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Abstract

A new aligned metric-based anisotropic mesh generation procedure is presented. The approach uses an advancing-point type point
placement that aligns the elements with the underlying metric field. It is based on well-proven methodology combined with new
novel point-placement strategies that are aligned with an underlying metric field. This simple strategy produces solution-adapted
anisotropic meshes that are optimal in size and alignment with the solution gradients upon which the metric field is based. The
overall methodology is implemented in a 2D process that is fully extendable to 3D. Results for several analytical and actual CFD
simulation examples are presented that demonstrate that aligned high-quality anisotropic meshes that are optimal for the solution
process can be reliably generated.
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1. Introduction

The benefits and fundamental concepts of metric-based mesh adaptation for dealing with anisotropic physical
phenomena are well established [16]. Several successful examples [3-5] with real-life problems have proven its
ability to efficiently improve the ratio between solution accuracy and the number of degrees of freedom. This success
has been based on the following key points:

o Efficient adaptive anisotropic mesh generator that can handle extreme anisotropy
e Accurate metric-based anisotropic error estimates: feature-based or adjoint-based
e Appropriate operator on metrics: interpolation, intersection and gradation

e Accurate solution transfer for transient problems

There are several solver and meshing tools that utilize a solution adaptive metric-based concept. Some examples in 3D
include Epic, Feflo.a, Forge3d, Fun3d, Gamanic3d, MAdLib, MeshAdap, Mmg3d, Mom3d, Tango, and AdapLibrary
[4,7,8,11-13,18,22]. It is worth mentioning that many of these codes include adaptive remeshers based on local
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mesh modifications and others are mesh generation codes using Delaunay kernels or related approaches. Existing
approaches assume that mesh quality and edge length sufficiency are fully satisfied if true in metric space. However,
element shape and alignment with the metric field also impacts accuracy and efficiency of the solution process. In
addition, during mesh generation without alignment, a local loss of anisotropy can occur when an element is generated
that is not aligned (as an ideal equilateral element in metric space can vary in shape from isotropic to highly anisotropic
as it is rotated). There is a need to investigate approaches that can provide improvement in this aspect and the present
work seeks to do that.

The approach used in this work is based on an existing advancing-front method with local-reconnection/edge,face-
swapping for mesh connectivity optimization [19-21], which is known to generate very-high quality unstructured
meshes as compared to Delaunay type approaches. A new extension of this methodology to metric-based anisotropic
mesh generation wherein the advancing-front type point placement is modified to satisfy a metric space definition is
used in our approach. All geometric operations are performed in metric space with a consistent operational framework
as defined in [16].

In addition a novel point placement algorithm has been developed to align the mesh elements with the solution
based metric field. When new points are created using the advancing-front point placement they are by default
aligned in physical space with the edge (or face in 3D) that locally represents the front. In metric space the ideal point
placement is chosen to form triangular or tetrahedral elements that are ideal in metric space and aligned in physical
space. In our approach the alignment is performed with the local metric field, rather than solely with the frontal edge
(or face). Further improvements can be obtained if we consider local topology. Using right-angle type advancing-
point point placement [19], pseudo-structured type element topology is produced locally that can be fully aligned
with the solution gradients by the metric field. With right-angle type placement two-points are created from the edge
(or three-points from the face in 3D) that locally represents the front. Alignment with the metric produces elements
that are naturally ideal with respect to the metric field and also pseudo-structured in the case of right-angle point
placement. Results with our initial work in 2D are presented for analytical and actual cases along with a discussion
on the natural extension to 3D.

2. Metric-based mesh generation

This section recalls the main concepts of metric-based anisotropic adapted mesh generation. Here the discussion
is largely focused on 2D aspects used in the present work. A similar discussion focussed on 3D is presented in [20].

2.1. Basics of metric

An Euclidean metric space (R, M) is a vector space of finite dimension where the dot product is defined by a
symmetric definite positive tensor M, called metric tensor:

W v = Vg = u Mv)="uMv, for(u,v)eR>xR>. (1)

The dot product defined by M makes R? become a vector space supplied by norm and distance. In these spaces, the
length €5 of a segment ab is given by the distance between its extremities:

Cm(ab) = dp(a,b) = [jab||m. 2

As metric tensor is symmetric, it is thus diagonalizable: M = 'R A R, where R is an orthonormal matrix the lines of
which are composed of the eigenvectors (v;);-1 > of M verifying “RR = R'R = I,. A = diag(4;) is a diagonal matrix
composed of the eigenvalues of M, denoted (4; ), 12, which are strictly positive. From the previous definition, we
deduce that application A? R where A? = dlag(/l ) defines the mapping from the physical space (R?, I5), where 7,
is the identity matrix, to the Euclidean metric space (R%, M). We trivially recover: u-y(v = ((A2 R)u) ((A- R)V) =
"wMv . We are then able to deduce the expression of the 2D cross product, area and angle with respect to M:

(w, v)m

1
uxyv= VdetM(uxv), |Klpy= 5”“ Xm V|l = Vdet M|K|r, and cos(Op) = m,
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where |K|7, is the Euclidean area of triangle K and, u and v are two non-zero vectors.

