous mesh formalism [10], which gives us a control
in Lk norm of the error, for all k ∈ N. The main benefit of this approach is to give an automatic normalization of the
tensor field (Mp)p∈Ω. Indeed, it finely captures characteristic features with different amplitudes (shock within a flow
for instance), without a minimal size requirement. For a target number of points N, the metric tensor of a point p is:

Mp = N
(∫

Ω

det(|Hu|x|)
2k

2(k+1) dx
)

︸                         ︷︷                         ︸
global normalization

−1

det(|Hu|p|)
−1

2(k+1)︸            ︷︷            ︸
local normalization

·|Hu|p|, with |Hu| = P ·
(
|λ1| 0
0 |λ2|

)
· P−1 (2)

The local normalization factor aims to control the point density in large gradient variation regions of Ω, whereas the
global normalization factor is required to reach N according to the chosen Lk norm. The metric tensor definition
involves the Hessian matrix Hu of u, which is only known at mesh nodes. The hessian field is recovered by means of
a double L2-projection, which is accurate and does not tend to smooth the calculated field [11].

2.2. Remeshing

It consists in applying topological and geometric modifications to the mesh with respect to metric field require-
ments. Formally, the purpose is to build an uniform unit mesh in the Riemannian space induced by (Mp)p∈Ω, where
the length of a segment [ab] and the area of an element K are given by:

`(a, b) =

∫ 1

0
((b − a) · Ma+t(b−a) · (b − a))

1
2 dt, and |K| = |K2| · (detMK)

1
2 , with |K2| the euclidean area of K. (3)

It is an iterative procedure consisting of 4 stages:

• refinement: it aims at splitting edges whose lengths are larger than
√

2. We use a recursive dissection kernel,
since data updates remain local to the element in this case. This aspect is important for its parallelization.
Finally, the Steiner point related each marked edge is its midpoint in the Riemannian space.

• contraction: it aims at removing edges whose lengths are smaller than 1/
√

2. Here we use a vertex collapse
kernel, in which the smallest edge (p1, p2) incident to a point p1 is selected at each time. Task ordering is
actually important since processing nodes in a breadth-first way rather than a depth-first way avoids the creation
of long edges induced by a subsequent collapse of a node p.

• swapping: it aims at improving the quality of any element pair (K1,K2) by flipping their shared edge if quality is
improved i.e

∑2
i=1 Q(Ki) <

∑2
i=1 Q(K′i) and mini=1,2 Q(Ki) < mini=1,2 Q(K′i), with (K′1,K

′
2) the resulting pair.

• smoothing: it aims at relocating each internal point p so that the quality of its stencil Np is strictly improved.
Several kernel choices are possible, we opted for a smart laplacian where the location of p is:
p +

∑
pi∈Np

ωi(pi − p)/`(p, pi), with ωi ∈ [0, 1] : relaxation weights such that p remains in the convex hull of Np

Regarding quality measure, we opted for the one in [12] which takes both element size and shape into account:

12
√

3|K| · (∂|K|)−2︸                 ︷︷                 ︸
shape

·ϕ (∂|K|/3)︸     ︷︷     ︸
size

, with ϕ(1) = 1, lim
x→0

ϕ(x) = lim
x→∞

ϕ(x) = 0 (4)

• |K| is the Riemannian area of K and ∂|K| is its perimeter according to the tensor interpolated at its vertices.
• ϕ is defined by ϕ(x) = [min(x, 1

x ) · (2 − min(x, 1
x )]3. It reaches its maximum value 1 for x = 1 and decreases

smoothly for x > 1. Thus Q(K) = 1 when K is equilateral with unit sides with respect toM.

An example of anisotropic mesh adapted to an analytical solution field is given in Fig. 7. No gradation were applied
but all scales of the solution field were correctly captured.



4 Hoby Rakotoarivelo, Franck Ledoux and Franck Pommereau / Procedia Engineering 00 (2016) 000–000

input: initial mesh M0

input: error εmax, quality q∗, and efficiency τ∗ thresholds
repeat

solve (up)p∈Ω on current mesh M . solver
build a metric tensor field (Mp)p∈M . remesher
apply gradation on (Mp)p∈M . optionnal
repeat

refinement
contraction
swapping
smoothing

until qmin ≥ q∗ and τ ≥ τ∗

until ||u − Πu|| ≤ εmax

return (u,M)

Algorithm 1: Adaptive loop

(a) β1 (b) β2 (c) β3

(d) flip

β2 7 8 9 1
bef. 1 5 3 6
aft. 1 5 3 6

⇒ completely local

(e) data updates
Fig. 1: Combinatorial map data structure D = (H, β1, · · · , βd)
β1: permutation on H | βi, βi ◦ β j: involutions on H, i > 1, i , j

3. Fine-grained parallelization

Issues. Apart from being irregular, the remeshing part is one of those memory-intensive algorithms in which compu-
tation is cheap but limited by memory transfers. This aspect is accentuated by irregular memory accesses, induced by
mutable data dependencies. It reduces the efficiency of prefetching techniques for memory latency hiding [13]. On the
other hand, this level of granularity involves frequent thread synchronization and idle times. To reach scalability, the
challenge is to increase task locality, especially in a NUMA context, and reduce synchronization count while keeping
the execution safe.

