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Abstract

Anisotropic meshes are desirable for various applications, such as the numerical solving of partial differential equations and graph-
ics. In this paper, we introduce an algorithm to compute discrete approximations of Riemannian Voronoi diagrams on 2-manifolds.
This is not straightforward because geodesics, shortest paths between points, and therefore distances cannot in general be computed
exactly.

Our implementation employs recent developments in the numerical computation of geodesic distances and is accelerated through
the use of an underlying anisotropic graph structure.

We give conditions that guarantee that our discrete Riemannian Voronoi diagram is combinatorially equivalent to the Riemannian
Voronoi diagram and that its dual is an embedded triangulation, using both approximate geodesics and straight edges. Both the
theoretical guarantees on the approximation of the Voronoi diagram and the implementation are new and provide a step towards
the practical application of Riemannian Delaunay triangulations.
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1. Introduction

Anisotropic simplicial meshes are triangulations whose elements are elongated along prescribed directions. Anisotropic
meshes are known to be well suited when solving PDE’s [1–3]. They can also significantly enhance the accuracy of a
surface representation if the anisotropy of the mesh conforms to the curvature of the surface [4].

Many anisotropic mesh generation methods are based on Riemannian manifolds and create meshes whose elements
adapt locally to the size and anisotropy prescribed by a metric field. Several authors have considered Voronoi diagrams
using anisotropic distances to obtain triangulations adapted to an anisotropic metric field. These authors hoped to build
on the well established concepts of the Euclidean Voronoi diagram and its dual structure, the Delaunay triangulation,
and their many theoretical and practical results [5].
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The Voronoi diagram of a set of points P = {pi} in a domain Ω is a partition of Ω in a set of regions {Vd(pi)}. Vd(pi)
is called the Voronoi cell of the seed pi and is defined by

Vd(pi) = {x ∈ Ω | d(pi, x) ≤ d(p j, x), ∀p j ∈ P\ pi}.

Du and Wang [6] defined the anisotropic Voronoi cell of a point pi in a domain Ω endowed with a metric field g as

VDW,g(pi) = {x ∈ Ω | dg(x)(pi, x) ≤ dg(x)(p j, x), ∀p j ∈ P\ pi}.

Canas and Gortler [7,8] and Cheng et al. [9] proved that under sufficient sampling conditions, the dual of the DW-
diagram is an embedded triangulation for planar and surface domains. Labelle and Shewchuk [10] introduced slightly
different Voronoi cells:

VLS ,g(pi) = {x ∈ Ω | dg(pi)(pi, x) ≤ dg(p j)(p j, x), ∀p j ∈ P\ pi}.

While the LS-diagram obtained is easier to study and trace since the bisectors are quadrics, the associated theory only
covers the planar setting and its extension to higher dimensions faces inherent difficulties.

Both these diagrams aim to approximate the Riemannian Voronoi diagram (RVD) whose cells are defined by

Vg(pi) = {x ∈ Ω | dg(pi, x) ≤ dg(p j, x),∀p j ∈ P\pi}. (1)

where dg(p, q) is the geodesic distance on the Riemannian manifold. Judged too expensive, this Voronoi diagram has
not been the subject of any practical work. However, the RVD provides a more favorable framework to develop a
theoretically sound method. Additionally, it is devoid of orphan cells, which are regions of the domain disconnected
from their seed. These orphans, which usually prevent the dual from being an embedded triangulation, appear in the
other anisotropic Voronoi diagrams previously mentioned.

Leibon studied the dual of the Riemannian Voronoi diagram in 2D [11] and gave conditions such that the Rie-
mannian Delaunay triangulation is an embedded triangulation. Together with Letscher [12], he extended that study to
Riemannian Delaunay triangulations in any dimension, but their analysis was shown to be incomplete by Boissonnat
et al. [13]. Dyer et al. [14] improved the 2D and surface work of Leibon with better bounds.

Contribution

We approach the Riemannian Voronoi diagram and its dual with a focus on both practicability and theoretical
robustness. We introduce an algorithm to compute a discretized Riemannian Voronoi diagram that is generic with
respect to the choice of the method used to compute geodesic distances. The construction of our diagram uses an
anisotropic graph structure to greatly reduce the computational time.

