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Abstract

Many phenomena in the applied and natural sciences occur on surfaces. To solve accurately the corresponding partial differential
equations (PDEs), it is often necessary to adapt the mesh, based upon the geometry of the surface, or based upon the behaviour
of the PDE solution. Moving mesh methods are particularly efficient strategies in many situations. PDEs explicitly involving the
mesh speed, called moving mesh PDEs (MMPDEs), offer a robust technique to adapt the mesh. In this work, we implement, with
the C++ finite element library deal.II, a mesh adaptation based on Winslow’s adaptation functional. We generalize the moving
mesh problem to curved surfaces by deriving appropriate mathematical and finite element formulations. Furthermore, a simple
method using surface parameterization is developed and implemented using deal.II. The results, for both fixed and dynamically
adapting meshes, demonstrate the effectiveness of the method.
c© 2015 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of organizing committee of the 24th International Meshing Roundtable (IMR24).
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1. Introduction

The solutions to partial differential equations (PDEs) defined on surfaces are of great interest to many researchers
in the applied and natural sciences. Applications emerge from fields as diverse as biology (e.g., pattern formation on
surfaces [3]), material science [20], image processing (e.g., segmentation on surfaces [19]) and fluid dynamics [21], to
name but a few. But while numerical methods for PDEs in Rd have been developed and analyzed in a vast and thorough
body of research, much less attention has been devoted to the numerical solution of PDEs on surfaces. Furthermore,
almost no analytical solutions exist on general surfaces. The development of efficient numerical methods is therefore
critical.

The most popular methods for the solution of PDEs on surfaces all require the definition of a mesh. To accurately
solve these PDEs, it is often necessary to adapt the mesh to the specifics of the problem. Adaptive techniques for
PDEs are traditionally sorted into three categories:

1. We can adapt the mesh by adding or removing grid points in selected parts of the domain. This is called h-
adaptivity.
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2. Another technique, when using the finite element method, is to vary the degree of the polynomial approximations.
This is called p-adaptivity. Sometimes, h- and p-adaptivity are used together, forming a hybrid category called
hp-adaptivity.

3. Lastly, the initial grid points may be evolved in order to reposition them in an optimal way; one can adapt based
upon the geometry of the surface, or based upon the behaviour of the PDE solution. This moving mesh approach
is the adaptive technique that we consider here.

Moving mesh methods are efficient for a variety of problems in Rd [15], including those involving blow-up [4] and
self-similarity [5]. A PDE explicitly involving the mesh speed, called a moving mesh PDE (MMPDE), is sometimes
introduced to yield a particularly robust technique to compute the mesh transformation. The theory of MMPDEs
for the adaptive computation of PDEs has been developed over the last decade by Huang, Russell and collaborators
[7,14,15]. In these methods, a two-step approach is typically adopted, one for the solution of the mesh and another
for the computation of the physical PDE solution. While in theory a simultaneous solution is possible, it is typically
observed that little benefit is derived from such a coupling.

There has been very little research carried out on applying moving mesh methods to the solution of PDEs on
surfaces. Indeed, to our knowledge there are presently no published articles on solving MMPDEs on surfaces. Our
objectives are to study the feasibility of this idea and to propose methods to compute moving meshes on surfaces. As
a first step to understanding these methods better, we consider the evolution of moving meshes on simple surfaces that
accept a continuously invertible parameterization.

This paper is organized as follows. In section 2, we introduce the mathematical background of MMPDEs and derive
the equations and finite element formulation for a class of problems in the plane. In the conclusion of this section,
we implement our method and solve a problem with the C++ finite element library deal.II. In the following section,
we generalize the moving mesh problem to curved surfaces by deriving appropriate mathematical and finite element
formulations. Subsequently, we develop a simple method, using surface parameterization, that is implemented in
deal.II. Section 4 gives numerical experiments for a selection of parameterized surfaces in 3D. Lastly, section 5
presents the conclusions of this work.

2. A primer on moving mesh partial differential equations

This section begins with a brief introduction to the theory and derivation of MMPDEs. Next, a method and its
discretization are given, followed by a 2D numerical experiment. Further details on MMPDE methods may be found
in [7,14,15,22].

