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1 Introduction

Three dimensional realistic simulation are often unsteady and include mov-
ing domains. One of major challenges associated with such simulations is the
robust mesh generation for the moving domain. There has been significant re-
search and development in this specific field[1, 2, 3, 4]. We describe a method
for generating conforming tetrahedral mesh to the given C? continuous sur-
faces in R® immersed in a non-conforming tetrahedralization. The method
consists of constructing a homeomorphic mapping from a subset of tetrahe-
drons in a background mesh to the ones conforming to the immersed set of
surfaces. It relies on the way we parametrize the surfaces of the immersed
domains over a collection of a nearby triangular faces with their closest point
projections and extension of the same map for the local perturbations of the
vertices in the neighborhood these surfaces.

1.1 Universal Meshes

In order to guarantee existence of such a mesh without changing the connectiv-
ity of the background mesh, we need to impose restrictions on the background
mesh. These restrictions define a family of surfaces for which a conforming
tetrahedral mesh can be generated from the background mesh. We say that
the background mesh is a universal mesh for such a family of surfaces. The
notion of universal meshes is particularly useful in large deformation, fluid
solid interaction problems and in numerical schemes that require iterating
over the geometry of domains. The same background mesh can serve as the
universal mesh for the evolving domains. With no conformity requirements,
the universal mesh can be adopted to tetrahedralize large family of domains
(C? regular) immersed in it, including ones realized over several updates dur-
ing the course of simulation. This presents a significant algorithmic advantage
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for such simulations since this avoids the re-meshing and hosts of issues asso-
ciated with it. We have presented a way to parameterize the set of C? regular
surfaces by using the fixed background mesh as a universal mesh in [5].

2 Background Mesh to Conforming Meshes

We consider the problem of generating a conforming mesh using a subset of
tetrahedrons from a background mesh 7; where the selected faces of tetra-
hedrons conform onto the boundary of a C?-regular bounded open domain
2 € R3 while maintaining the connectivity of 7j,.

2.1 Definitions

A mesh of tetrahedra in R? is a collection of tetrahedra such that

each tetrahedron in T' € T}, is a non-empty set,

if T, and T, are distinct tetrahedra in 7y, then T; N7y is either empty,
a common face, a common edge, or a common vertex (empty, a common
edge, or a common vertex).

The background mesh Ty, is a mesh of tetrahedra such that 942 is immersed
in 7p: 002 = Urer, TNONR. A curved triangle K is a subset of R? homeomorphic
to a triangle. A mesh of curved triangles KCh, is a collection of curved triangles
defined by a mesh of triangles Kj, and a map Mj,: I, — R3, with I}, = Ugex,
so that My, : I, — My (I},) is a homeomorphism. Each curved triangle K¢ /Eh
is the image under Mj, of a triangle K € Kj,, namely, K= My, (K). see Fig. 1.

A mesh of curved triangles over I is a mesh of curved triangles for which
My, (I'y,) = I'. We shall alternatively refer to a mesh of curved triangles over
I' as a triangulation of I".

We indicate an orientation for I with the function

—1lifz € £
s(z) = {+1 otherwise. (1)

Finally, the closest point projection onto I', 7 : R® — I', is defined as 7(x) :=
arg minyer d(z,y). Here d(-,-) is the Euclidean distance in R3. Because I is
a C?%-regular boundary, 7 € CY(R3,I)

No conformity is assumed between T, and I'. We next define a mapping
Mj, and a set ICp, of faces of tetrahedra in 73 that, under suitable conditions
(See [6]), yield a mesh of curved triangles over I" by deforming the faces in Kp,
onto I" and then extend the same map to generate the conforming tetrahedral
mesh T,°.
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2.2 Positively cut tetrahedrons and Surface Parameterization

We introduce the terminology of the positively cut tetrahedrons by I'. We say
that a tetrahedron in 7 is positively cut by I" if s = +1 at three of the four
vertices of the tetrahedron and s = —1 at one vertex. We call the face shared
by the vertices having s = +1 in the positively cut tetrahedron, a positive
face, Kp,, with respect to I'. The union of positive faces in 7, is denoted
by I},. As the map to construct the mesh of curved triangles over I" we set
My, = w|IT'y, namely, M}, is the restriction to I}, of the closest point projection
onto I'. M}, is homeomorphism over any K, € I}, for sufficiently refined and
acute type of tetrahedrons ( Theorem proved in [6]). Hence My (I},) defines a
curved triangles mesh of I', which is also a parameterization of I".

