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Abstract

A simple smoothing algorithm is proposed for general block-structureshes. The basic method converts a multi-dimensional
problem of mesh-smoothing to a set of one-dimensional problemsgtheneasurement (or similar geometrical operations). The
method is robust, easy to implement, and provides nearly uniform spaeingen mesh surfaces. Variations with special features
to the basic algorithm are also briefly described. A successive-el@ration (SOR) operation can be applied to some of the
variations and achieve a convergence rate several times higher thioma methods.

© 2016 The Authors. Published by Elsevier Ltd.

Peer-review under responsibility of organizing committee of tH& I2&ernational Meshing Roundtable (IMR25).

Keywords: Block-structure; Mesh-size; Equal-space; Mid-point;daiional line-sweep; Successive-over-relaxation (SOR)

Nomenclature

e stencil spatial entity carrying geometry of elements thatre a given node
e basic-stencil logically one-dimensional stencil in plogdispace

e equal-space-point spatial point that has equal space tuotinedary of stencil

e mid-point equal-space-point on basic-stencil

e mid-line basic-stencil defined by equal-space-pointsrasdved mesh-line)

1. Introduction

Mesh smoothing algorithms have been utilized for many ysacsessfully in the generation of meshes for struc-
tural mechanics applications. They have proven reasoredliggtive for mesh sizes involving as many as hundreds
of thousands of elements in three dimensions, althoughdhegomewhat costly. In certain fluid mechanics appli-
cations, however, we routinely face meshes on the order efhamdred million elements, with a billion elements
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on the horizon. These meshes are typically generated wiglttdnode location algorithms, but it would be highly
advantageous to have smoothing algorithms that work atinessntire mesh domain to provide a globally optimized
grid. Thus, we seek an algorithm that is relatively inexpento run on up to one billion elements or more and has
convergence improved over existing iterative mesh smesthe

One of the most popular smoothing methods for blocked stradtmeshes is equi-potential relaxation. It can be
derived from a variational principle based on the theoryi@edential geometry ([2], [6]). An equi-potential method
has the advantages of producing smooth meshes, robusiiywwitnesh-folding, and is easy to code. However, there
are issues associated with the original equi-potentiakeglon method ([1]) such as slow convergence, grid attnact
with curvilinear meshes, and poor mesh quality near a canbaundary that may cause numerical problems for a
simulation.

Efforts to modify the original equi-potential method have bese, and certain improvements are achieved such
as grid attraction prevention, however with the sidie& of slowing down the convergence ([7], [9]). A penalty
function can be applied on a concave boundary to improve meality with an equi-potential method but usually is
not robust ([6]). It is fair to say the equi-potential meshaxation, while being very successful (particularly with
Cartesian mesh), still has unresolved issues.

Another dfective mesh smoothing method is angle-based ([3]) emplayéuk the original INGRID ([4]) mesh-
generation package. This is simple to code and works for atrugtured mesh as well. It shares many nice features
with an equi-potential method when applied to a block-stmed mesh. However, it also has issues such as shrinking
mesh-size near a reduced connectivity point (and expamdesh-size with an enhanced connectivity point).

The element-metric based methods with MESQUITE ([5]) galheprovides a good mesh-quality for a unstruc-
tured mesh. However it does not utilize the regular topolofw block-structured mesh and could have a slow
convergence with a global optimization for a mesh of a greatyrelements.

In this paper a new smoothing approach is proposed for a dtvoktured mesh. The idea is to evenly space mesh-
linegsurfaces ([11], [12]). With the proposed method, the comtdi of an updated node is not a direct combination
of nodal coordinates as with an equi-potential method. ebut for updating a given nodeegual-space-poinis
computed with a given geometrical rule in a stencil consistif the elements directly linked to the node.

An equal-space-poinkeeps an even spacing from opposite walls of a stencil inl@di¢al) directions, thus to
ensure the mesh surfaces are separated with an equal spemehidlirection. Various ways to estimate topial-
space-poinare investigated in this paper. The most basic one empldysweasurement of arc-length on a mesh-line
and shall be explained in detail throughout the text. Otheiaes are briefly described before the numerical examples
are shown.