2.1. Overview

Denote by Ω the given physical domain that we wish to adaptively mesh. Further, denote by Ωc the computational
domain; this domain is often chosen to be a simply connected domain that can be meshed easily. A moving mesh
transformation is defined by the smooth mapping x that takes a coordinate in the computational domain and returns a
coordinate in the physical domain:

x : Ωc → Ω,
ξ 7→ x. (1)

The choice of transformation mapping x defines the moving mesh technique.
Moving mesh PDEs are partial differential equations whose solution is a transformation mapping that preserves

certain mesh properties. A survey of these properties and the derivation of MMPDEs follows. Notably, MMPDEs
should generally be based on the inverse coordinate transformation ξ = ξ(x) rather than the direct coordinate transfor-
mation as this guarantees existence and uniqueness of the solution, as well as prevents the eventual folding of the mesh
[15]. Thus, in practice, we will solve the MMPDE formulated in terms of ξ(x) and then determine the transformed
coordinate x(ξ) by a Newton’s method approach, as described in [10].
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2.1.1. Derivation of MMPDEs
MMPDEs are derived by minimizing an adaptation functional. Of interest to us are general adaptation functionals

of the form

I[ξ] =

∫
Ω

F(∇ξ, ξ, x) dx, (2)

where the integrand F enforces the properties of the mesh that we wish to conserve.
Setting the first variation of the functional (2) to zero leads to the corresponding Euler-Lagrange equation. After

lengthy calculations [15], we obtain the elliptic PDE∑
i, j

Ai, j
∂2x
∂ξi∂ξ j

+
∑

i

Bi
∂x
∂ξi

= 0, (3)

where

Ai, j =
∑
k,s

(
(ai)T ∂2F

∂as∂ak a j
)

as(ak)T − J
∑

s

(
(ai)T ∂2F

∂as∂J

)
as(a j)T (4)

− J
∑

k

(
(ai)T ∂2F

∂J∂ak

)
ai(ak)T + J2

(
2
J
∂F
∂J

+
∂2F
∂J2

)
ai(a j)T ,

Bi = −
∑

k

(
(ak)T ∂2F

∂ai∂x
ak

)
+ Jai

(
∂2F
∂J∂x

)T

. (5)

The quantities ai := ∂ξi x and ai := ∇ξi are called the covariant and contravariant base vectors, respectively. The
matrix J := ∂x/∂ξ is the standard Jacobian matrix and we denote its determinant by J. Finally, the 3 × 3 matrices
∂2F

∂as∂ak and ∂2F
∂as∂x are defined componentwise by(

∂2F
∂ai∂ak

)
(m,n)

=
∂2F

∂(ai)m∂(ak)n
,

(
∂2F
∂ai∂x

)
(m,n)

=
∂2F

∂(ai)m∂xn
.

Typically, solving (3) is done efficiently by solving the corresponding gradient flow equation [9,13]. This turns the
elliptic PDE (3) into an MMPDE involving the direct coordinate transformation x,

∂x
∂t

=
1

τb(x, t)

∑
i, j

Ai, j
∂2x
∂ξi∂ξ j

+
∑

i

Bi
∂x
∂ξi

 . (6)

The balancing function b(x, t) introduced by the gradient flow should be chosen so that all mesh points move with a
uniform time scale, while the user-controlled parameter τ > 0 is chosen to adjust the time-scale of the mesh movement.
See [15] for details.

2.1.2. Definition of the adaptation functional
In two or more dimensions, an effective adaptation functional (2) can be designed by combining the concepts of

equidistribution and alignment. We now review these concepts, and give our choice of adaptation functional.
We begin by illustrating the concept of equidistribution for a simple one-dimensional example. Working on a

closed interval [a, b] and given a function ρ(x) > 0, an equidistributed mesh {xi} : a = x1 < x2 < · · · < xN = b satisfies∫ x2

x1

ρ(x)dx = . . . =

∫ xN

xN−1

ρ(x)dx.

