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Abstract

In this paper, we first develop a centroidal Voronoi tessellation (CVT) based surface segmentation algorithm using eigenfunctions
of the Secondary Laplace operator (SLO). We then present a novel automatic polycube construction algorithm based on a gener-
alized harmonic boundary-enhanced CVT (gHBECVT) by including the curve-skeleton information. Based on the constructed
polycube, we generate quality all-hexahedral meshes in both parametric and physical domains through the parametric mapping.
Several examples are presented in this paper to show the robustness of our algorithms.
c© 2015 The Authors. Published by Elsevier Ltd.
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1. Introduction

Surface segmentation plays an important role in geometric processing whose main task is to decompose a surface
mesh into meaningful parts. The secondary Laplace operator (SLO) [1] was developed based on the second funda-
mental form of the surface. Since its eigenfunctions reflect the curvature-related surface features, concave creases
and convex ridges can be captured. The SLO was used for surface segmentation by first computing eigenfunctions
and mapping vertices onto a p-dimensional space using the first p modes, and then clustering vertices into a series
of groups or surface patches using Prediction Analysis for Microarrays (PAM) method [2]. The polycube construc-
tion can be built through mesh segmentation with certain geometric constraints. The harmonic boundary-enhance
centroidal Voronoi tessellation (HBECVT) model [3] for automatic polycube construction extends EWCVT [4] and
HEWCVT [5] in image segmentation to mesh segmentation. It takes into account the local neighbouring information
of each triangle, which tends to make the boundary of the final segmentation shorter and smoother.

Inspired by these techniques, we first develop a CVT-based surface segmentation algorithm by using eigenfunctions
of the SLO. We then present a novel generalized harmonic boundary-enhanced CVT (gHBECVT) model for polycube
construction by using local coordinates to define the generators flexibly in the normal space with the help of the
curve-skeleton information. Based on the constructed polycube, we generate quality all-hexahedral (all-hex) meshes
through the parametric mapping. The key contributions of our work include: (1) CVT-based surface segmentation
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using the SLO eigenfunctions is developed, which reduces the computational cost and improves the segmentation by
eliminating unsmoothed boundary and over-segmentations; (2) The gHBECVT algorithm extends HBECVT model,
and improves the surface segmentation and polycube construction by reducing unnecessary singularities. By including
the curve-skeleton information, the gHBECVT-based algorithm is insensitive to the shape deformation.

2. CVT-based Surface Segmentation with SLO Eigenfunctions

Several examples were presented in [1] to show the advantages of the SLO eigenfunctions using PAM for surface
segmentation. However, the PAM-based surface segmentation is time consuming, and may result in jaggy boundary
and over-segmented results. To generate better segmentation result, we apply the efficient CVT-based clustering idea
to the SLO eigenfunctions by incorporating physical information to avoid over-segmentation and jaggy boundaries,
and reduce the computational cost.

Given an input surface mesh, we first compute eigenfunctions of the SLO and map vertices onto a p-dimensional
space using the first p modes. Let the dataset VT = {VTi}

nv
i=1 denote all vertices of the surface mesh with VTi =(

VTi1, . . . ,VTip

)T
, where nv is the total number of vertices and VTi represents the assigned p-dimensional vector of

the ith vertex v(i). Let C = {cl}
L
l=1 denote a set of typical p-dimensional vectors. The Voronoi region Vk (k = 1, . . . , L)

in VT corresponding to ck can be defined as

Vk = {VTi ∈ VT : dist (VTi, ck) ≤ dist (VTi, cl) , f or l = 1, . . . , L} , k = 1, . . . , L, (1)

where dist (VTi, ck) =

√
‖VTi − ck‖

2 + ηñk(v(i)) is a metric to calculate the distance between vector VTi and generator
ck. In this distance metric, the first term ‖VTi − ck‖

2 measures the distance in the p-dimensional eigenfunction space.
The second term ñk(v(i)) introduces the neighbouring physical information which measures the number of vertices
that do not belong to the kth cluster within Nω (v(i)), which is a ω-rings neighboring region centered at vertex v(i). η
is a positive weighting factor to balance these two terms. The boundary-enhanced term ñk(v(i)) extends the idea of
HBECVT [3] from triangle element to vertex, and represents the probability that vertex v(i) belongs to the kth cluster
in physical space. ñk(v(i)) is small if the majority of neighbourhoods within Nω(v(i)) belong to the kth cluster, and
vice versa. The set V = {Vl}

L
l=1 is called a Voronoi tessellation of the data set VT and the set C = {cl}

L
l=1 are referred

to as the Voronoi generators. Each vertex is assigned to one of clusters, thus we have VT = ∪L
l=1V and Vi ∩ V j = ∅

if i , j. CVT-based algorithm aims at minimizing an energy function E which measures how tightly each cluster is
packed until a certain criterion is met. Inspired by the HBECVT clustering energy [3] defined in the normal space for
polycube construction, we can extend it to the p-dimensional vector space. Given any set of generators C = {cl}