In general, a uniform mesh size provides better numericaliracy for simulations. The new method is aimed at
improving the mesh quality near concave boundaries andulae connectivity points by evenly spacing the mesh
surfaces globally. Similar to the equi-potential relaatand the angle-based method, the equal-space relaxation
produces smooth mesh-lines, and is robust with no meshnfipldin addition, the proposed method also naturally
prevents grid attractionfiects, and produces good mesh quality on a concave boundataoiirregular connectivity
point.

Furthermore, the proposed method allows point redisiobub be separately done on each mesh-line. A sweep
can be performed in a single logical direction at a time, 8inglifying the coding &ort.

In situations where convergence speed becomes importang-adimensional SORs(iccessive over relaxatipn
operation can be applied on the arc-length of a mesh-ling t@@achieve a convergence rate an order of magnitude
better than the equi-potential method.

In this article, we explain how the proposed mesh improvammethod works with a unified operation on a triplet
of nodes on a mesh line, for a block-structured mesh, in amersion, two-dimensions, and three-dimensions. The
reader will find a multi-dimensional problem of mesh impnment can be converted to a length measurement on
logically one-dimensional stencils with the proposed basethod. This is a feature that other mesh improvement
methods probably do not share.

We first introduce the idea of 'equal-space-point’ and adally one-dimensional 'basic-stencil’. Then we ex-
plain how a two-dimensional equal-space point is computild s logically two-dimensional stencil based on the
(logically) one-dimensional equal-space points on thdsaaflthe 2D stencil with figures. We then describe how to
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Fig. 1. A triplet of ordered pointsH Q, R) defines a basic-stenciPQ, andQR are straight-line-segments. A basic-stencil can be thoobhs a
triplet of nodes on a multi-dimensional mesh-line. Pdihevenly divides the lengtiPQ + QR) so is called aqual-space-poinfor amid-poin).

compute a three-dimensional equal-space point with aadlgi8D stencil based on the (logically) two-dimensional
equal-space-points on the walls of the three-dimensideats.

Next we describe how to implement the basic algorithm as adimensional-sweep method. The treatment of
irregular connectivity in 2D and 3D follows. After that wesduss the behavior of the basic method on a concave
boundary and a treatment for possible unsmoothness caysadifismooth fixed boundary mesh. Following that,
some other variations of algorithms to compute an equatespaint are briefly described in addition to the proposed
basic equal-length-dividing algorithm.

Numerical examples are then provided to support the coioelus

2. Mesh improvement with equal-space-points

Poor mesh quality usually occurs where mesh-Jisiggaces are not evenly spaced. With a block-structurethmes
it is trivial to equally space the mesh-lines in the logigadse. However, it is not so easy to map the node position
from logical space to physical space. Even when such a mapegerformed, it does not necessarily provide even
spacing of mesh-lingsurfaces in the physical space because the Jacobian of ti@rmgaan vary.

The proposed method is aimed at evenly spacing surfacesidine the physical space for a specified region. For
this purpose, aequal-distance-poiris computed for some stencil associated with a node and tkb mefaces are
updated with thequal-distance-pointsy a geometrical rule.

2.1. A basic-stencil and its equal-space-point (mid-point

A triplet of points linked by twostraight-line-segmentas points (P, Q, R) shown in fig. 1 is defined asasmic-
stencil The proposed method is based on a geometrical operatiblotiades arequal-space-poimn a basic-stencil
on a mesh-line.

A natural way to select an equal-space-point is to choospdhm that equally divides the total lengfQ + |QR.
In most of this paper we use the above equal-length-divigimigt, and often call such an equal-space-point a 'mid-
point’.

Updating a point directly to the equal-distance point on saidatencil is a one-dimensional mesh smoothing
algorithm. It would distribute points on a spatial curvetwdtn equal arc-length between neighbors when converged.