Philosophy of the method. Locality is the key-point of our devised scheme. Data dependencies are expressed by an
undirected graph G = (V,E), from which a task partition P is extracted by a fine-grained parallel graph coloring.
Task granularity is refined to increase the degree of concurrency |I|, whereas data dependencies is reduced to increase
locality. Thus, graphs are chosen such that |V| is increased and |E| is reduced. Each stage is structured into bulk-
synchronous steps in order to avoid conflictual data load/store, and to aggregate shared-data accesses for memory
latency hiding. By the way, reordering instructions allows us to exhibit theoretical prediction on execution time and
load imbalance.

3.1. Task extraction

To ensure correctness, two issues must be addressed: topological conformity and data consistency. Overlapping
operations may invalid the mesh (edge cross, holes), whereas cell data may be corrupted by data races. In our context,
a remeshing task is defined by a kernel and a related dataset. Task graphs are built from data dependencies of each
kernel, and are chosen such that |V| is increased and |E| is reduced. Indeed, we aim at reducing the degree ∆ of each
graph, as well as the deviation σ of their degree distribution to reduce load imbalance. On the other hand, the number
of colors nc required to build P (and I ∈ P) is bounded by ∆ + 1, and must be reduced since |I| decrease linearly to nc.
Data involved by each task are described in Fig. 2. Related graphs are given in Fig. 3 and recapitulated in Table 1.

(a) dissection (b) collapse (c) flip (d) laplacian

Fig. 2: Data involved by each task and propagation
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Table 1: Data dependencies and related graphs

task depend. unit cost graph ∆ χ

dissection dynamic O(1) none N/A N/A

collapse dynamic O(|Np|) primal var. 6
flip dynamic O(1) dual edge 4 6

laplacian static O(|Np|) primal var. 6
Fig. 3: Related graphs: primal (left) and dual edge (right)

• dissection: it involves the vicinity of each element, however this dependency may be avoided by carefully
choosing the mesh data structure. No graph is required here, unlike [7].

• collapse: it involves the vicinity (stencil) of each node. G = (V,E) is built from the mesh primal graph, where
V is a set of marked nodes, and E is a set of pairs of V corresponding to a mesh edge. Here G is planar and we
have a bound on the chromatic number χ ≤ 6, as stated in [14]. Hence a small number of colors is expected for
the extraction of a partition P, despite irregular degree distribution induced by anisotropy.

• flip: it involves the shell of the edge (i.e the two elements sharing it). G is built from the mesh dual edge graph.
As each shell contains exactly 4 edges in 2D, we have ∆ = 4 (whereas ∆ = 12 in [7] and ∆ ≈ 6 in [8]).

• laplacian: it involves the stencil of each internal node. G is built from the primal graph deprived of its bound-
ary nodes. As the topology remains unchanged, the same partition P is kept throughout the stage, and task
propagation is ensured by processing Vi ∈ P at iteration i.

The devised scheme relies on an efficient independent task extraction which is NP-hard. Related heuristics are
not trivially parallelizable due to intrinsic dependencies between iterations [15]. Since the extraction of I is only a
preliminary step of a given remeshing stage, its cost must remain negligible. However, the quality of the solution
must remain acceptable in order to increase the degree of concurrency |I|. Given these constraints, we opted for a
speculative fine-grained graph coloring [16]. It gives a good tradeoff between accuracy and performance.

(a) task graph (b) pseudo-coloring (c) defective nodes fixes (d) independent tasks

Fig. 4: Fine-grained speculative graph coloring heuristic

Table 2: Evaluation of the graph coloring heuristic on RMAT instances [17], |V| = 16 · 106, |E| = 128 · 106.
Runs are performed on an 2-socket Intel Haswell with a NUMA-aware memory allocation and a static thread binding (1/core).