Fig. 1: The figure on the left shows a tetrahedron positively cut by I'. The arrows
shows the corresponding the closest point projection of the positive vertices. The
figure in the middle shows the projection of the positive vertices via M) as well
as the corresponding T' € T after the mapping. The one on the right shows the
corresponding curved triangle exactly conforming to the surface and approximating
triangle in blue and black color respectively.

2.3 Description of the Meshing Algorithm

Let 775“" be the collection the tetrahedrons in 7 such that at least one of
the vertices of these tetrahedron belong in B(I',R,) := {z € R3 : d(z,T") <
R, & s(x) = —1}. Here R, is equal to a few multiple of the mesh size h.
The meshing algorithm consists of transforming 7,°“® to 7,¢ and is succinctly
summarized as the mapping M, defined over vertices in ’7715“1’ as

My(z) =z — fa(z)n(r(z)) (2)
Here, fj,(x) is defined using the parameters o € (0,1] and R, > h as follows;

) é(x), if z € Iy,
Inl@) = {ahmax{o, 1+ %f)}, x € . ®)
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Fig. 2: The conforming tetrahedral meshes and their cut sections for a set of smooth
surface generated by using the same background mesh as a universal mesh are shown.

Parameter « is chosen such that (1 + RLT)*1 < a < 1. It is clear that the
mapping, My, perturbs the vertices along the direction of the local normal to
I' by a distance modulated by fp, (See (2), (3)). The action of M}, on positive
faces is: x € I, = fu(x) = d(x) = My(z) = w(x). Where the last
equality holds when I is sufficiently smooth and x lies close to it. In order
to accommodate the snapping of vertices of positive faces on to I, vertices
in the neighborhood B(I, R,) are relaxed with respect to I" based on their
distance from I'. The vertices in 7; farther than distance R, from I are not
perturbed: Since R, is chosen to be a few multiples of the mesh size, (3) indeed
shows that M), is a local perturbation of vertices near I'. It is also a small
perturbation because the distance by which vertices are perturbed is dictated
by fr and |fn] < ah.

The form of f;, in (3) is particularly suitable for relaxing vertices in back-
ground meshes that have uniformly sized tetrahedrons near the boundary. It
leaves much to be desired notice that f; is in fact discontinuous at I',. This
is not a problem as we only need control over the magnitude of fj; and its
difference quotient over vertices near I'},. It would be important to note that
it is assumed that the mapping M} is homeomorphism. We are working to-
wards showing the local homeomorphism of the mapping for any tetrahedra
T e 7;lsub. There is certainly room to improve the choice of f, especially to
relax vertices by distances as well as choice of directions that lead to overall
increase in the quality of the mesh.
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Fig. 3: The figure on the right shows an octree constructed around the given surface
and the background mesh. The figure in the middle shows the parts of 7'? to be
extracted over different processors in different colors. The last figure shows that the
parts of the conforming mesh to be computed over different processors.

3 Examples and Future Direction

We immerse a high genus arbitrarily non-convex C? continuous surface in
the background tetrahedralization and allow the surface to go through vast
topological changes. Fig. 2 show the generated conforming tetrahedral meshes.
We intend to thoroughly explore the restrictions required to be imposed on
the background tetrahedralization 7T, in order to guarantee the construction
of a homeomorphic mapping M}, that leads to a conforming mesh 7*. We plan
to pursue this problem in the similar manner as done by Rangaranjan and
Lew [1] for universal meshes in R? with non-conforming triangulations. We are
working towards an efficient implementation of this algorithm over multiple
processors which takes advantage of the explicit mapping (2), a preliminary
example is shown in figure 3.
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