The function ρ controls the density of the mesh points and is referred to as the monitor function. To extend this concept
to a continuous equidistribution principle, we introduce the coordinate transformation x(ξ):

x = x(ξ) : [0, 1] −→ [a, b]. (7)
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The coordinate transformation (7) is an equidistributing coordinate transformation for ρ(x) if it satisfies∫ x(ξ)

a
ρ(z)dz = σξ, 0 ≤ ξ ≤ 1, (8)

with σ =
∫ b

a ρ(z)dz.
In two or more dimensions, equidistribution imposes that all elements have a constant volume, i.e.,∫

K
ρ(x) dx =

σ

N
, ∀K ∈ Th,

where N is the number of the elements of Th and σ =
∫

Ω
ρ(x) dx. While equidistribution uniquely defines a mesh

transformation in the one dimensional case, in higher dimensions each cell will only be defined up to a rotation. To
specify these degrees of freedom we apply the concept of alignment, which leads to preferred directions for the cell
edges to follow. Specifically, we require that all elements are equilateral in a given metric M. Letting γ1, . . . , γd(d+1)/2
be the edges of an element K in Rd, this condition requires that

|γ1|M = . . . = |γd(d+1)/2|M , ∀K ∈ Th,

where |γi|M denotes the length of the edge γi in the metric M.
To complete the formulation, we must incorporate equidistribution and alignment into an adaptation functional.

Huang and Russell [15] present several adaptation functionals of this type. In this paper, we work with the simple and
commonly used Winslow’s adaptation functional given by IWin =

∫
Ω

FWin(∇ξ, ξ, x) dx (see equation (2)) where

FWin[{ai}i, {bi}i, {ci}i] =
1

2ω

∑
i

aT
i ai =

1
2ω

∑
i

‖ai‖
2,

and ω = ω(x) is a monitor function1. This leads to the functional

IWin[ξ] =
1
2

∫
Ω

1
ω

∑
i

(∇ξi)T∇ξi dx =
1
2

∫
Ω

1
ω

∑
i

‖∇ξi‖
2 dx. (9)

2.2. Numerical solution of MMPDEs via the finite element method

In this section, we derive a finite element formulation for the MMPDE (6) from the Winslow’s adaptation func-
tional (9). The method is illustrated with an example of moving mesh in two dimensions. For the sake of clarity, the
computational domain is referenced by the coordinates (ξ, η) while the physical domain is expressed in terms of the
coordinates (x, y).

2.2.1. An MMPDE formulation with Winslow’s adaptation functional
We begin by deriving the expression for the MMPDE (6) based on the Winslow’s adaptation function (9), in R2.

To that effect, we substitute the functional (9) into the equations for Ai j (4) and Bi j (5). This yields

B1 =
1

J2ω2

[(
x2
η + y2

η

)
ωξ −

(
xξxη + yξyη

)
ωη

]
, B2 =

1
J2ω2

[
−

(
xξxη + yξyη

)
ωξ +

(
x2
ξ + y2

ξ

)
ωη

]
, (10)

and

A1,1 =
1

J2ω

(
x2
η + y2

η

)
I2, A1,2 = −

1
J2ω

(
xξxη + yξyη

)
I2 = A2,1, A2,2 =

1
J2ω

(
x2
ξ + y2

ξ

)
I2, (11)

1 In a physical application, this monitor function would be based on the solution of the physical problem of interest. Physical applications being
outside the scope of this paper, we will use simple, artificial monitor functions that help illustrate the behaviour of the method.
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where I2 is the 2 × 2 identity matrix [10]. By substituting these coefficients into equation (6) and re-arranging terms
we obtain the desired MMPDE:

∂x
∂t

=
1

J2ω2τb(x, t)

{(
x2
η + y2

η

) ∂

∂ξ

(
ω
∂x
∂ξ

)
−

(
xξxη + yξyη

) ∂

∂η

(
ω
∂x
∂ξ

)
−

(
xξxη + yξyη

) ∂

∂ξ

(
ω
∂x
∂η

)
+

(
x2
ξ + y2

ξ

) ∂

∂η

(
ω
∂x
∂η

)}
. (12)

Grid points along the boundaries of the domain are also moved adaptively [7]. In our method [10], their positions are
evolved by solving the one-dimensional equidistribution equation (8) using de Boor’s algorithm [11]. Note that the
monitor function for the boundary equation should be chosen so as to ensure that the adaptivity along the boundaries
and interior of the domain are consistent; see [10] for details. In practice, we choose ρ(x) = ω(x) for any x ∈ ∂Ω.