Our algorithm is theoretically sound and builds upon the theoretical results of the Riemannian Delaunay triangu-
lation. We show that, under sufficient conditions, the dual of the Riemannian Voronoi diagram can be embedded as a
triangulation (mesh) of the point set, with edges drawn as geodesic arcs, or even as straight edges. These results are
detailed in our companion report [15] and we only give here an overview.

Finally, we present an experimental study of our method in the planar and surface cases.

2. Related work

Due to its wide array of practical applications, anisotropic mesh generation has received a lot of attention and
several classes of methods have been proposed.

Delaunay-based methods. The generation of isotropic Delaunay mesh is usually achieved through an iterative refine-
ment algorithm. The common choice to refine a simplex is to choose its circumcenter as Steiner point. Borouchaki et
al. [16] introduced the anisotropic Delaunay kernel, iteratively generating anisotropic meshes with a modified Bowyer-
Watson algorithm. A different approach to anisotropic Delaunay triangulations was proposed by Boissonnat et al. [17],
called locally uniform anisotropic meshes. In their algorithm, the star of each vertex v is composed of simplices that
are Delaunay for the metric at v. Each star is built independently and the stars are stitched together in the hope of
creating an anisotropic mesh. The algorithm works in any dimension, can handle complex geometries and provides
guarantees on the quality of the simplices of the triangulation. However, the number of vertices required to achieve
consistency in the star set can be very large for highly distorted metric fields, making the algorithm unattractive.
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Energy-based methods. Optimal Delaunay triangulations (ODT) were introduced by Chen et al. [18,19] as the trian-
gulation that minimizes the interpolation error ‖u − û‖ of a function u and its piecewise interpolation û over the mesh.
First applied to isotropic mesh generation using u(x) = x2 [20,21], ODT was naturally extended to anisotropic metric
fields derived from the Hessian of a convex function through the use of weighted Delaunay triangulations [22,23].
However, as shown by Boissonnat et al. [24], a Riemannian metric field cannot always be expressed as the Hessian
of a convex function. Chen et al. [25] attempted to remedy this restriction by locally approximating the metric field
with local convex functions, but the algorithm may fail to converge or achieve the desired anisotropy. Fu et al. [26]
tweaked this approach by including feedback from the neighboring vertices in the expression of the local energy, with
better experimental results.

Many other methods have been considered, such as isometric and conformal embeddings [27] and repulsive vertex
repositioning [28,29] techniques, but they possess shortcomings in theoretical or practical aspects.

Geodesic Voronoi diagrams. Peyré and Cohen [30] used isotropic geodesic Voronoi diagrams on surfaces as a tool
to achieve isotropic adaptive remeshing. Cao et al. [31] studied the digital Voronoi diagram, a discrete structure
diagram obtained by flooding from the seed and proved that they obtain a geometrically and topologically correct dual
triangulation. Their work is however limited to the 2D isotropic setting.

3. Background

3.1. The Riemannian metric

A metric in Rd is defined by a symmetric positive definite quadratic form represented by a d × d matrix G. The
distance between two points p and q in Ω, as measured using the metric G, is defined by

dG(x, y) =

√
(x − y)tG(x − y).

Given the symmetric positive definite matrix G, we denote by F any matrix such that det(F) > 0 and F tF = G. F is
called a square root of G. Although not unique, we shall assume that F is fixed. Note that

dG(x, y) =

√
(x − y)tF tF (x − y) = ‖F(x − y)‖ ,

where ‖·‖ stands for the Euclidean norm.
A Riemannian metric field g, defined on a domain Ω ⊂ Rd, associates a metric g(p) = Gp = F t

pFp to any point
p ∈ Ω. We always assume that g is Lipschitz continuous.

Labelle and Shewchuk [10] introduced the concept of distortion between two points p and q of Ω:

ψ(p, q) = ψ(Gp,Gq) = max
{∥∥∥FpF−1

q

∥∥∥ , ∥∥∥FqF−1
p

∥∥∥} ,
Note that ψ(Gp,Gq) ≥ 1 with ψ(Gp,Gq) = 1 when Gp = Gq. A fundamental property of the distortion is to relate the
two distances dGp and dGq . Specifically, for any pair x, y of points, we have

1
ψ(p, q)

dGp (x, y) ≤ dGq (x, y) ≤ ψ(p, q) dGp (x, y).