CPU time (s) defective vertices ratio indep. (%)graph ∆ ∆̄ σ2
p=1 p=4 p=16 p=32 p=1 p=4 p=16 p=32 p=1 p=4 p=16 p=32

RMAT-ER 51 9.16 21 3.56 1.87 0.73 0.48 0 5 20 46 34.6 31.5 32.9 32.8
RMAT-G 606 3.13 22 1.09 0.63 0.42 0.31 0 1 17 38 60.9 63.9 62.3 62.1
RMAT-B 5398 1.72 123 0.51 0.35 0.28 0.25 0 3 27 31 85.1 88.3 89.4 89.5

The idea is to perform a pseudo-coloring of V using first-first heuristic [18] without worrying about data races, and
to handle defective vertices in a separate stage. In the first stage, each thread maintain a local mapping of forbidden
colors for each v ∈ V, because they are already assigned to a vi ∈ Nv. In the second stage, threads recheck colors of
a subset of marked vertices R, which will be colored again in the next iteration. If conflict happens, only one of the 2
defective vertices is recolored, which are discriminated by their ID. The algorithm includes 2 synchronization points.
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The heuristic was evaluated on 3 instances of the recursive matrix graph model (RMAT) [17], to assess its applica-
bility in our context. Indeed, the primal graph (involved in contraction and smoothing stages) has an irregular degree
distribution because of anisotropy. The graph model allows to generate instances with degree distribution parameters
(see [17] for details). Results are shown in table 2. Less than 4 seconds is required to process 16 · 106 vertices and the
number of defective vertices remains negligible compared to |V|. The ratio of independent vertices is not altered by
parallelism, but depends on the degree distribution.

3.2. Locality enhancement

Issues. In our context, data layout must be considered to improve cache locality despite irregular memory accesses.
However the initial memory layout is hard to preserve because cell data dependencies evolve in a unpredictable way.
On the other hand, index reordering schemes (Hilbert curves, matrix renumbering) are still expensive and hard to
parallelize in a fine-grained way. Therefore, the challenge is to reduce data updates on one hand, and keep neighboring
cells as close as possible in memory on the other hand, subject to these constraints.

Data layout and synchronization. Data are stored in flat arrays in order to increase spatial locality due to memory
addresses contiguity. No reallocation is performed within a remeshing stage but a parallel mesh compression stage is
done after a contraction/refinement. To reduce remote accesses in a NUMA context, memory cells are first-touched
by each thread in a round-robin fashion for each shared tasklist. Therefore, memory cells are allocated on the closest
DRAM of the core where a given thread is statically bound. Data stores are synchronized in a way that newly inserted
neighboring mesh cells are kept as close as possible in memory (see Fig. 5). Indeed, mesh cell index offsets nα, nβ,
and nγ are precalculated according to the number of long edges αj of each element Kj during a refinement stage:

nα =

|L|∑
j=1

αj, nβ =

|L|∑
j=1

βj and nγ =

|L|∑
j=1

γj, where βj =


4 if αj = 1
8 if αj = 2

12 otherwise
, and γj =


2 if αj = 1
3 if αj = 2
4 otherwise

(5)

A lock-free synchronization scheme is used for shared tasklist updates: a reduction is performed on index offsets (ki)
for a shared tasklist L, in order to find the current index range where a given thread ti may store its private data.
For that, a atomic capture mechanism inspired by [8] is used: the size nL of L is incremented atomically while its old
value is cached in ki. Thus, ti knows its index range [ki, ki + nL] and can resume its local computation or copy his
local data. Notice that offsets could be retrieved by means of prefix sum, but it would require log(p) synchronization
barriers.

(a) mesh cells to be inserted

elems
1 8 2 12 13 3 5 11

14 7 9 6 10 4 16 15

DRAM 1 (close to core#1)
1 8 2 12 13 3 5 11

DRAM 2 (close to core#2)
14 7 9 6 10 4 16 15

(b) asynchronous: 7 remote stores

elems
1 2 3 5 7 6 4 8 12

13 11 14 9 10 16 15

DRAM 1 (close to core#1)
1 2 3 5 7 6 4 8

DRAM 2 (close to core#2)
12 13 11 14 9 10 16 15

(c) synchronized: 1 remote store

Fig. 5: Data insertion scheme during a refinement stage, in a asynchronous way (b) and in a synchronized / NUMA-aware way (c)

Data structure. A combinatorial map data structure is used such that updates remain local to the considered patch [19]
(see Fig. 1). Each dart (or halfedge) stores the indices of its vertices, its next, its twin, and the element containing it.
In addition, each node stores the index of an outgoing dart, idem for elements. The stencil of each node can be easily
found via a circulator. Boundary darts are linked so that the whole boundary may be retrieved via references traversal.
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4. Steps structuring

Fig. 6: A bulk-synchronous computation.
It consists of a local computation, a commu-
nication step followed by a synchronization
barrier.

Remeshing stages are structured into bulk-synchronous steps for 3 reasons:

• avoid data races: threads use local copies of shared-data, and updates are
made in a synchronized way at the end of each step, using the mechanism
described in section 3.2. Thus, conflictual data load/stores are avoided.

• hide memory latency: shared-data accesses are aggregated in a single
communication substep, and may be performed in a pipelined way.

• ensure performance prediction: the time cost of each step may be finely
estimated through bridging models for a particular machine, given a set
of parameters (unit task costs, bandwidth, latency, caches etc) [20–22].