2.2.2. Variational formulation
The weak formulation is obtained by multiplying each side of equation (12) by a function v ∈ (H1

0(Ωc))2, where
H1

0(Ωc) denotes the Sobolev space of L2(Ωc) functions that are compactly supported on Ωc with a weak derivative that
is in L2(Ωc). Integrating over the domain and applying integration by parts to the right-hand side yields:∫

Ωc

A(x) (ẋ· v) dξ =

∫
Ωc

ω(x)
{
−
∂

∂ξ
(α1(x)v) ·

∂x
∂ξ

+

[
∂

∂η
(α2(x)v) ·

∂x
∂ξ

+
∂

∂ξ
(α2(x)v) ·

∂x
∂η

]
−
∂

∂η
(α3(x)v) ·

∂x
∂η

}
dξ, (13)

where α1(x) = x2
η + y2

η, α2(x) = xξxη + yξyη, α3(x) = x2
ξ + y2

ξ and A(x) = J2ω2τb(x, t).
Clearly, the weak form (13) requires partial derivatives of the α-coefficients, and consequently second partial

derivatives of the solution. However finite-element solutions that are (globally) continuously differentiable are much
more expensive (computationally speaking) and complex than continuous elements. In order to circumvent this dif-
ficulty, we compute second derivative information via a recovery technique [6]. This leads to an alternate MMPDE
in which the nonlinear α-coefficients in (13) are replaced respectively by α̃1(x) = X̃2

η + Ỹ2
η , α̃2(x) = X̃ξ X̃η + ỸξỸη,

α̃3(x) = X̃2
ξ + Ỹ2

ξ and Ã(x) = J̃2ω2τ p̃(X̃, t). The quantities X̃ξ, X̃η, Ỹξ and Ỹη are globally continuous functions that
equal the average of the functions xξ, xη, yξ and yη at each cell boundary [15].

2.2.3. A finite element method
Let’s define the time step-size ∆t and the time discretization tn = t0 + n∆t, for any n = 0, 1, . . . ,N. The numerical

solution at time tn is denoted by xn. We use a lagged backwards Euler scheme, i.e., a backward Euler scheme in which
the nonlinear term is evaluated at time tn. This leads to the fully discrete scheme

∫
Ωc

Ã(xn)
(

xn+1 − xn

∆t
· v

)
dξ =

∫
Ωc

ω(xn)
{
−
∂

∂ξ
(α̃1(xn)v) ·

∂xn+1

∂ξ

+

[
∂

∂η
(α̃2(xn)v) ·

∂xn+1

∂ξ
+
∂

∂ξ
(α̃2(xn)v) ·

∂xn+1

∂η

]
−
∂

∂η
(α̃3(xn)v) ·

∂xn+1

∂η

}
dξ. (14)

For the spatial discretization we use a square computational domain Ωc with edges parallel to the axes ξ and η. The
domain is tessellated into a uniform mesh of square elements. We choose the finite element space Vh to be the set of
piecewise bilinear functions, i.e., functions defined on Q1(K) = span(1, x, y, xy) with K being the reference element.
The problem is now to look for an approximation xn

h of xn in Vh. Let {φ j, j = 1, . . . ,m} be an orthonormal basis for
the finite-dimensional space Vh. We can then write xn

h in that basis to get

xn
h(ξ) =

∑
j

Cn
jφ j(ξ).
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A similar expression holds for yn
h. Substituting these expressions into Equation (14) leads to two matrix systems (one

for each of xn+1
h and yn+1

h ) of the form (
Kn

1 − ∆tKn
2

)
Cn+1 = Kn

1Cn, (15)

where the coefficient matrices are(
Kn

1

)
(i, j)

=

∫
ΩCh

Ã(xn
h)φiφ jdξ, (16)

(
Kn

2

)
(i, j)

=

∫
ΩCh

ω(xn
h)

(
−
∂

∂ξ

(
α̃1(xn

h)φi

) ∂φ j

∂ξ
+
∂

∂η

(
α̃2(xn

h)φi

) ∂φ j

∂ξ
+
∂

∂ξ

(
α̃2(xn

h)φi

) ∂φ j

∂η
−
∂

∂η

(
α̃3(xn

h)φi

) ∂φ j

∂η

)
dξ, (17)

and Cn = [Cn
1 Cn

2 · · ·C
n
m]T is the desired solution vector. The matrices (16)-(17) are evaluated by Gaussian quadra-

ture [10] and the non-symmetric system (15) is solved using BiCGStab at each time step [7,10].