3.2. Geodesics

In the following, we assume that our domain has no boundaries and is geodesically complete in order to avoid
punctures. A path between two points x, y of Ω is a function γ : [0, 1] → Ω such that γ(0) = x and γ(1) = y. If Ω is
endowed with the Riemannian metric field g, the Riemannian length of a path γ is defined as

lg(γ) =

∫ 1

0

√
γ′(t)tg(γ(t))γ′(t)dt.
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Let Γ(x, y) be the set of paths from x to y on Ω: Γ(x, y) = {γ : [0, 1] → Ω | γ(0) = x and γ(1) = y}. The geodesic
distance between two points is given by dg(x, y) = minγ∈Γ(x,y) lg(γ).

We say that P = {pi} is an (ε, µ)-net with respect to the metric field g if, for all x ∈ Ω, there exists pi ∈ P such that
dg(pi, x) < ε and for all pi, p j ∈ P, dg(pi, p j) ≥ µ.

3.3. Nets

The structures of interest will be built from a finite set of points P ⊂ Ω, which we call samples or seeds. If Ω is a
bounded domain, P is an ε-sample set for Ω with respect to g if dg(x,P) < ε for all x ∈ Ω. The set P is µ-separated
with respect to g if dg(p, q) ≥ µ for all p, q ∈ P. We assume that the separation parameter µ is proportional to ε, thus
there exists a positive λ, with λ ≤ 1, such that µ = λε. If P is an ε-sample set that is µ-separated, we say that P is an
(ε, µ)-net.

3.4. The Riemannian Voronoi diagram

The cell Vg(pi) of a seed pi in the Riemannian Voronoi diagram (RVD) has been defined in Equation 1. A Voronoi
face is the intersection of a set of Voronoi cells. If the dimension of the face is 0 or 1, we respectively use the terms
Voronoi vertex and Voronoi edge. The bisector of two seeds p and q is the set BS(p, q) = {x ∈ Ω, d(p, x) = d(q, x)}.

The nerve of a finite covering C is Nrv(C) = {D ⊆ C | ∩D , ∅}. A geometric realization of the nerve is
a (geometric) simplicial complex K and a bijection ϕ between Nrv(C) and K that preserves the inclusion, that is
τ and σ are simplices of K such that τ ⊂ σ if, and only if, there exists Dσ = ϕ(σ) and Dτ = ϕ(τ) in Nrv(C)
such that Dσ ⊂ Dτ. In the following, we identify K and the realization of the nerve. The nerve of the RVD is
Nrv(RVD) = {{Vg(pi)} | ∩iVg(pi) , ∅, pi ∈ P}. A geometric realization of Nrv(RVD) whose vertices are P is called a
dual of the RVD. If there exists an abstract homeomorphism between the nerve Nrv(C) and the domain, then we say
that the realization of the nerve is a triangulation. If there exists an embedding, which provides a homeomorphism,
of the dual whose edges are geodesic arcs (resp. straight edges in the ambiant space), such an embedding is called the
Riemannian Delaunay triangulation (resp. Straight Riemannian Delaunay Triangulation) of P.

3.5. Power protection

The concept of protection and power-protection of point sets and simplices were introduced by Boissonnat et
al. [32] to provide lower bounds on the thickness and quality of simplices.

Let σ be a simplex whose vertices belong to P and whose (geodesic) circumscribing ball is noted Bg(c, r), where
c is the circumcenter and r is the circumradius. For 0 ≤ δ ≤ r, we associate to Bg(c, r) the dilated ball B+δ

g =

Bg(c,
√

r2 + δ2). We say that σ is δ-power protected if B+δ
g is empty of any vertex in P\Vert(σ). If all the simplices

of Del(P) are δ-power protected then P is δ-power protected.

4. The discretized Riemannian Voronoi diagram

We now introduce our algorithm that approximates the Riemannian Voronoi diagram.

4.1. Computing geodesics

The computation of geodesic distances and paths on discrete domains is in itself a difficult task to which much work
has been dedicated in the last decades. Historically, geodesic distances were first evaluated with the Euclidean metric
naturally derived from the embedding of the domain in Rd. Many approaches exist depending on the expectations on
the geodesic distance, exact or approximate, heuristic or with theoretical guarantees [33].