(see Fig. 6)

Refinement. Each iteration consist of 4 steps: (1) element marking, (2) steiner point and offsets calculation, (3)
element process, (4) twin darts repairing. In addition to the mesh, threads share 2 arrays: L storing the indices of
marked darts, and S for the Steiner point related to each e ∈ L. Related index offsets nL and nS are also maintained.

If an edge ek ∈ K is too long, then the element K is marked and the index k is added to a local list L. A reduction
on nL is performed by each thread in order to know the current offset of L where it may copy the content of L. The
same applies to nS with S. Here, only 3 reductions per thread is necessary to update them in the mesh data structure.
Finally when a dart e : (a, b) ∈ L is split into (e1, e2), the stored indices of (a, b) are replaced by those of (e1, e2). Thus
no additional shared array is required to perform the last step (see Algorithm 2).

Contraction. Each iteration consist of 4 steps: (1) stencil analysis and graph construction, (2) graph coloring P, (3)
process of I ∈ P, (4) boundary edges repairing. Threads share a graph G = (V,E) and 3 additional arrays: S indexing
the dart to be collapsed for each point, L for active nodes indices, and C storing the colors of each point p. An offset
nL is also maintained for the latter.

First, the stencil Ni of each pi is retrieved. Then edges e ∈ Ni are sorted according to their lengths, such that
S[i] = arg mink{`(ek) | ek ∈ Ni ∧ `(ek) ≤ 1/

√
2}. Then for each point pk, if S[k] is a valid index then k is added to a

local list L, and a reduction is performed on nL in order to find the current offset of L from where each thread may
copy the content of their respective list L. Afterward G is built by storing each pk ∈ L in V and its stencil Nk in E.
Then the partition P is extracted from G, and I from P by comparing |Pc|c∈[1,nc]. Each point p ∈ I is then processed.
Finally, each boundary dart is fixed by updating its next reference (see Algorithm 3).

Swapping. Here we have 3 steps per iteration: (1) edge filtering and graph construction (2) graph coloring P, (3)
process of I ∈ P. Threads share a graph G = (V,E) and an array L referencing darts which need to be processed. An
index offset nL is also maintained.

If QM(K) ≤ qmin then the index of each ek ∈ K is added to a local list L. A reduction on nL is performed in order to
find the current offset of L from which each thread may copy the content of its list L. Afterward G is built by storing
each ek ∈ L in V and indices of the shell of ek is retrieved and stored in E. Then the partition P and I ∈ P are extracted.
Each e ∈ I is then processed (see Algorithm 5).

Smoothing. Unlike the 3 others, this stage consist of a preprocessing step and 1 step per iteration. The preprocessing
consists of: (a) quality analysis, (b) graph construction, (c) graph coloring. Since mesh topology remains unchanged,
many steps are deported in the preprocessing. Afterward, each subset (Vi)i∈[1,nc] ∈ P is processed (see Algorithm 4).
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shared : mesh M, tasklist L, offsets nL, nα, nβ and nγ.
private: tasklist L, offsets: k, kβ, kγ, offα, offγ
repeat

L← ∅, nL ← 0.

for element K do in parallel no wait . STEP 1

if there is a short edge ei ∈ K then mark K.
add min[i, twini] to L

atomic〈 k← nL and nL ← k + |L| 〉 . communication

copy Ki ∈ L to L at index k + i and reset L and k.
barrier

for i ∈ [1, nL] do in parallel no wait . STEP 2

calculate the steiner point of L[i] and store to L
atomic〈 k← nα and nα ← k + |L| 〉 . communication

copy each pi ∈ L into M at index k + i and reset L.
barrier

offt ← offh ← kh ← kt ← 0 . STEP 3

for marked element Ki do in parallel no wait
kβ ← kβ + βi and kγ ← kγ + γi . see equation 8

add i into L
reserve (kβ + kγ) memory chunks in M. . communication

atomic〈 offβ ← nβ and nβ ← offβ + kβ 〉
atomic〈 offγ ← nγ and nγ ← offγ + kγ 〉
for i ∈ [1, kt] do

refine L[i], mark new cells, update offβ and offγ.

barrier

for marked element K do in parallel . STEP 4

repair twin index of e, for each dart e ∈ K
barrier

until L = ∅

Algorithm 2: bulk-synchronous refinement

shared : mesh M, graph G = (V,E)
shared : partition P, tasklists L and I, offset nL.
private: tasklist L, offset k
repeat