Remark 1. The recovery technique requires that at each iteration the necessary information is collected before the
recovery coefficients α̃1, α̃2, α̃3 and Ã can be computed. Our choice of bilinear basis functions and identical square
mesh cells on a square computational domain make this step considerably simpler. We skip the details on how to
compute the recovery variables in deal.II and instead refer the interested reader to [10].

Remark 2. Due to the iterative nature of the BiCGStab solver, the computational complexity of the system (15) is
difficult to estimate precisely. It depends on the number of grid nodes, the order of the finite element bases and the
regularity of the monitor function and of the mesh solution. Note that this system requires the re-assembly of both
matrices Kn

1 and Kn
2 at each time-step, which can become expensive for large systems. This cost of re-assembly can

be alleviated by re-using the sparsity pattern of both matrices from one time-step to another.

2.2.4. Numerical experiment in two dimensions
To illustrate our method, we compute an evolving mesh for Winslow’s adaptation functional with a monitor func-

tion that attains its peak values in a circular region centered at the origin,

ω(x, t) = 10 exp
(
−50

∣∣∣x2 + y2 − (1 − 0.0001t)2
∣∣∣) + 1.

The circle defined by the peak values shrinks in time from a radius of 1 down to 0. We time step via iteration (15)
on a 32 × 32 grid with a time step-size of ∆t = 0.001. Boundary conditions are computed with de Boor’s algorithm
using 212 + 1 = 4097 grid points along each boundary. Figure 1 shows the results: the mesh concentrates around a
circular shape that moves toward the center of the domain, and the radius of the evolving density profile coincides
with the maximum concentration of the monitor function. This example was solved using the finite element package
deal.II [1,2].

3. Moving mesh PDEs on general surfaces

The solution of PDEs on surfaces is of crucial importance for many scientific fields. Moreover, the efficient
numerical solution of PDEs typically requires mesh adaptivity. In this section, we derive a class of MMPDEs on
general surfaces by extending the framework introduced in section 2. We also present a formulation to solve these
MMPDEs on surfaces that accept certain parameterizations.

3.1. Formulation of MMPDEs on general surfaces

This section derives a class of MMPDEs on Riemannian manifolds based on Winslow’s adaptation functional. We
begin with a review of some key concepts in differential and Riemannian geometry [8].

It is a well-known result of Riemannian geometry that the three classical derivative operators (gradient, divergence
and Laplacian) have a generalization on Riemannian manifolds [8]. Consider a Riemannian manifold (M, g) where M
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(a) t = 0.0 (b) t = 300

(c) t = 600 (d) t = 1000

Fig. 1: Example of an MMPDE solution with a time-dependent monitor function focused along a shrinking circle. This example uses Winslow’s
adaptation functional with ω(x, t) = 10 exp(−50 |x2 + y2 − (1 − 0.001t)2 | ) + 1.

is a smooth manifold of dimension n and let (U, ϕ) be a chart with local coordinates (x1, . . . , xn) = ϕ(x) for x ∈ M.
The n × n metric tensor g is defined componentwise as

gi j(x) =

〈(
∂

∂xi

)
x
,

(
∂

∂x j

)
x

〉
g(x)

,

where
{(

∂
∂xi

)
x
, 1 ≤ i ≤ n

}
is the natural basis for the tangent space at x ∈ M. Denote by gi j, 1 ≤ i, j ≤ n, the entries of

the inverse of gi j. Then, for a map f ∈ C∞(M) and a vector field X =
∑n

i=1 bi
∂
∂xi
∈ ΓC∞ , the expressions for the three

classical operators in local coordinates (x1, . . . , xn) are given by

∇g f =

n∑
i, j=1

gi j ∂ f
∂xi

∂

∂x j
,

divgX = divg

 n∑
i=1

bi
∂

∂xi

 =
1√
| det g|

n∑
i=1

∂

∂xi

(
bi

√
| det g|

)
,

∆g f = divg(∇g f ) =
1√
| det g|

n∑
i=1

∂

∂xi

 n∑
j=1

gi j ∂ f
∂xi

√
| det g|

 .
(18)

The Laplacian on a manifold is often referred to as the Laplace-Beltrami operator.
Many of the important theorems in Euclidean spaces extend naturally to Riemannian manifolds. In particular,

extensions of the divergence theorem and Green’s theorem are available [8]. These results enable the derivation of
certain MMPDEs on Riemannian manifolds using the same strategy as in Euclidean spaces. We now illustrate this
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idea for the case of Winslow’s functional and a two-dimensional manifold embedded in R3. By analogy with the
Euclidean case (9), we define the surface functional as

Ig[ξ] =

∫
M

1
2ω

3∑
i=1

‖∇gξi‖
2 dM. (19)

The first variation of functional Ig[ξ] becomes

δIg[ξ] =

∫
M

1
ω

 3∑
i=1

∇gξi· ∇gδξi

 dM.