Algorithms have more recently been introduced to compute geodesic distances when the domain is endowed
with a prescribed metric field g that exhibits anisotropy. We detail some methods that we empirically evaluated.
Konukoglu et al. [34] proposed a heuristic method to extend the fast marching method to the anisotropic setting by
adding a recursive correction scheme. However, this implies loss of the theoretical convergence of the fast marching
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method and the recursivity induces a heavy computational cost. Mirebeau [35] introduced a grid-based modification
of the fast marching method with theoretical guarantees, but the underlying grid structure does not extend easily to
manifolds. Campen et al. [36] proposed a heuristic approach based on a modified Dijkstra algorithm. While their
algorithm does not offer guarantees, it is nevertheless fast and precise with little requirement on the quality of the
discrete domain. Lastly, a very different approach was considered by Crane et al. [37], who solve linear elliptic equa-
tions to compute a global geodesic distance map, obtaining an approximate distance between any two points of the
domain. The algorithm is extremely fast compared to front propagation-based methods, but its parameters require
delicate tuning and the approximation was generally much worse than the methods previously mentioned, making it
unattractive for our work.

4.2. Generating the diagram

We refer to the discretization of the domain Ω upon which geodesic distances are computed as the canvas, and
denote it C. Notions related to the canvas explicitly carry canvas in the name (for example, an edge of C is a canvas
edge). The easiest canvas to consider is an isotropic triangulation of the domain. The generation of this triangulation
is performed through a classic refinement algorithm driven by a sizing field constraint s: if a simplex σ of C has a
circumradius Rσ larger than s(cσ), where cσ is the circumcenter of σ, then it is refined by inserting cσ. We will show
how the sizing field is chosen in Section 6.

The procedure used to generate our approximate diagram is similar to the classic Dijkstra algorithm: each seed is
associated a color (an integer) and each canvas vertex is assigned three fields:

• a status: known, trial or far (initialized at far),

• a distance: the current smallest geodesic distance to a seed (initialized at∞),

• a color: the color of the closest Voronoi seed.

The initialization of the canvas with the seed set is done by locating each seed on the canvas. The vertices of the
simplex containing the seed are then attributed trial as status, their color is set to the color of the seed and their
distance is set to the distance to the seed.

The vertices of the canvas are colored through simultaneous Dijkstra-like front propagations from all the seeds:
the vertices are sorted in a priority queue Q that is kept ordered by increasing distance to the vertex’s closest seed. At
each iteration, the point with lowest distance to a seed becomes known and is removed from the queue. The distances
at its neighbors that are not known are evaluated again, and the queue is updated.

When the queue is empty, the result is a partition of the vertices of the canvas. To each seed pi, we associate a
discrete cell Vd(pi) made of all canvas simplices who have at least one vertex of the color of pi. We call the set of
these cells the discretized Riemannian Voronoi diagram (DRVD).

Refinement of the DRVD
New seeds can easily be inserted in an existing DRVD: the Voronoi cell of a new point is obtained by spreading

from this new seed with a single front propagation algorithm. When the sampling of the point set is already dense on
the domain, the insertion is a local operation.

4.3. Extracting the nerve of the DRVD

To construct a geometric realization of the nerve N = Nrv(DRVD), we must first extract the connectivity of
the DRVD. Using a triangulation as canvas allows us to obtain N easily: each canvas k-simplex σ of C has k + 1
vertices {v0, . . . , vk} with respective colors {c0, . . . , ck}, which correspond to seeds {pc0 , . . . , pck } ∈ P. If all colors ci

are different, then the intersection D =
⋂

i=0...k Vd(pci ) is non-empty and D belongs to the nerve (see Figure 2). We
say that the simplex σ witnesses (or is a witness of) D. If for all D ∈ N there exists σ ∈ C such that σ witnesses D
and if for all σ ∈ C the simplex witnessed by σ belongs to N , then we say that C captures N .
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5. Fast DRVD computations

The computation of geodesic distances constitutes the expected bottleneck in the construction of the DRVD. This
cost can be reduced in two independent ways: improving the speed of geodesic computations and decreasing the
amount of geodesic distance estimations. We rely on previous work for the estimation of the geodesic distances
and improving the current methods goes beyond the scope of this paper. We can however dramatically decrease the
number of geodesic computations required by changing the nature of the canvas, as we shall explain now.