2.2. A 2D regular stencil and its equal-space-point

In fig. 2, a two-dimensional regular stencil in the physigaEse is shown with the left figure. We are going to move
the node '0’ at center to a better position for mesh improv@&m@ounting from left to right, there are three 'vertical’
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Fig. 2. The left figure shows a regular stencil about node Gater, the green points are mid-points on ‘vertical’ basénsits; the blue points
are mid-points on 'horizontal’ basic stencils. Each trigletnid-points defines a mid-line. The geometrical average ofriftepoints of the pair
of mid-lines defines a two-dimensional equal-space-pointhisdrawing the two final mid-points happen to meet at the setetion of the two
mid-lines.

basic-stencils defined by the node triplets (1, 8, 7), (2,)0a6d (3, 4, 5). Likewise there are three 'horizontal’
basic-stencils defined by the node triplets (1, 2, 3), (8)0add (7, 6, 5), counting from bottom up.

We observe in the right figure of fig. 2 the triplet of green poidefines its own mid-point, and the triplet of blue
points defines its own mid-point as well. We call the basensil defined by the blue (or green) poiftsid-lines’
for convenience. A mid-line can be thought as locally imgaposition of a mesh-line. By taking the geometrical
average of the mid-points on this pair of mid-lines, we hagegle choice of a 2D equal-space-point.

Then, computing a two-dimensional equal-space-pointinesa task of dealing with mid-lines. This simplicity is
true in three-dimensions as well. The extension for conmgai 2D (logically) equal-space-point in three-dimensions
is straightforward. The only flierence is that the points are three-dimensional.

2.3. A 3D regular stencil and its equal-space-point

A regular 3D stencil would own 27 basic-stencils, amide 2D (logically) stencils in space. In each logical direc-
tion, there are three 2D stencils. Each of them owns a sgli@qual-space-point. This triplet of 2D equal-space-
points forms a mid-line in the corresponding logical directand is associated with a mid-point. The geometrical
average of the three mid-points (each in a logical diregtitafines a three-dimensional equal-space-point.

Again, for computing a three-dimensional equal-spacetpéihe only operation is finding mid-points on basic-
stencils (logically 1D) and taking a geometrical averagiatend.

We have taken the geometrical average of mid-point on migkslifor computing an equal-space-point. One how-
ever could define an alternative 3D equal-space-point widrgecting spatial polygons defined by mid-points.

3. Converting a spatial problem to one-dimension

The proposed method depends solely on a geometrical opetatt computes alequal-space-point{(or 'mid-
point’). The mid-points can be computed separately before haigd 3Khows a three-dimensional node. The given
node is associated with three mid-points, each one on a fimesbrossing the node.

With a one-dimensional mesh, each interior node corresptmd single mid-point. The updated position of the
node is this mid-point itself.

In two dimensions, each interior node carries two one-dsimral mid-points.
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Fig. 3. In three-dimensions, theellow node at the center has three mesh-lines passing throughétbllianodes are the pair of neighbors on
thei—mesh-line greennodes are the pair of neighbors on thenesh-line, and the pair éd nodes are the neighbors on tkemesh-line. There
are three one-dimensionbasic stencilsassociated with the yellow node at center. Therefore, thrigepoints can be defined, each in a logical
direction.

A given 2D regular stencil carries two sets of basic-stasneifich in a logical direction. Each set of basic-stencils
with their three mid-points define a mid-line thus a final rpwint, see fig. 2. A 2D equal-space-point is simply the
geometrical average of the two final mid-points (or alteshathe intersection of the two mid-lines).

In three dimensions, each interior node carries three anestsional mid-points as already mentioned above.

A given 3D regular stencil carrighreesets of 2D (logically) stencils. Each set consistthoéestencils regarding
a logical direction and defines three 2D equal-distancetpoifherefore, a triplet of mid-points exists that defines
a mid-line in a given logical direction. All together, themee three mid-lines, each in a logical direction. A 3D
equal-space-point is taken as the geometrical average aiitth-points of the mid-lines.