Using the divergence theorem, we re-write the first variation as

Ig[ξ] = −

∫
M

3∑
i=1

∇g·

(
1
ω
∇gξi

)
· δξi dM.

This being true for all admissible variations δξi, our coordinate transformation solution must satisfy the equation

−∇g·

(
1
ω
∇gξi

)
= 0, ∀i = 1, 2, 3. (20)

We do not solve equation (20) directly, but instead evolve the corresponding gradient flow equation

∂ξi

∂t
=

1
τb
∇g·

(
1
ω
∇gξi

)
, ∀i = 1, 2, 3, (21)

to a steady state solution. Similar to the case of Euclidean space, the balancing function b(p, t), with p ∈ M, is intro-
duced by the gradient flow and should be chosen so that all mesh points move with a uniform time scale. Finally, we
remark that there is a need to map from computational to physical coordinates; this requirement introduces constraints
on the choice of computational domain when a complex geometry arises.

3.2. Solution of MMPDEs on parameterized surfaces

A variety of numerical methods have been developed for the solution of PDEs on manifolds. Broadly speaking,
these methods may be classified according to the manifold representation that they use; common choices include
parametric, triangulated (or more generally polygonal) mesh and embedded representations [18]. Because we wish to
extend the methods and software that we derived in section 2 to manifolds in R3, we consider manifolds that accept a
parameterization Φ.

Assume that for any (p, q, r) ∈ M, there exists (x, y) ∈ R2 such that Φ(x, y) = (p(x, y), q(x, y), r(x, y)). In this case,
the manifold accepts a unique chart (U, ϕ) for all points x ∈ M, where ϕ−1 = Φ and U is the entire manifold M.
Focusing on the vector field term inside the divergence in (21) and using the distributional definition of a vector field,
we observe that

1
ω
∇gξi( f )(p) =

1
ω(p)

∑
j,k

g jk(p)
∂(ξi ◦ ϕ

−1)
∂x j

(ϕ(p))
∂( f ◦ ϕ−1)

∂xk
(ϕ(p)), ∀i = 1, 2, 3

at a point p ∈ M, for any f ∈ C∞(M). This highlights the role played by ϕ. We use this insight to derive a
simpler MMPDE acting over the manifold but defined in the Euclidean space ϕ(M). First, we introduce some notation.
Let the (Euclidean) physical domain be Ω := ϕ(M) ⊂ R2, and assume the (Euclidean) computational domain coincides
with the physical domain, i.e., Ωc = Ω. We denote the vector coordinates of the mesh by ξ = (ξ1, ξ2, ξ3)T , and
introduce the modified coordinate transformation ξ̃ := ϕ ◦ ξ ◦ ϕ−1 : Ω → Ω, the modified monitor function ω̃ :=
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ω ◦ ϕ−1 : Ω → R and the modified balance function b̃ := b ◦ ϕ−1 : Ω → R. Our method is to replace equation (21),
which is defined on the surface, with the following expression,

∂ξ̃ j

∂t
=

1
τb̃(x, t)

∇·

(
1

ω̃(x)
∇ξ̃ j

)
, ∀ j = 1, 2, (22)

which is defined at any point x ∈ Ω. All of the differential operators appearing in (22) are now defined in Euclidean
space. Note that we evaluate the monitor function ω̃(x) using values defined on the manifold. Specifically, for any
x ∈ Ω there exists p ∈ M such that x = ϕ(p). Thus, ω̃(x) = ω(ϕ−1(x)) = ω(p). After solving for ξ̃ = (ξ̃1, ξ̃2)T , we
recover the transformation for the mesh with the formula ξ = ϕ−1 ◦ ξ̃ ◦ ϕ.