Assume that a number of consecutive canvas edges form a line in the domain. If the metric were constant along
this line, the accuracy of the distance computation would not be improved by adding edges. Extrapolating from this
simple example, one can intuit that it is preferable for the canvas not to be an isotropic discretization of the domain:
directions in which the metric field does not vary too much can be discretized only sparsely, as long as other constraints
are honored (see the theoretical requirements in Section 6). Unfortunately, an anisotropic mesh is exactly what we
want to construct. However, for geodesic distance computations, a triangulation is not required and a graph suffices.
The locally Delaunay algorithm of Boissonnat et al. [17,38] gives such a graph based on the connectivity of its stars.
We recall in the next section the main principles of this algorithm.

5.1. The local Delaunay algorithm

The local Delaunay algorithm, introduced by Boissonnat et al. [17,38], attempts to extend the concept of Delaunay
triangulation to non Euclidean settings by computing independently at each vertex its connectivity to other vertices.
The algorithm constructs for every vertex v ∈ P the Delaunay triangulation in the metric Mv of v, which is the image
through the stretching transformation F−1

v of the Euclidean Delaunay triangulation Del(Fv(P)). The star Sv of v in
Delv(P) is the sub-complex of Delv(P) formed by the simplices that are incident to v. The collection of all the stars is
called the (anisotropic) star set of P, noted S(P).

Since the connectivity of each star is set according to the metric at the center of the star, inconsistencies may exist
amongst the stars of the sites: a simplex σ that appears in Delv(P) might not appear in Delw(P) with v,w ∈ σ (see
Figure 1, left). The algorithm refines the set of sites P until each simplex conforms to a set of a criteria (size, quality,
etc.) and there are no more inconsistencies amongst the stars, which is proven to happen.

w

x

y

v

Sw

Sv

w(wxy)

v(vwx)

Fig. 1. On the left, two stars and an inconsistent configuration, [38]. On the right, the local Delaunay algorithm required 4430 vertices to construct
a consistent star set of this region endowed with the hyperbolic shock.

Unfortunately, the algorithm requires in practice a large number of vertices to solve inconsistencies when dealing
with highly-distorted metric fields, making it unattractive to use. Figure 1 (right) shows an example of metric field
that is difficult for the star set. The algorithm required 4430 vertices to achieve consistency, a number considerably
higher than our method in identical settings, as shown in Section 8.

5.2. Using star sets as canvasses

While the local Delaunay algorithm is not competitive, its star set structure provides, regardless of its consistency,
a graph that can be used to compute geodesic distances. Since the stars conform to the metric field, this anisotropic
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Fig. 2. Discretized Riemannian Voronoi diagram of the same seed set on two different canvas. On the left, an isotropic triangulation (1M vertices).
On the right, an inconsistent star set (40k vertices). The nerves of both DRVD are identical. The canvas simplices colored in red are witnesses of
Voronoi vertices. The canvas simplices colored in grey are witnesses of Voronoi edges.

canvas is much sparser than an equivalent isotropic triangulation. This difference in density is accentuated as the
anisotropy ratio increases. Indeed, the Voronoi cells become very thin for extreme anisotropy ratios and require a
very dense sampling when using isotropic canvasses. On the other hand, the amount of vertices in a star set-based
canvas can be kept at around two orders of magnitude that of the point set regardless of the anisotropy. In other words,
it suffices in practice that every Riemannian Voronoi cell contains around 100 canvas vertices to capture the nerve.
Finally, it is fast to compute and can be trivially parallelized.

The use of the star set as canvas therefore greatly decreases the computational time as the amount of vertices that
make up the canvas is drastically reduced without any change in the extracted nerve (see Figure 2 and Section 8).
This approach is not unlike the stencil-based geodesic distance computation method of Mirebeau [35] previously
described. Indeed, our stars can be considered as non-uniform stencils. Although they offer less guarantees than
Mirebeau’s stencils, Delaunay stars allow to handle easily the case of highly rotational manifolds.

6. Theory

We give in this section a summary of the theoretical background of our work. The results below can be found
in detail in our companion report [15]; we indicate between parantheses the corresponding result in our companion
paper.

We show that the DRVD and the RVD are combinatorial equivalent under some conditions and provide explicit
requirements on the point set (P must be a power protected net) and on the density of the canvas such that both
the Riemannian Delaunay Triangulation (RDT) and the Straight Riemannian Delaunay Triangulation (SRDT) are
embedded triangulations in the domain.