L
l=1

and any partition U = {Ul}
L
l=1 of VT , the clustering energy function of (C; U) can be defined as

E (C; U) =

nv∑
i=1

L
/ L∑

l=1

(
‖VTi − cl‖

2 + λñl(v(i))
)−1

. (2)

The updated centroid of each cluster Uk is defined to be the p-dimensional vector c∗k which minimizes the clustering

energy with respect to ck, then we can obtain an iterative formula c∗k =

nv∑
i=1
µikVTi

nv∑
i=1
µik

, where µik =

(
L∑

l=1

dist2(VTi,ck)
dist2(VTi,cl)

)−2

. µik can

be viewed as a soft membership function which reflects the degree of possibility of v(i) that is associated with the
kth cluster and how much influence v(i) has in the calculation of new centroids. For an arbitrary Voronoi tessellation(
{cl}

L
l=1 ; {Vl}

L
l=1

)
of VT where V = {Vl}

L
l=1 are the corresponding Voronoi regions associated with C = {cl}

L
l=1, the

clustering energy E (C; V) is minimized only if (C; V) form a CVT of VT , i.e., V are Voronoi regions of VT associated
with the generators C and simultaneously C are the corresponding centroids of the region V .
Algorithm of SLO-CVT
Given a surface triangle mesh S , positive integer L, weighting factor η, neighbourhood size ω and error tolerance ε
(e.g. ε = 10−4), we convert S to a quadrilateral mesh M using the cross field-based surface parameterization [1]. Ei

denotes the clustering energy in the ith iteration. Then we perform the following:

1. Compute the SLO eigenfunctions and map vertices of M onto a p-dimensional space by selecting the first p
modes. Initialize L generators {cl}

L
l=1 by selecting L vertices and taking their p-dimensional eigenfunction values;
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(a) (b)

Fig. 1. Results of the bust model. (a) Segmentation result using PAM-based method and (b) Segmentation result using CVT-based method.

2. Assign each vertex to the cluster whose generator has the shortest distance to it, and determine the Voronoi cluster
{Vl}

L
l=1 associated with generators {cl}

L
l=1 by (1); and

3. Update the cluster centroids {c∗l }
L
l=1 iteratively until a termination criterion such as Ei+1−Ei

Ei
< ε is reached. Other-

wise, update generators by setting cl = c∗l for l = 1, . . . , L and return to Step 2.
Fig. 1 shows segmentation results of the bust model using both PAM method and CVT-based method from Modes

1-3 of the SLO, where neighbouring parts are rendered with different colors. We can observe that our CVT-based
clustering method eliminate jaggy boundaries and over-segmentation, and the computational time is reduced from
287.6 to 2.2 seconds.

3. gHBECVT and Polycube Construction

In this section, we extend the HBECVT algorithm to gHBECVT model for automatic polycube construction. Given
an input triangle mesh T , the mean curvature flow algorithm [6] is firstly applied to generate its curve-skeleton CS .
Let the dataset X =

{
xT (i)

}n
i=1 denote all the unit normals xT (i) of the triangle mesh according to the global coordinate

system, where T (i) represents the ith triangle in the physical space. Let CS =
{
cs j

}m

j=1
denote all curve-skeleton points.

We first compute the local coordinate system of each point cs j and also the transformation matrix Q from the global
to the local coordinate system. Fig. 2 shows the input parabola model and its curve-skeleton, the local coordinate
system of each curve-skeleton point can be defined using the tangent and the plane perpendicular to the tangent.
As shown in Fig. 2(b), any unit vector û in the global coordinate system {ê1, ê2, ê3} can be transferred to the local
coordinate system

{
ê′1, ê

′
2, ê
′
3

}
by û′ = Qû, where Q is a 3× 3 rotation matrix and Qi j = cos

(
êi, ê′j

)
= êi · ê′j. Since each

triangle can be assigned to its nearest curve-skeleton point, we can transform its normal vector in the global coordinate
system to the local coordinate system by x′T (i) = QT (i)xT (i), where QT (i) is the transformation matrix between the local
coordinate system T (i) assigned to and the global coordinate system. Thus, we can calculate a new set of unit normals
X′ =

{
x′T (i)

}n
i=1 from X =

{
xT (i)

}n
i=1. Note that the normal vector for each triangle T (i) is transformed via a rotation

matrix with the help of the curve-skeleton, which makes it insensitive to the shape deformation.
Let C = {cl}

L
l=1 denote a set of typical unit normal vectors. Inspired by the HBECVT model [3], we define a new

generalized distance metric in the normal space together with a boundary-enhanced term in order to include local
neighbouring information. For each triangle T (i), we denote a local neighborhood as Nω(T (i)), which is a ω-rings
neighboring region centered at triangle T (i). The generalized boundary-enhanced distance between x′T (i) and ck can be

defined as dist
(
x′T (i), ck

)
=

√∥∥∥x′T (i) − ck

∥∥∥2
+ λñk(T (i)), where λ is a positive weighting factor. ñk(T (i)) represents the

number of triangles that do not belong to the kth cluster within Nω(T (i)). Note that the generalized distance measures
the distance between the the triangle T (i) and clusters in the locally transformed normal space X′ instead of the global
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Fig. 2. Results of the parabola model. (a) Input triangle mesh; (b) curve-skeleton and local coordinate system; (c) HBECVT segmentation result;
(d) gHBECVT segmentation result; (e) parametric mapping result; (f) all-hex mesh and (g) some elements are removed to show the interior of (f).