Similar to the planar setting considered in section 2.2.1, we can define MMPDEs in terms of the transformed mesh
coordinates, i.e., we can formulate MMPDEs in terms of the direct transformation x(ξ) = x. Define the coordinate
transformation x̃ = ϕ ◦ x ◦ ϕ−1. Our approximate formulation on a parameterized surface is given by MMPDE (12)
where the monitor function is defined on the physical manifold, i.e.,

∂x̃
∂t

=
1

J2ω̃2(x̃)τb̃(x̃, t)

{(
x̃2
η + ỹ2

η

) ∂

∂ξ̃

(
ω̃(x̃)

∂x̃
∂ξ̃

)
−

(
x̃ξ̃ x̃η̃ + ỹξ̃ ỹη̃

) ∂

∂η̃

(
ω̃(x̃)

∂x̃
∂ξ̃

)
−

(
x̃ξ̃ x̃η̃ + ỹξ̃ ỹη̃

) ∂

∂ξ̃

(
ω̃(x̃)

∂x̃
∂η̃

)
+

(
x̃2
ξ̃

+ ỹ2
ξ̃

) ∂

∂η̃

(
ω̃(x̃)

∂x̃
∂η̃

)}
. (23)

The computation of the solution to equation (23) is identical to what was presented in section 2.2.3.

4. Numerical experiments

We now compute adaptive meshes for a selection of parametric surfaces using the methodology defined in sec-
tion 3.2. We first present static meshing on four polynomial surfaces. Next, we evolve a mesh on a quadratic surface.
Finally, we compute an adaptive mesh on two complex surfaces, a human face and a Möbius strip. In all examples, the
discretization is identical to the one derived in section 2.2. In the first examples, the surface is assumed to be a graph.
This leads to parameterizations of the simple form Φ(x, y) = (x, y, z(x, y)). The main implication of this choice is that,
for the sake of mesh movement computation, we can ignore the elevation z(x, y). Since the parameterization Φ does
not alter the other two coordinates, we have x̃ = x. The elevation (and therefore the parameterization) still comes into
play when evaluating the monitor function. In our last example, we compute an adapted mesh on a Möbius strip. This
experiment demonstrates that our method is not restricted to graphs. As in section 2, all implementations are carried
out using the finite element package deal.II [1,2].

4.1. Time-independent mesh-adaptivity on surfaces

We now construct adaptive meshes for four polynomial surfaces: a linear surface z(x, y) = −y, a quadratic surface
z(x, y) = 1 − 2x2, a cubic surface z(x, y) = −x3 and a product surface z(x, y) = xy. For all four surfaces, we select the
same time-independent monitor function,

ω(x, y, z) = 1000 exp
(
−100z2

)
+ 1.

For simplicity, we define the monitor function by its embedding representation, however, there is no technical difficulty
to compute meshes when the monitor function is defined directly (and exclusively) on the surface. The computed
meshes are plotted on Figure 2. In each case, the mesh density is greatest around the elevation z = 0, which agrees
with the maximum value of the monitor function. Comparing the results for the different surfaces, we find that the
greatest mesh densities are observed for the relatively steep linear and quadratic shapes. This result has an intuitive
explanation: In moving mesh methods, the number of cells is fixed. Thus, we expect high mesh densities in regions
where large monitor function values are spatially concentrated. (In this example, large monitor function values arise
over a small region if the surface is steeply sloped around z = 0.) This example was computed on a 16×16 grid, using
a time step-size of ∆t = 0.1.
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(a) linear surface z(x, y) = −x
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(b) quadratic surface z(x, y) = 1 − 2x2
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(c) cubic surface z(x, y) = −x3
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(d) product surface z(x, y) = xy

Fig. 2: Steady-state meshes for a selection of polynomial surfaces. The smooth monitor function takes on its maximum value at z = 0. We observe
that the greatest mesh density is obtained in a neighborhood of the horizontal plane z = 0.

4.2. Time-dependent mesh-adaptivity on surfaces

In the second example, we evolve a time-dependent monitor function

ω(x, y, z, t) = 100 exp
(
−100(z − 1.3 + 0.001t)2

)
+ 1

on the quadratic surface z(x, y) = 1 − 2x2. The monitor function attains its maximal values on a horizontal plane that
descends linearly with time. In an initial phase, the region of high mesh density appears at the top of the parabola,
before splitting into two dense regions. The two regions of high mesh density then proceed down both branches
synchronously. This splitting of the dense region and subsequent symmetrical evolution is handled by the method
without any special treatment. This example was computed on a 16 × 16 grid, using a time step-size of ∆t = 0.1.