Equivalence of the DRVD and RVD. The combinatorial equivalence of the RVD and the DRVD are obtained in steps.
We begin with the basic case of a two dimensional flat domain endowed with the Euclidean metric field. The metric
field is then made generic while the domain stays flat. Finally, curvature of the manifold is incorporated to prove the
result in the case of a generic 2-manifold endowed with a generic metric field.

Theorem 6.1 (Report: Section 12). Let P be a δ-power protected point (ε, µ)-net with respect to g. Let C be the
canvas, with a sizing field s. If ε and s are sufficiently dense and δ > δ0, where 0 < δ0 < ε is a fixed constant that
depends on the metric field and on the manifold, then the RVD and the DRVD are combinatorially equivalent.

Embedding of the RDT. We mostly rely on previously established work for the correctness of the RDT (see [11,39]).
In the case of 2-manifolds, the embedding of the RDT is achieved with light requirements.

Theorem 6.2 (Report: Theorem 10.20). Let V{pi} be the Riemannian Voronoi diagram of the point set {pi} on an
oriented Riemannian surface M. Suppose that no three vertices lie on a geodesic. Assume that all Voronoi cells Vpi

lie within balls of radius less than a sixth of the convexity radius. Then the Riemannian realization of the Delaunay
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complex of the Riemannian Voronoi diagram induces a piecewise smooth homeomorphism from the Delaunay complex
to the surface M.

Since this result applies to the RVD, we must make sure that the conditions mentioned above such that the DRVD
and the RVD are combinatorially equivalent are met.

Embedding of the SRDT. To prove of the correctness of the SRDT, we show that geodesic paths and straight edges
between seeds are close when the distortion is small and that the deformation from one to another induces no inversion
or intersection of simplices. The core lemma of this proof is presented below.

Lemma 6.3 (Report: Lemma 11.1). Let U ⊂ Ω be open and g and g′ two Riemannian metric fields on U, with g′

constant. Let ψ0 ≥ 1 be a bound on the metric distortion. Suppose that U is included in a ball Bg(p0, r0), with p0 ∈ U
and r0 ∈ R+, such that ∀p ∈ B(p0, r0), ψ(g(p), g′(p)) ≤ ψ0. Let us further denote the geodesics connecting x and y
with respect to g and g′ as γg and γg′ . If z ∈ γg then dg′ (z, γg′ ) ≤ a, where

a =
1
2

√
ψ2

0 −
1
ψ2

0

dg(x, y).

This result can be visualized as the existence of a protecting tube around the straight edge in which the geodesic
path lies.

7. Constructing the point set P

Our theory exposes requirements on the canvas C (through its sizing field) and on the point set P (through its
density and protection) such that the duals of the DRVD are embedded triangulations. The former is easily achieved
through refinement. We now explain how a δ-power protected ε-sample can be built iteratively through a refinement
algorithm that is similar to that of the locally uniform Delaunay method proposed by Boissonnat et al. [17].

In the local Delaunay algorithm, the obstacle that potentially prevents the star set from being a triangulation is the
presence of inconsistencies: a configuration where adjacent stars whose connectivity is incompatible.

v

Pv(τ )

q

r

s
p

τ

Fig. 3. In blue, the picking region of the
simplex τ, [38].

It is shown that, once the distortion is small enough, inconsistencies are only
created by quasi-cosphericities, the existence n + 1 points almost living on a
sphere. Steiner points can then be chosen in a small zone around the circum-
center called the picking region such that no quasi-cosphericities are created
(see Figure 3) as the thickened Delaunay spheres encroaching on the picking
region do not cover it.

Power protection and the absence of quasi-cosphericities are two aspects
of the same concept. Indeed, both can be thought of as thickened circum-
scribing balls that must be empty of any point other than the vertices of the
circumscribed simplex. In Boissonnat et al.’s setting, this thickening depends
on the metric distortion and goes to 0 as the distortion becomes small, which
makes the core of their proof of the (eventual) existence of valid Steiner
points. In our context, the thickening is explicitly given by the δ coefficient
of the power protection and must be bigger than a value δ0. However, this
bound δ0 also goes to 0 as the distortion becomes small, which happens as
the sampling gets denser. The same smart refinement algorithm that prevents

quasi-cosphericity in their method will therefore create here a power protected point set.
The initialization of the point set P is made with a few random points on the domain. The refinement algorithm is

made of two criteria:

• A sizing criterion to obtain an ε-sample. Simplices are refined by the insertion of their circumcenter.

