Exceptional

service in the

national

interest

-
|
[
[

Next Generation Platforms (NGP)

108UU02J8)U| [eUIS)XT

The next generation platforms built towards exascale
computing will have heterogeneous architectures in
order to take advantage of the revolution in many
integrated core (MIC) and GPU devices.

Trinity supercomputer to be hosted at Los Alamos
National Laboratory in 2016 will have Cray XC30
platform architecture containing Intel Knights Landing
(KNL) MIC processors.

Sierra supercomputer to be hosted at Lawrence
Livermore National Laboratory in 2017 will have IBM
platform with GPU accelerators.

..

On-Package
Memory

}

......................

aoeIaU|
MIOMISN [eutaix3

4
Accelerator

On-Package

Fig 1: NGP compute node with heterogeneous cores
and memory [courtesy of https://github.com/kokkos]

William Roshan Quadros

NGP Challenge

20 year “just recompile” free ride is over! “Just
recompile” approach would result in approximately
10x slow down on NGP platforms.

MPI-only is no longer possible because not all cores
can run MPI.

Compute nodes are heterogeneous in both cores and
memory. Scaling requires leveraging node-level
heterogeneous parallelism.

Compute node architectures can be characterized by
increasing thread count and decreasing memory per
thread. Therefore, threading is critical for high scaling.
Performance portability on multiple advanced
architectures is a challenge.

High performance computing on these advanced
architectures requires hybrid programming models
containing inter-node and on-node parallelism.

——

In this case study a test bed for Trinity supercomputer
was used. The test bed contains Intel Knight Corners
(KNC) instead of Intel KNL. |

Two nodes were
allocated in this study.
Each node contains a
socket with two KNC
COpProcessors.

Each KNC has 57 or 61
many integrated cores.

Knights Corner
Coprocessor

GGGGGGGGGGGGGG ry

Fig 2: Test bed contains KNC

Hybrid Programming Model to Scale Legacy
Volume Smoothing on Next Generation Platforms

Sandia
National
Laboratories

Procedure to Scale Legacy Code

STEP 1 - Profile legacy code to identify characteristics
Profile to identify number of hotspots, distribution of
hotspots, etc. to decide rewrite or refactor. TAU has
been used to profile CUBIT, and Laplace volume
smoothing in CAMAL was taking 30% of the overall
Sculpt meshing runtime on our test cases.

STEP 2: Choose a suitable programming model
The next generation platforms would require both
distributed and shared memory programming models.
Also, determine if data parallelism is enough or if task
parallelism is required? In this case study, hybrid MPI
+ Kokkos programming model has been selected.
STEP 3: Implement selected programming model
First, convert the serial code to parallel using the MPI
for distributed level parallelism. Next, make the code
thread safe at hotspots for shared memory
parallelism. In this study, a performance portable
layer such as Kokkos as been used for thread level
parallelism.

STEP 4: Determine optimal runtime parameters
Determine the optimal number of MPI processes and
threads per MPI process based on the underlying
hardware architecture. In this study, a series of
studies were performed to find optimal parameters.
STEP 5: Optimize the code for higher scaling

Optimize the code for efficient memory access,
reduced communication, vectorization, etc. to
achieve higher scaling.

Hybrid Programming Model

e Three levels of parallelism is required on Trinity test
beds: (1) distributed memory parallelism supported
through the Intel MPI library and (2) shared memory
thread level parallelism on the MIC device using
OpenMP, and (3) vectorization for the 512-bit SIMD
Vector Processing Unit (VPU) of KNC.

* Distributed parallelism would require optimal domain
decomposition considering load balancing and MPI
communication cost.

* Thread level parallelism on 57 or 61 core KNC would
require loop-level data parallelism via a threading
library. In this study, Kokkos layer was used on top of
OpenMP library to achieve performance portability.

Kernel (Hot Spot)

In this case study, CAMAL’s Laplace volume smoothing
algorithm was used as the hotspot kernel. Laplace
smoothing is given by:

L&
Xit1k = ﬁz: L (1)
i=1

where N is the number of adjacent nodes to node k, x; ; is
the coordinate of the j' adjacent node of node k in the /th
iteration, and x;,, , is the new j+1™ iteration coordinate of
node k.

Kokkos pseudo code is give below:

Case Study Results

* One of the studies focused on node-level threading
performance on a KNC MIC device. Therefore, MPI-
related parameters were kept constant as shown in
Table 1. The MPI-only version shown in row 1 is
regarded as the baseline application.

* As we increase the threads per process, the deviation
from the linear scaling increases due to thread
startup and overhead costs as shown in Figure 3.

e On a MIC device, 95% reduction in runtime (a 20X
speedup) is observed, as the single process runtime
of 278.88 seconds is dropped to 14.24 seconds.

// data parallelism on N nodes
MycClass::class_method(function arguments)

Table 1. 5-trial average result of volume smoothing on a
5 million node hex mesh

laplacian_smooth_at_node(k),

* Kokkos provides a minimal overhead abstract layer 300

* Intel VectorAnalyzer and compiler flags/reports can be { ..
used to vectorize the code to achieve fine-grained // 1st argument: number of nodes Number | qpregq | Process | Acwal o ldeal o bereenage
parallelism on VPU. // 2nd argument: this object Processes | PO FTocess Thread (sec) (sec)
__Ii Kokkos::parallel_for(N, *this); 4 1 7 278.88 278.88 0%
. | . 7 7
|
Performance Portability L : : S I I it
I — — - -
+ Performance portabilty and preserving the source || |/ 0Perotor)for Kokkos: paralelfor I L O N L WL
code from potentially detrimental parallel directives }! I\{/ch ass::operator()(int k) const . - . 23'64 - '71 171.%
for multiple architectures are important for software 1| - '- — o
aintenance | // Laplace smoothing at node k given by Eq (1) + o4 220 ta.24 439 226.79%
:
:
|

that isolates user code from device specific hardware

architectures. Goal is to write one implementation !
which compiles and runs on multiple architectures. i : TeSt Case

 Kokkos supports MPI+“X” programming model to scale
on both KNC MIC-based and GPU-based next
generation platforms.

 Kokkos provides performant memory access patterns
across multiple architectures and leverage
architecture-specific features where possible.

 Kokkos currently uses device specific backend libraries
such as CUDA, pthreads, and OpenMP for thread-level

parallelism. Fig 3: 5 million node mesh Fig 4: Linear scaling and actual scaling graphs

—&— Actual runtime = = = =|deal runtime

| Kernel: Laplace volume
i smoothing

' Iterations: 10

. Data size: 5 million nodes 50
i No. of MPI processes = 4

No. of threads per process
=1to 64

- -
-
-
—
- - e e

1 2 4 8 16 32 64
Number of OpenMP Threads per MPI Process

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 140.43 139.44 0.74% :
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

<\ U.S. DEPARTMENT OF ///A '

\ J._ g%
& =\ = v -‘O,‘ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
%a @ j E N E RGY ///’ v A u"ﬂ Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
SBTES National Nuclear Security Administration

SAND No. 2011-XXXXP