L← ∅, nL ← 0, reset G

for point pi ∈ M do in parallel no wait . STEP 1

retrieve and cache Ni, identify S[i] accordingly.
if S[i] is valid then

add i to L
atomic〈 k← nL and nL ← k + |L| 〉 . communication

copy each pi ∈ L into V at index k + i and reset L.
for i ∈ [k, k + |L|] do

E[i]← N[V[i]]
barrier

extract partition P from G in parallel, and I ∈ P . STEP 2

barrier

for i from 1 to |I| do in parallel . STEP 3

merge I[i] to S[i]
barrier

for dart e ∈ ∂Ω do in parallel . STEP 4

repair next reference of e using a circulator.
barrier

until L = ∅

Algorithm 3: bulk-synchronous contraction

shared : mesh M, graph G = (V,E), partition P.

for element K do in parallel . preprocess 1

calculate and cache Q(K) in mesh.
barrier
for node pi ∈ Ω − ∂Ω do in parallel . preprocess 2

V[i]← pi

retrieve Ni and store to Ei.
barrier
extract partition P from G in parallel . preprocess 3

repeat
for i ∈ [1, nc] do

for point pk ∈ Pi do in parallel . STEP i

attempt to relocate pk regarding Nk

barrier
until max iteration is reached

Algorithm 4: bulk-synchronous smoothing

shared : mesh M, graph G = (V,E), tasklist L, offset nL.
private: tasklist L, offset k
repeat

L← ∅, nL ← 0, reset G

for element K do in parallel no wait . STEP 1

calculate and cache QM(K) in M.
if QM(K) ≤ qmin then

add each min{ei, twin(ei)} ∈ K in L
atomic〈 k← nL and nL ← k + |L| 〉 . communication

copy each ei ∈ L into V at index k + i and reset L.
for i ∈ [k, k + |L|] do

retrieve the shell of V[i] and store to E[i]
barrier

extract partition P from G in parallel, and I ∈ P . STEP 2

barrier

for 1 ≤ i ≤ |I| do in parallel . STEP 3

attempt to flip I[i]
barrier

until L = ∅

Algorithm 5: bulk-synchronous swapping
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5. Performance prediction

The time cost of each remeshing stage is estimated with the queuing shared memory bridging model [22,23]. It
consists of p cores, each with its own private memory, and communicating through load/stores within n memory cells
in a shared-memory or distributed shared-memory (DSM). Any cell j ≤ n may be simultaneously accessed, but there
is a cost κ j for such contention. The gap between local instruction rate and communication rate is given by a parameter
g ≥ 1. In this framework, the time cost of a bulk-synchronous remeshing stage is given by:

t =

nsteps∑
s=1

( max
i=1,p

ci︸ ︷︷ ︸
local comput.

+ g ·max
i=1,p

[ri,wi]︸           ︷︷           ︸
communication

+ max
j=1,n

κ j︸ ︷︷ ︸
contentions

) (6)

Finer prediction can be obtained by providing unit task costs per step (cycles, bytes), memory bandwidth (GB/s).
The mean time complexity and load imbalance of each stage are given in table 3, and detailed below.

Table 3: Decomposition and complexity of each stage. ∆̄: mean graph degree, np, nh, nk: number of nodes, darts and elements
k: number of iterations for graph coloring, σmax = (maxi=1,p ∆̄s,i) − ( 1

p

∑p
i=1 ∆̄s,i) with ∆̄s,i: mean graph degree at step s on core i.

bulk-synchronous steps static task partitioning
stage nb

1 2 3 4 time cost imbalance κ

graph coloring 2 process detect - - Ω(g∆̄n/p) Ω(σmax) 2
refinement 4 filter steiner process repair Ω((1 + g)nK/p) 0 8
contraction 4 stencil graph process repair Ω((1 + g)(k + ∆̄)np/p) Ω(Σ4

s=1σmax,s) 2k + 2
swapping 4 filter graph process - Ω((1 + g)(2k + 4)nh/p) 0 2k
smoothing 1 + nc preproc process process process Ω((1 + g)∆̄np/p) Ω(σmax) 2k

Proposition 1 (Refinement). Let n be the number of mesh elements. The time cost of a refinement iteration is in
Ω((1 + g) n

p ) and no substantial load imbalance is expected with a static task partitioning.

Proof. For each core i and at a given iteration, we have:

• step 1: let n1,i be the number of elements assigned to the core i. Hence ri = n1,i are read.
For each element, at most 3 lengths computations are performed and 1 local value is added to local list, thus
ci = 4n1,i. A reduction on nL is performed involving 1 read/1 write per core, thus κ = 2.
Finally, at most ni ≤

∑p
k=1 n1,k values are written into L so wi = Ω(n1,i).

• step 2: let n2,i be the number of long darts assigned to the core i. Thus ri = n2,i.
Here, ri steiner point calculations are done, and ri values are stored locally, so ci = 2n2,i.
A reduction on nα is performed, thus κ = 2. Finally, np = ri values are written to mesh, so wi = ri.