4.3. Mesh-adaptivity on more complex surfaces

Our moving mesh method is versatile enough to be transposed easily onto more complex surfaces. Of particular
interest is mesh adaptation on shapes defined by polygonal meshes. As a first illustration, consider mesh adaptation
on the face of the human torso model provided courtesy of INRIA [17] by the AIM@SHAPE-VISIONAIR Shape
Repository [12]. We use the parameterization Φ : [−1, 1]2 → M with Φ(x, y) = (0.055x,−0.005 + 0.055y, z), with the
y-axis being defined by the line of the eyes, the x-axis oriented such that the face is facing the viewer when plotted in
the (x, y)-plane and z describing the surface of the face. We specify our desired curvature-dependent mesh adaptivity
by setting the monitor function equal to the root mean square value of the curvature in each cardinal direction. To
emphasize the area around the right-eye, the monitor function is scaled by a large factor in the upper-right quarter of
the face. Figure 4 shows the original and adapted meshes using our method. With this choice of monitor function,
an increased mesh density is obtained for the curved regions bounding the right eye, to the detriment of the nose,
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(b) Time t = 800 (z = 0.5)
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(c) Time t = 1300 (z = 0.0)
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(d) Time t = 1800 (z = −0.5)

Fig. 3: Mesh movement on a parabola at various times t. The value of z that maximizes the monitor function ω is given in parentheses. We observe
that the region of high mesh density descends linearly with time.

cheeks and left eye. Naturally, if other features are to be emphasized, a suitably modified monitor function should
be specified. Our primary conclusion is that mesh adaptivity on a complex surface can be accomplished simply by
modifying a planar MMPDE code. This example was computed on a 64 × 64 grid using a time step-size of ∆t = 0.1.

In our last application, we move a mesh on a Möbius strip. A Möbius strip is a non-orientable three-dimensional
surface with only one side and one boundary. We use the parameterization Φ : [−1, 1]2 → M with Φ(u, v) = (x, y, z)
and 

x(u, v) =

(
1 +

v
2

cos
(u + 1)π

2

)
cos(u + 1)π,

y(u, v) =

(
1 +

v
2

cos
(u + 1)π

2

)
sin(u + 1)π,

z(u, v) =
v
2

sin
(u + 1)π

2
.

This defines a Möbius strip of width 1, with an inner circle of radius 1 centered at (0, 0, 0). We use the monitor
function ω(x, y, z) = 1 + 100 exp(−10z2). This monitor function takes on its maximum value at the elevation z = 0,
i.e., v = 0 or u = ±1 in the computational variables. Results for a 32 × 32 grid and a time step-size of ∆t = 0.1 are
shown in Figure 5. We observe that there is an increase in the mesh density towards the centre of the strip and that the
maximum density occurs in the most vertical region. A similar effect was previously found in the results of Figure 2.

5. Conclusions

This paper considers the computation of adaptive grids on surfaces using MMPDEs. In section 2, a brief introduc-
tion to the theory and derivation of MMPDEs is given. This is followed by a derivation of the gradient flow equations
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(a) Original Face

(b) Adapted Face

Fig. 4: Mesh adaptation on a human face based on a curvature-dependent monitor function.

for Winslow’s adaptation functional. This section also gives a finite element formulation for the corresponding MM-
PDE in R2 and provides details on our deal.II implementation. An example for the evolution of a 2D adaptive grid
is given to validate our code. Section 3 derives the gradient flow for Winslow’s adaptation functional on general sur-
faces. This section also gives a simple method to compute solutions on surfaces that accept a continuously invertible
parameterization. Our approach builds on top of the methods and code developed for the planar case. In section 4,
adaptive meshes are computed on a variety of surfaces including a quadrilateral mesh representation of a human face.
The results are promising.

This research is to our knowledge the first to compute adaptive grids on surfaces using MMPDEs. The amount of
work remaining is therefore vast. Interesting extensions include the design of fast parallel algorithms and methods for
the direct solution of MMPDEs on general surfaces without parameterization. Also of great interest is the study of
methods for the adaptive solution to PDEs defined on surfaces using MMPDEs.
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