normal space X. For any set of generators C = {cl}
L
l=1 and any partition U = {Ul}

L
l=1 of X′, we define the generalized

harmonic boundary-enhanced clustering energy as

EG (C; U) =

n∑
i=1

L
/ L∑

l=1

(∥∥∥x′T (i) − cl

∥∥∥2
+ λñl(T (i))

)−1
. (3)

To calculate the updated centroids
{
c∗k

}L

k=1
, we minimize EG with respect to the generator ck (k = 1, . . . , L). Then we

can obtain an iterative formula as c∗k =

n∑
i=1

uG
ik x′T (i)

n∑
i=1

uG
ik

, where uG
ik =

(
L∑

l=1

dist2
(
x′T (i),ck

)
dist2

(
x′T (i),cl

) )−2

.

Algorithm of gHBECVT
Given a surface triangle mesh X =

{
xT (i)

}n
i=1, positive integer L = 6, weighting factor λ, neighbourhood size ω and

error tolerance ε (e.g. ε = 10−4), we perform the following with EG
i denoting the gHBECVT energy in the ith iteration.

1. Calculate local coordinate systems for all curve-skeleton points and assign each triangle to the nearest curve-
skeleton point. Then compute a new set of unit normals X′ from X for each triangle T (i);

2. Assign each triangle T(i) to the cluster whose generator has the shortest distance to it, and determine the
boundary-enhanced Voronoi clusters {Vl}

L
l=1 of X′ associated with generators {cl}

L
l=1; and

3. For each cluster Vl (l = 1, . . . , L), determine the cluster centroids c∗l . If a termination criterion such as EG
i+1−EG

i

EG
i

< ε

is reached, return ({cl}
L
l=1; {Vl}

L
l=1) and exit; otherwise, set cl = c∗l for l = 1, . . . , L and return to Step 2.

Fig. 2(c,d) show the segmentation results of the parabola model using HBECVT and gHBECVT respectively.
We can observe that HBECVT segments the surface in the global normal space, which introduces unnecessary sin-
gularities (16 singularities). However, our extended gHBECVT algorithm aligns to the shape deformation better by
segmenting the surface in the transformed normal space, and it yields only 8 singularities in total. Inherited from the
HBECVT model, our proposed gHBECVT algorithm can automatically and robustly construct polycubes for general
arbitrary geometric domains. By including the curve-skeleton of the input surface, our extend gHBECVT segmenta-
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tion algorithm is insensitive to shape deformation and can remove unnecessary singularities with compact polycube
structure. After the gHBECVT-based mesh segmentation, the next step is to create a surface parametric mapping
which aims at creating a one-to-one mapping f from the given surface T to a parameter domain T ∗. Fig. 2(d) shows
the parametric mapping of the parabola model. Based on the constructed polycubes, uniform all-hex meshes C can be
generated by first meshing the resulting polycube with an axis-aligned grid, and then mapping it back onto the input
surface via parametric mapping. Pillowing and optimization-based smoothing are implemented to further improve the
mesh quality. Fig. 2(f,g) show the all-hex mesh after the quality improvement (minimal Jacobian ≥ 0.32).

4. Results and Conclusion

(a) (b) (c) (d)

Fig. 3. Results of the bust model. (a) Segmentation result using gHBECVT-based method; (b) parametric mapping result; (c) all-hex mesh and (d)
some elements are removed to show the interior of (c).

We have applied the presented algorithms to several datasets, and generated both surface segmentation results and
valid polycubes with all-hex meshes. All results were computed on a PC equipped with a 2.93 GHz Intel X3470
CPU and 8GB of Memory. We take the surface segmentation using SLO-CVT as a pre-segmentation, where the
surface is segmented into tubular parts. Based on the pre-segmentation, we apply gHBECVT to segment each part
into multiple segments where each segment can be mapped onto one face of the resulting polycube. Fig. 3 shows
the gHBECVT-based segmentation results for polycube construction and all-hex mesh of the bust model (minimal
Jacobian ≥ 0.11). In conclusion, a novel CVT-based surface segmentation algorithm using eigenfunctions of the SLO
is proposed, which avoids over-segmentation and jaggy boundaries, and reduces computational cost. We also present
an automatic polycube construction algorithm based on gHBECVT model. Our extended gHBECVT segmentation
algorithm is insensitive to shape deformation and can generate compact polycube structure by eliminating unnecessary
singularities. In the future, we will apply our algorithms to more complicated models.
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