• A protection criterion to obtain a δ-power protected point set. The Steiner point is chosen with a pick_valid
routine that selects a valid refinement point (see [40] for details). If no good refinement point exists (yet) in the
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picking region, the circumcenter is instead inserted, which lowers the distortion and increases the probability of
finding a valid Steiner point at a further step.

The µ-separation of the point set is implicitly obtained with this choice of Steiner points and can be computed explicitly
through the insertion radius, as done in [40]. In similar fashion to the local Delaunay algorithm, the refinement
algorithm can be shown to terminate and to produce a δ-power protected (ε, µ)-net.

In practice, neither the sampling nor the canvas need to be as dense as our theory requires them to be and a farthest
point refinement can be used to generate the point set.

8. Results

We now present some results for 2D and planar domains. The different geodesic distance computation algorithms
described in Section 4.1 were implemented and tested and while the method proposed by Campen et al.’s does not
offer any theoretical guarantee, its precision and convergence were in practice satisfactory and its speed a significant
advantage. CGAL [41] was used to generate isotropic Delaunay canvases and our newer implementation of the star
set algorithm for star sets.

We consider two types of metric fields: artificial ones, chosen for their difficulty, and curvature-based metric fields
as more realistic examples. These metric fields are precisely defined in our companion report [15].

Computation time

The extraction of the nerve is performed on the fly during the coloring the canvas. This operation and the construc-
tion of the duals are negligible in cost compared to computing geodesic distances.

Figure 5 uses an isotropic canvas of a 4 by 4 square and a swirly metric field. The canvas is composed of 1, 286, 862
vertices and took 29 seconds to generate. The computation of the RDT and SRDT took almost 6 hours. Comparatively,
computing the RDT and SRDT using a star set as canvas only required 121, 264 stars (vertices) and took 6 minutes,
including 3 minutes to generate the star set. This improvement becomes even more significant as the anisotropy
increases.

Duals

Fig. 4. the DRVD of 1020 seeds on the “chair” surface,
with a curvature induced metric field. The RDT is traced
in black.

The swirly and hyperbolic shock metric field (see Figures 5
and 8) are good examples of metric fields that are typically diffi-
cult for the non-geodesic Voronoi diagrams of Du and Wang and
Labelle and Shewchuk. Indeed, they are characterized by both
noticeable anisotropy ratios and a highly rotational vector field
(vectors given at a point by the eigenvectors of the metric at this
point). These regions are easily populated by orphan cells and
an improper dual for the VS or LS diagram if the point set is not
sufficiently dense. On the other hand, this issue cannot appear
in the RVD and both the RDT and the SRDT quickly become
triangulations.

Preprocessing the metric field, typically with a Laplacian
smoothing, is a technique also often used (see for example [26])
that lowers the fidelity to the input metric field and can even nul-
lify the anisotropy, for example in the highly rotational region
of the hyperbolic shock, resulting in isotropic elements. On the
other hand, our algorithm produces a DRVD that honors the met-
ric field closely and produces triangulations whose anisotropic
elements conform to the input metric field with even very few
points for both the RDT and the SRDT (see Figure 8).
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Geodesic edges. The geodesic paths are traced by backtracking along the gradient of the geodesic distance map, as
described by Yoo et al. [42]. In the case of planar and surface domains, tracing the geodesic paths between the seeds
provides the complete triangulation as the Riemannian simplices are simply the interior of the region formed by the
three geodesic edges on the surface. Figure 4 shows the DRVD and the RDT of 1020 seeds for the “chair” surface
endowed with a curvature-induced anisotropic metric field. The anisotropy of the regions near parabolic lines is well
captured with few Riemannian simplices.

Straight edges. By definition, the RVD captures the metric field more accurately than other methods that typically
only consider the metric at the vertices. This allows us to construct Riemannian triangulations, but also has a positive
influence on the straight edge realization of the DRVD. Figure 7 shows the SRDT of a surface endowed with a curva-
ture induced metric field. The straight edge realization of the DRVD also rapidly become an embedded triangulation
during our refinement process. This can for example be seen on the “Fertility” surface where as few as 100 vertices
are enough to create an anisotropic triangulation that roughly follows the curvature metric field.