• step 3: let n3,i be the number of marked elements assigned to the core i. Thus ri = n3,i.
For each element, 2 offset calculations are done, 1 value is stored locally and 1 refinement is done.
Hence ci = 4n3,i. Then 2 reductions on nβ and nγ are done involving 1 read/1 write each other, so κ = 4.
Finally (nβ + nγ) values are written by all cores, with nβ ≤ 3nγ and nγ ≤ 4n, making a total of n(12 + 4).
Thus wi = Ω(16n3,i).

• step 4: let ni,4 be the number of new elements assigned to the core i. Hence ri = ni,4.
For each element, 3 dart updates are performed, so ci = 3ni,4.
In addition, 3 values per element are written in mesh, thus wi = 3ni,4. No reduction is performed so κ = 0.

Therefore we have: t =
∑4

s=1 maxi=1,p[Ω(ns,i)] + g
∑4

s=1 maxi=1,p[Ω(ns,i)] + 8 for any scheduling policy. For a static
task partitioning, we have: ns,i =

ns
p = Ω( nK

p ) thus t = Ω(
∑4

i=1(1+g) ns
p +8) = Ω((1 + g) nK

p ), with nK the nb of elements.
Since tasks are equi-distributed and have a uniform unit cost Ω(g), the load imbalance of a step s is ιs = 0

Proposition 2 (Graph coloring). Let ni be the number of vertices assigned to core i, ∆̄ the mean degree of G.
For each core i, the local instructions, shared-data accesses and contention count of a graph coloring iteration are:
ri = Ω(∆̄ni), wi = Ω(2ni), ci = ni, and κ = 2.
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Proof. Let R be the shared array storing the indices of conflictual vertices, and nR its related offset. Then we have:

• pseudo-coloring: for each vertex v, the color of each vk ∈ Nv is retrieved locally and the color of v is updated
accordingly. Thus ri = Ω(∆̃ni) and wi = ni.

• defective vertices detection: the colors of each vk ∈ Nv is re-checked for each vertex v. If a same color was
assigned to v and vk, then vk is added to a local list Ri. Thus ri = Ω(2∆̄ni) at this point, and ci = ni.
A reduction on nR is performed, thus κ = 2. Then the contents of Ri are copied to R, so wi = Ω(2ni).

At this point, we have ri = Ω(∆̃ni), wi = Ω(2ni), ci = ni and κ = 2.
The whole procedure is repeated by processing R instead of V, and terminates when nR = |R| = 0.

Proposition 3 (Contraction). Let n be the number of nodes, ∆̄i the mean degree of the graph on each core i, k the
number of iterations for graph coloring, andσmax the maximum deviation of (∆̄i) on all cores. The cost of a contraction
iter. is in Ω((1 + g)(∆̄ + k) n

p ), and the load imbalance of each step is in Ω(σmax) with a static task partitioning.

Proof. Let (ns,i)i=1,p be the number of nodes assigned to core i at step s, and (∆̄s,i)i=1,p the mean degree of G on i.

• step 1: the stencil Np of each point p is retrieved in local memory, thus ri = Ω(∆̄1,i · n1,i).
Then each pi ∈ Np is evaluated, and at most n1,i point indices are stored locally, so ci = (∆̄1,i + 1)n1,i.
Then n1,i cells of S are written, so wi = n1,i at this point. A reduction on nL is performed, thus κ = 2.
Afterward the construction of G involves at most n1,i writes into V and (∆̄n)1,i writes into E, thus wi = (∆̄n)1,i.

• step 2: it refers to graph coloring (see Proposition 2). Thus we have ri = Ω(∆̄kn2,i), wi = Ω(2kn2,i), ci = kn2,i
and κ = 2k, with k the number of iterations for coloring G.

• step 3: the stencil Np of each point p is retrieved locally, thus ri = (∆̄n)3,i.
The point merge is performed by replacing each stored reference of pk inNk by S[k] and by deleting 2 elements.
Thus wi = ci = (∆̄n)3,i and no reduction is performed, so κ = 0.

• step 4. Again, the stencil Nk of each point pk is retrieved locally, thus ri = Ω(∆̄4,in4,i). Then each edge e ∈ Nk

is evaluated so ci = ri. Afterward one dart is updated so wi = 1. No reduction is performed, so κ = 0.

Thus we have: t =
∑4

s=1[maxi=1,p{Ω(ns,i(∆̄s,i +k))}+ g maxi=1,p{Ω(ns,i(∆̄s,i +k)})] + 2(k+ 1) for any scheduling policy.
For a static task partitioning, we have: ns,i = Ω( np

p ), thus t = Ω((1 + g) np

p
∑4

s=1( 1
p
∑p

i=1 ∆̄s,i + k) + 2(k + 1)) with np the
number of nodes. Therefore we have: t = Ω((1 + g)(∆̄ + k) np

p ), with ∆̄ = 1
4p

∑4
s=1

∑p
i=1 ∆̄s,i. For a step s, the workload

ωi of a core i is in Ω((1 + g)(∆̄s,i + k)) , and as g and k are fixed, it varies according to ∆̄s,i. Thus the load imbalance is
ιs = (maxi=1,p ωi) − ( 1

p
∑p

i=1 ωi) = Ω(σmax), with σmax = (maxi=1,p ∆̄s,i) − ( 1
p
∑p

i=1 ∆̄s,i) the max. deviation of ∆̄s,i.