Therefore, in a given iteration of the proposed method, ggr@ach to update a node depends on mid-points on
logically one-dimensional stencils only. In other wordse fproposed method converts a multi-dimensional mesh
improvement problem to one-dimension.

3.1. Adirectional sweeping scheme

As shown above, eadt+-dimensional regular node is associated witmid-points’, one from each logical direc-
tion. Clearly, by employing a one-dimensional algorithnrédistribute points in the arc-length of a mesh-line, the
proposed algorithm can be implemented in a fashion of omeedsional sweeping thus simplifying the coding for
better dficiency.

3.2. Atan irregular connectivity

A node at an irregular connectivity (for example, a reducednectivity point) is not associated with a regular
stencil, and needs to be dealt witltfdrently. However, the concept of mid-points can still bedsed the treatment
is even simpler. We demonstrate the treatment with a redcmedectivity. The treatment is similar for an enhanced
connectivity.

At a reduced connectivity point in two-dimensions, we take eometrical center of the triangle formed by
the neighbor nodes directly connected to the given node tshrtiees. Another choice is taking the center of the
inscribed-circle of the above triangle. The latter seengite a even wider mesh-size.

In three dimensions, two configurations are possible. Irfitsecase, a node is at the joint fifur hexahedron
elements. We take thgeometrical centeror the center of thénscribed-spheref the tetrahedron formed by the
neighbor nodes directly linked to the given node by mesaslinn the second case, a given node is shared by three
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Fig. 4. Left figure shows a stencil for a node at a reduced-ectivity point of the second type. In the right figure, ndtlés at a spatial, logically
2D reduced connectivity on a patch consist of three fades, f are neighbor nodes @& connected with mesh-lines on the patch (dash-lines).
The geometrical center dfiangle def C’, is the equal-space-point (marked by a dash-circle) for #telpin middle . Likewise the other two
dash-circles mark equal-space-points defined on the otteepatches.M is the mid-point on the mid-line (colorquink) defined by these three

points.
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Fig. 5. In the left figure, an equi-potential method can moveytlw node to the position of the red node close to element8ary and reduces
the space between neighbor nodes. In the right figure, thgopeal method moves a misplaced node to a location with equad spatement
boundary.

elements on one-side and three on the other side (fig. 4, [Efi¢re arehreenodes (including the given node) at
logically 2D reduced connectivity, each on a patch of thygsgtial faces (fig. 4). This triplet are on a mesh-line that
passes and logically orthogonal to the triple-face patckesh triple-face patch determines a logically 2D reduced-
connectivity point. These three points form a mid-line, aredtake its mid-point to update the center node.

A mesh-line defined by a set of nodes with a second kind of edheonnectivity (as shown in fig. 4) will meet
either a first kind of reduced-connectivity point, or the bdary. A reduced-connectivity point is always on boundary
or at the joining lines between blocks.

3.3. Near a concave boundary

A conventional mesh-improvement method usually has areigsth the elements close to a concave boundary.
Elements tend to squeeze together and lay on the concaverpofta boundary. This behavior introduces thin
elements.

The proposed equal-space method with the choice of egungtHalividing mid-point or equal-distance points
behaves dferently. For example, an equi-potential method often mavasde originally at an ideal position to a
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location near a concave boundary (fig. 5, left). The propasethod does the opposite by computing an updated
point which has nearly equal space (or distance) betweeir afp@pposite boundaries (fig. 5, right), thus producing
elements of more equal sizes.

3.4. A treatment for face-smoothness

The equal-length-dividing works well in 3D in general, Haxeeg if one of the spatial 2D stencils that define a wall
of a 3D regular stencil has fixed nodes that form sharp-amgiesmesh-line, this unsmoothness can be carried inward
and this is not desired.

To ensure smoothness, we project each 2D equal-spacegbaihed on a spatial logically 2D stencil to a fitting
plane defined by the nodes of the 2D stencil in order to flatterstencil. As the result, the smoothness of interior
mesh-lines are improved. One needs to apply this operatilynto the near boundary mesh. However, we perform it
with all the interior nodes. The mesh sizes near a reducademtivity point would be reduced by a little compared
to the case of no face-smoothing, but still quite acceptalld the overall mesh smoothness is improved.