Fig. 5. On the left, the DRVD of 4010 seeds in a square endowed with a swirly metric field. On the right, the straight edge dual triangulation of the
DRVD.

Edge lengths and angles. The quality of a mesh and its conforming to the metric field can be evaluated through the
measure, in the metric, of the lengths of its edges and of its angles. We evaluate the edge lengths and the angles of
the point set shown on Figure 8 (the SRDT is shown) for both the RDT and the SRDT. Note that the point sets are
generated with a sizing criterion intended to create unit meshes, that is RDTs whose geodesic edges are ideally of
length 1. Results for the edge lengths of the RDT and the angles of the SRDT are shown in Figure 6 and show good
control on the edge lengths and the angles. We also observed that while the results are naturally better for the RDT,
since the point set is generated with respect to the geodesic distance, the quality of the elements of the SRDT stays
relatively close to that of the RDT.

Optimization

Optimization is often used to improve the quality of a triangulation. Centroidal Voronoi tessellations are Voronoi
diagrams whose generators are also the centroids (centers of mass) of their respective cells [43]. The famous Lloyd
algorithm [44] iteratively moves the seeds to the center of mass of their respective cell and recomputes the Voronoi
diagram of this new seed set.
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Fig. 6. Histograms for the optimized mesh shown on Figure 7. On the left, RDT edge lengths; on the right, SRDT angles values.

We approximate the Riemannian Voronoi center of mass of a cell V with the following formula:

cg =

∑
i ci |ti|gi∑

i |ti|gi

. (2)

where |ti|gi
is the area of the triangle ti in the metric gi and the ti make a partition of V . The canvas conveniently

provides this decomposition of a geodesic Voronoi cell in small triangles, making the approximation of cg accurate.
The formula in Equation (2) does not extend to surfaces as the result of the weighted sum might not lie on the domain.
In that setting, we use a process similar to Wang et al. [45]. As its Euclidean counterpart, this algorithm comes with
no guarantees (not even for termination) but works well in practice. In Figure 8, the initial SRDT of 4000 seeds has
been optimized with 100 iterations. The metric field is well captured with few elements, especially in the rotational
region.

Fig. 7. The “Fertility” surface endowed with a curvature induced metric field, SRDT with 220 seeds (left), DRVD (center) and SRDT (right) with
6020 seeds.

9. Conclusion

We have introduced a practical approach to computing Riemannian Voronoi diagrams and exposed theoretical
conditions on the point set and the canvas such that geodesic and straight edge realizations are embedded triangulations
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Fig. 8. The optimized SRDT of 4000 seeds in a planar domain endowed with a hyperbolic shock induced metric field (left). On the right, a zoom
on a rotational region of the metric field shows the difference between pre- (above) and post- (bottom) optimization.

of the domain in planar and surface cases. The theoretical requirements are demanding, but in practice both the
geodesic and straight edge duals require relatively few points to become embedded triangulations, even with non-
trivial, highly distorted metric fields. The RVD and its duals are shown to be particularly well suited to capture the
metric field in regions where it is both anisotropic and rotational. No preprocessing or smoothing of the metric field
is required, a technique that is often used and results in noticeable loss of anisotropy in this type of region.

Future work

The use of the star set greatly increases the speed of the algorithm, and additional techniques are still to be explored.
A first technique to improve the computation time is to observe that during most of the computation of the DRVD,
there is very little interaction between the different fronts. Parallelization of the algorithm should therefore yield
significant gains. If the metric we consider were almost constant in significant parts of our domain, a hybrid diagram
that would only use geodesics in zones where the metric varies a lot would decrease the running time significantly.

Another interesting topic to explore would be the applied uses of Riemannian Delaunay triangulations. Indeed,
much work has been committed to the theoretical study of these triangulations, but it still stays untouched in practice.
Finite elements can be for example defined on the RDT in our context as the canvas naturally offers a piecewise linear
transformation between a simplex of the RDT and the traditional reference element of the finite element method. One
can also intuit that Riemannian simplices adapted to a metric field could be used to further decrease numerical error.

Finally, the work presented here focused on planar and surface domains. A future paper will provide results for
Riemannian manifolds of arbitrary dimension.
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