Proposition 4 (Swapping). Let n be the number of darts, and k the number of iterations for graph coloring.
The time cost of a swapping iteration is in Ω((1 + g)(2k + 4) n

p ), and no substantial load imbalance is expected with a
static task partitioning.

Proof. For each core i and at a given iteration, we have:

• step 1: let n1,i be the number of mesh elements assigned to the core i. Hence ri = n1,i.
The quality of each element is evaluated, at most 3 values are locally stored in L, so ci = Ω(3n1,i). A reduction
is perfomed on nL so κ = 2. At most nL ≤

∑p
i=1 n1,i values are written into L by all cores, so wi = Ω(n1,i).

• step 2: it refers to graph coloring (see Proposition 2). Let n2,i be the number of vertices of V assigned to the
core i. Thus we have ri = Ω(∆̄kn2,i), wi = Ω(2kn2,i), ci = kn2,i and κ = 2k, with k the number of iterations.

• step 3: let n3 = |I|, and n3,i the number of darts assigned to the core i. The 4 darts (ek)k=1,4 surrounding any e
are retrieved locally , so ri = 4n3,i. The flip is done by overwriting references stored in each ek, and the quality
of the 2 resulting elements are calculated. Thus wi = 4n3,i and ci = 2n3,i. No reduction is done, so κ = 0.

Thus we have: t =
∑3

s=1[maxi=1,p[Ω(kns,i)] + g ·maxi=1,p[Ω((∆ + k)ns,i)] + 2k] for any scheduling policy.
For a static task partitioning, we have: ns,i = Ω( nh

p ), thus t = Ω(
∑3

i=1(1 + g)(k + (∆ + k)) nh
p ) = Ω((1 + g)(2k + ∆) nh

p ),
with nh the number of half-edges. Tasks are equi-distributed and unit task cost is in Ω((1 + g)(2k + ∆).
As k is fixed and ∆ = 4, thus task cost distribution is uniform. Therefore the load imbalance of a step s is ιs = 0



Hoby Rakotoarivelo, Franck Ledoux and Franck Pommereau / Procedia Engineering 00 (2016) 000–000 11

6. Numerical results

Accuracy. The devised scheme was implemented in C++ using OpenMP 4. An example of mesh adapted to a multi-
scale solution field (up)p∈Ω is given in Fig. 7, with u = 0.1 sin(50x)︸        ︷︷        ︸

flow

+ atan (0.1/(sin(5y) − 2x))︸                         ︷︷                         ︸
shock

on Ω = [−1, 1]2.

Input mesh: n = 13 102 nodes and m = 25 760 elements, no metric gradation, target number of nodes N = n.
Run parameters: 4 threads, na = 5 adaptations, nr = 10 stages per adapt and ns ≤ 15 iterations per stage.
The error is defined as the gap between mesh and the cartesian surface defined by the metric field [24].
It is given by εK = max(εGK , εeK ) with εGK = |uG −

1
3
∑3

i=1 upi | and εeK = maxi=1,3 |uei −
1
2
∑

j,i ue j |.
All scales of the solution field are correclty captured with a min quality qmin = 0.512 and a mean quality q̃ ≈ 0.9.

(a) adapted mesh (b) zoom in the shock front
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Fig. 7: Mesh adapted to a solution field (up) defined by up:(x,y) = 0.1 sin(50x) + atan (0.1/(sin(5y) − 2x)) on Ω = [−1, 1]2 with 4 threads.
All scales of the solution field are correclty captured with a min quality qmin = 0.512 and a mean quality q̃ ≈ 0.9.

Strong scaling. Runs were made on a Intel Haswell-EP (32 cores, 4 NUMA nodes, 4GB/core, see Fig. 8).
The code was compiled with Intel compiler suite 15.0.2 with -O3 -march=native flags enabled.
Input data: n = 504 100 nodes and m = 1 005 362 elements. No index reordering throughout iterations.
Tuning parameters: static round-robin thread binding (1/core), guided scheduling.
Run parameters: na = 3 adaptations, nr = 10 stages per adaptation, ns ≤ 15 iterations per stage.
The shock in Fig. 7 was considered for the adaptation with a target number of nodes N = n.