4, Other choicesfor computing an ’equal-space’ point

First of all, the solution by averaging the mid-points on #iites in each logical direction can be replaced by
intersecting mid-lines (as locally improved mesh lines?ih and intersecting spatial polygons (as locally improved
mesh-surfaces) defined by mid-points in 3D. Although thed@mgntation is not as easy, using intersections seems to
converge faster consistently.

Not only that, the way to select a mid-point is also flexible.our numerical practices, the following variations
have been evaluated.

4.1. Mid-face line-intersection

With this option, one picks the face center points of a regRilastencil, in total 12 of them (fig. 6, left). They form
4 mid-lines, 2 in each logical direction. Then in each di@tthere is a pair of mid-points that define a line-segment.
The equal-space point is the intersection of these twodamments. In the case that they do not intersect, one picks
the concave corner of a quadrilateral formed by the four paohs.

Our 2D examples of fast convergence in the next section f®meed with this choice, utilizing the successive-
over-relaxation (SOR) scheme.

4.2. The equal-distance point

This algorithm seeks in a regular stencil (2D or 3D)esyual-distance-pointhat has equal-distances to a pair of
opposite boundaries in each logical direction (fig. 6, fight locating the equal-distance point, a system of noaline
equations needs to be solved (we use a Newton’s method fooddinding).

In the three-dimensional implementation of locating anatglistance-point, we use a quadratic Bernstein shape
function to interpolate each wall of a regular stencil fomguting the distance. For nodes near a reduced connectivity
point, we break each element face into 4-triangles.

This choice with equal-distance-point can diverge if acités badly distorted initially. However, it gives probabl
the most satisfying spacing between mesh-surfaces amamnghoices, and its solution is very smooth. Employing
the equal-distance-points can help to refine a mesh thatdbadiy twisted stencils.

4.3. Avariable dividing ratio

We have taken a ratio of/2 to divide a given length. If required (for example in theeca$ a stencil with fixed
points that are not evenly spaced) this ratio can be adjlstedly.
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Fig. 6. The left figure shows the choice of mid-face line-iséztion. The 12 center-points of faces form 4 mid-lines, witiair in each direction
that define a line-segment. The intersection of the two legrents gives the equal-space-pdiht In the right figure, a poinM exists with the
same distancg to linked-line-segments (8, 7) and (34, 5), and the same distanbeo linked-line-segments (8, 5) and (12, 3). We callM the
equal-distance-point defined by the given stencil. It istatuy determined, has no dependence on the position of nede @erves as the updated
position of the center node 0.

It is evident that the proposed equal-space method (withteviea algorithmic choices described above) define
an ideal local distribution of nodes in the case that the nliegls are (locally) flat in each logical direction. This
statement is also true with an orthogonal curve-linear mesh

5. Numerical examples
5.1. A case of fast convergence with successive-overatitex(SOR)

In the case that the desirable point distribution on a meshik an equal length between neighbor points, a
successive-over-relaxation (SOR) method can give a dupssr convergence rate. A SOR method does not update
a point directly at the equal-length dividing point betwébka two neighbors. Rather, it over-relaxes the given point
with a factorw between 0 and 2, such that

0+ = (1- W)l + %(f‘n_l +0). 1)

Where( is the length measurementijs the index of a node on a given mesh-line, aiglthe count of iterations

We take a two dimensional mesh with zigzag mesh-lines sirtglahe Kershaw mesh [7], [9], [10]. The mesh
is smoothed by the original equi-potential method, also lig-face line-intersection method described in the last
section. The two-dimensional equal-space-point is cortbmiith intersecting the two line-segments defined by a
pair of mid-points computed with an SOR factor 0895 in mid-face-lines in each direction. This equal-sppot
immediately updates the node location with a natural doldap over all interior points (boundary points are fixed,
outer-loop is withi and the inner-loop witlj). The boundary of the mesh is convex in this case, which allthe
operation of intersection to perform well.

In this case the proposed method converges over an ordegoifitude faster (fig. 7) than the original equi-potential
method in early iterations anftbur times faster in later iterations (fig. 8). The errors mentioned in the description of
figures is defined as the square-root of the average of plgsstance squared between a node and its ideal position.

5.2. With a polar geometry

Fig. 9 shows how the proposed mesh-improvement method weitksan orthogonal curve-linear mesh. The
equal-space nature of the proposed method ensures anpaeaig of mesh-lines.
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Fig. 7. A mesh with zigzag mesh-lines is shown on the upperdlg& smoothed by a Winslow-Crowley method to the one on upiggt-after 250
iterations (with aL, error of 0.092681), to the lower-left one with 500 iterasdwith aL, error of 0023690). An even better mesh-quality can be
obtained with the mid-face line-intersection method usin@&Sactor of 1995 by only 67 iterations (lower-right, withla, error of 0023288).

Crowle:

Winslow-

Mid-face line-intersection
with a SOR factor 1.995.

(01 a@seq) xapuj 1amod

4

400

300

200
iterations

100

Fig. 8. TheL; error vs. iteration numbers for the above example. The végida is the power index log(err2).

5.3. With a concave boundary (and an enhanced connectigity)p

An example with an enhanced connectivity and a concave laoyrnsl shown next. We take a perfectly symmetric

'star’ mesh offive blocks with an enhanced connectivity at center.

axis and the

The inttiee between thex—
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Fig. 9. An initially randomly twisted polar mesh is smoothed hg tid-face line-intersection method with 12 iterations. Acassive-over-
relaxation is applied with a SOR factor of 1.995.

boundary of the star are at (-10, 0) and (20, 0), with the ceaitéhe origin. Each interior node of this mesh is
perturbed with a random displacement betwerand 2 in both directions. As the result, a big portion of tleenents

are folded. We perform smoothing with both the Winlow-Crewhlgorithm and the equal-length-dividing (the basic)
algorithm. At the enhanced connectivity point, we simplgetéhe geometrical average of its direct neighbor nodes
linked by mesh-lines. This example demonstrates the robastof the basic algorithm of equal-space-smoothing,
and its ability to maintain uniform mesh spacing near a ceadmundary andr an irregular connectivity point over
the original equi-potential method. The equal-distancéhog:behaves similarly.

Results similar to the above are obtained for a curved seinfiaesh as well. For such a mesh, the smoothing
operation is done in a surface fitting plane above a given msitey orthogonal projections of the nodes in a 2D
surface stencil. The updated position of the given nodedgepted back to the surface. The scheme is a planar 2D
local smoothing operation, combined with two projectiorigtions from and back to a curved surface.

5.4. Athree-dimensional example

A three-dimensional comparison of the element-siéeot near a reduced-connectivity with an angle-based method
and the proposed equal-space method is performed. The ggarha meshed region istzalf-sphereof a nondimen-
sionalized radius 9, with the upper quarter mesh fixed antbther quarter mesh to relax.

Figure. 11 show the initially meshed half-sphere improvedHoee methods: the angle-based algorithm ([3]); the
proposed equal-space method with equal-length-dividifdspoints; and with the choice of equal-distance points,
each with 100 iterations. The 3D meshes are sliced by a plefireed with a point at (1, 1, 1) and a normaf{63/7,

2/7).

One can clearly see the angle-based method gives small simesharound a reduced-connectivity point. However,
an equal-space method gives much more uniform mesh sizeggtiout with smooth mesh-lines. The option of
equal-length-dividing is simple, robust. The equal-dis@option provides the largest mesh-size around a reduced-
connectivity point. However, this option cannot be dirg@pplied to a very twisted mesh because of possible non-
convergence. It can be combined with a more robust smootlgrithm (say, equal-space) for a more uniform
mesh-size.