NUMA topology

Intel Haswell E5-2698 v3

• 2 sockets, 16 cores / socket, 2.3Ghz
2 NUMA nodes / socket, 4GB / core

• 3 cache levels, LRU policy
L1: 32KB / core x 2
L2: 256KB / core
L3: 20MB / NUMA node
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Fig. 8: Mean elapsed time t = (1/(nanrns))
∑na

i=1
∑nr

j=1
∑ns

k=1 ti, j,k with na = 3, nr = 10, ns ≤ 15, and speedup per iteration.
Refinement and swapping scale well, even on 4 NUMA nodes. Data involved here are mainly local and no substantial load imbalance is expected.
Smoothing scales even better, since its more compute-intensive on one hand, and since primal graph remains unchanged on the other hand.
Contraction suffers from load imbalance due to irregular stencil size distribution, and cache misses penalties.
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The mean elapsed time per iteration t = (1/(nanrns))
∑na

i=1
∑nr

j=1
∑ns

k=1 ti, j,k of each remeshing stage is given on Fig. 8.
Overall scalability is good with an efficiency of 70% for 3 kernels out of 4 on 32 cores. Refinement and swapping
scale well, even on 4 NUMA nodes. Indeed, data involved in these stages are mainly local and no substantial load
imbalance is expected, as stated in Proposition 3 (see Table 3). Smoothing stages scale even better. As it is more
compute-intensive, data accesses penalties are significantly mitigated. Moreover, it benefits from the reuse of cached
cell data, since mesh topology – and the underlying data layout – remains unchanged.
Despite efforts to improve locality, contraction stages suffer from load imbalance due to irregular stencil size distribu-
tion (induced by anisotropy), and high last level cache (LLC) misses penalties (see Fig. 10).
The time spent on each step for the refinement, contraction and swapping stage on 32 cores is given in Fig. 9.

bulk-synchronous stepsstages 1 2 3 4
refinement filter steiner process repair
contraction stencil graph process repair
swapping filter graph process -

time (ms)stages 1 2 3 4
refinement 26.4 4.6 4.2 7.8
contraction 130.1 3.7 4.2 30.9
swapping 4.1 4.73 16.0 -
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refinement contraction swapping

Ratio of time spent per step (1 stage, 32 cores)

step 1
step 2
step 3
step 4

Fig. 9: Ratio of time spent on each bulk-synchronous step for a refinement, contraction and swapping stage on 32 cores.
The overhead spent on task graphs construction and coloring is small compared to other steps, especially for the contraction stage.
In the latter, most of the elapsed time is spent on stencil analysis: the collapse operation is simulated for each target node v, and the validity of the
resulting patch is verified at each time (in terms of areas and edge length). Its cost depends on the size and geometrical configuration of the stencil.
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Fig. 10: Degree distribution evolution, cache misses with/without index reordering (using Metis [25] and PAPI counters [26]), and elapsed time
profile for one contraction stage on 32 cores. The degree distribution of the primal graph evolves in an irregular way throughout iterations, resulting
in load imbalance. Data layout have been significantly evolved throughout iterations, resulting in a high cache misses count.

Further investigation has been done for contraction (see Fig. 10). As pointed in Proposition 3, load imbalance
is mainly impacted by degree distribution of mesh primal graph. The deviation on degree distribution of the primal
graph shows that stencil sizes evolve in an irregular way throughout iterations. As shown in Fig. 9, most of the elapsed
time is spent on stencil analysis step, which is the most irregular part of this stage. Indeed, the collapse operation is
simulated for each potential target node v, and the validity of the resulting patch is verified at each time (in terms
of element area and edge length). Depending on the size and geometrical configuration of the stencil, this step may
involve an important load imbalance. An index reordering using a nested dissection heuristic [25] has been performed
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in order to show the impact of data layout on cache performance. It confirms that data layout has been significantly
changed throughout iterations, resulting in a high cache misses count.

7. Conclusion and perspectives

A scalable fine-grained lock-free scheme for anisotropic mesh adaptation on NUMA architectures was provided.
A mean efficiency of 70% was achieved on 32 cores for 3 kernels out of 4, but further efforts have to be done for
the contraction. Two tracks may be considered for this purpose: (1) a locality-aware work-stealing scheme to ease
load imbalance and (2) the integration of a fine-grained index reordering stage in the remeshing loop to ease cache
penalties (the related overhead is actually the main obstacle).
Further measures (unit task costs – not only for remeshing ones – effective memory bandwidth/latency) have to be done
to compare the predicted execution time with the real elapsed time, and to assess the accuracy of the cost model.
An extension to a multi-grained scheme (shared/distributed memory) is expected, with the constraint that the bulk-
synchronous structure of the algorithm should be kept. A hierarchical bridging model [21] may be used in this case. It
will allow to explicitely characterize the latency at each level of the memory hierarchy (caches, local/remote DRAM)
for finer prediction. Finally, an extension to the 3D case may be considered.
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