5.5. Mesh quality measurements

In figs. 12 we plotted the statistical distribution of elemsgizes with the angle-based-smoothing, the equal-space-
smoothing (the proposed basic algorithm), and the equsditite smoothing (by solving nonlinear equations about
physical distances from a node to walls of a stencil) for tiheathing problem above. The element shapes all look
normal with each algorithm, thus the mesh-size measurebesmimes a proper indicator of mesh quality. The mesh-
sizes in the figures correspond to a measure (defined as dleniame divided by largest element face area) for
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Fig. 10. The figure on upper-left shows the ideal star-meshe mksh on upper-right is perturbed (boundary nodes are fixEag. mesh on
lower-left is obtained with the original equi-potential etl. The mesh on lower-right is smoothed with the equal-ledgtiding (the basic)
method. 500 iterations are taken with each method to ensuregence.

explicit time-steps (determined by the smallest meshs3izBy observing the smallest element-size, one finds the
equal-space method provides a time-step at least twicegyasstihe angle-based method does. Even better, the equal-
distance method gives a time-step at least three times gabigsually shown near the reduced-connectivity point
in figs. 11). In addition, the range of mesh-sizes with thdedhgsed method is reduced with the new methods, with
the narrowest range obtained by finding the equal-distanggg The accuracy of a simulation is expected to be
improved correspondingly.

5.6. The cost of an equal-space method

In a single iteration, an equal-space method with squaseaomputation for lengths costs a little more than an
equi-potential method. Nevertheless, the mesh quality inesgular connectivity points and concave boundaries is
improved. Moreover, with a SOR scheme, one can expect thaabe reduced significantly with certain choice of
the proposed method.
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Fig. 11. Above figures show the meshed half-sphere descritmaaliced by a plane defined by point{11) and a normal vector (&, 3/7,2/7).
The upper-left is the initial 3D mesh (before slicing); uppght for an angle-based smoothing method; lower-left fer pnoposed equal-space
method with the option of equal-length-dividing with a fasr@oothing, and lower-right with the option of multi-dimensibequal-distance point.

6. Conclusion

We believe with a given smoothing algorithm, the solutioraahesh problem is boundary determined. A good

mesh-smoothing algorithm should take an arbitrary init@hfiguration and quickly converge to the solution. We
presented in this paper a simple equal-space mesh-smgatigithod for a general block-structured mesh, with several
algorithmic options. By using the equal-space mid-poiatsulti-dimensional mesh-smoothing problem is converted

to finding a set of mid-points, each on a logically one-dinemal stencil defined by a triplet of points on a mesh-line.
A directional line-sweeping scheme can be applied to siyiplj the coding and reduce computing cost.
The major benefit of the proposed method is that a nearly itmifaesh spacing can be achieved, especially near

an irregular connectivity or a concave boundary. Not ondit thvith a successive-over-relaxation scheme the proposed
method may achieve a much higher convergence rate compmanediitional smoothing methods in certain cases.

The proposed method has not only the usual positive featirels as smooth mesh-lines, no mesh-folding, no

mesh contraction with a curve-linear mesh, it also prodacex@sh quality better than some conventional algorithms
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Fig. 12. Distribution of element sizes withffirent smoothing algorithms. The horizontal axis is the sizel@hents and with a uniform range.
The vertical axis is the count of elements in each bin (rangesiat uniform). The left figure is for the angle-based methbe figure in middle
for the basic equal-space method, and the right figure forgbaledistance method.

near a concave boundarirregular-connectivity. The proposed method costs &litibre than a conventional method
in a single iteration but this draw-back is overwhelmed bystdr convergence. Furthermore, the simplicity of the
proposed basic method with finding the equal-length-diagdgioints on mesh-lines makes it robust.

The concept of the equal-space-point may be extended tostruatured mesh. There also can be various possible
definitions of an equal-space-point. The proposed equadesplgorithm utilizes the topological regularity of a tHec
structured mesh and gives natural definition of an equatespaint. Because of its simplicity and robustness, we
conclude the proposed equal-space algorithm (as well axtied-distance algorithm) has the potential to become an
effective numerical tool for improvement of general blockistured meshes.
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