We will often refer to the geometric interpretation of a metric tensor. The set of points that are at distance 1 of a
point a is given by By = {x | Vix—a)M(x—a) = 1}. It defines an ellipse centered at a with its axes aligned with

_1
the eigen directions of M. Sizes along these directions are given by h; = A, *. This ellipse depicted in Figure 1 (left).

Notice that application AR maps B from physical space into the unit ball in the metric space and, conversely,
. . 1 . . . .
application “R A~z maps the unit ball into B, see Figure 1 (right).

p(vi) =1

(M(VQ) = 1

falv) =1 (®*,7,) (®2, M)

Fig. 1. Left, geometric interpretation of the unit ball B4 where v; are the eigenvectors of M and A; = h[.‘2 are the eigenvalues of M. Right,
mappings between physical space (R?, 75) and Euclidean metric space (R?, M).

In the context of mesh adaptation, the metric field is varying throughout the domain. We then work in a Rieman-
nian metric space defined by M = (M(X))xeq. In that specific case, there is no global notion of scalar product.
However, the notions of length and area defined for Euclidean metric spaces can be extended to Riemannian metric
spaces which will be the main operations performed by the mesh generator. To take into account the variation of
the metric along the edge, the edge length is evaluated with an integral formula. For a Riemannian metric space
M = (M(X))xeq, the length of edge ab is computed using the line parameterization y(f) = a + t ab, where ¢ € [0, 1]:

1 1
{p(ab) = f Y Olip dt = f y'ab M(a + rab) ab dr, (3)
0 0

and, given a bounded subset K of Q, the area of K computed with respect to (M(X))xeq iS:
|K|pm = f Vdet M(x) dx. 4
K

2.2. Metric-based mesh generation

The main idea of metric-based mesh adaptation, initially introduced in [10], is to generate a unit mesh in a pre-
scribed Riemannian metric space. A triangle K, defined by its list of edges (e;);=1.3, is a unit element with respect to
a metric tensor M if the length of all its edges is unit in metric M:

Vi=1,..,3, tpm(e) =1 with £p(e) = 'ej Me;.

If all edges of K are of unit length, then its area |K]| 5 in M is constant equal to:

V3 V3 1
Ky = —= and |K|r, = —=(det(M) .

The notion of unit mesh is far more complicated than the notion of unit element as the existence of a mesh composed
only of unit regular simplices with respect to a given Riemannian metric space is not guaranteed. Therefore, the notion
of unit mesh has to be relaxed. A discrete mesh H of a domain Q c R” is a unit mesh with respect to Riemannian
metric space (M(X))xeq if all its elements are quasi-unit. The definition of unity for an element is relaxed by taking
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into account technical constraints imposed by mesh generators. For instance, to avoid cycling while analyzing edges
lengths in a local remesher, a triangle K defined by its list of edges (e;);=;..3 is said to be quasi-unit if, Vi, £y(e;) €
[\%2, V2]. Consequently, the generated mesh is uniform and isotropic in the Riemannian metric space while it is
adapted and anisotropic in the Euclidean space. This idea has turned out to be a huge breakthrough in the generation
of anisotropic adapted meshes.

2.3. Practical use of metrics

The main advantage when working with metric spaces is the well-posedness of operations on metric tensors which
enable us to manage directional sizes.

2.3.1. Metric Interpolation

In practice, the Riemannian metric space or metric field is only known discretely at mesh vertices. The defini-
tion of an interpolation procedure on metrics is therefore mandatory to be able to compute the metric at any point
of the domain. We consider the log-Euclidean framework introduced in [6]. We first define the notion of met-
ric logarithm and exponential: In(M) := ‘RIn(A)R and exp(M) := '‘Rexp(A)R, where In(A) = diag(In(4;)) and
exp(A) = diag(exp(4;)). We then define the logarithmic addition ® and the logarithmic scalar multiplication ©:

M d M, :=exp(In(My) +In(M;)) and a© M :=exp(a.In(M)) = M*.

The space of metric tensors, supplied with the logarithmic addition & and the logarithmic scalar multiplication ©
is a vector space. We can now easily define the metric interpolation in the log-Euclidean framework. Let (X;);i=1.
be a set of vertices and (M(X;));=1..x their associated metrics. Then, for a point x of the domain such that: x =
Zle a;.X; with Z;‘:l a; = 1, the interpolated metric is defined by:

k k
/M@)=EB&NLM@0=em{§:aﬂmA«&D]. 5)
i=1 i=1

This interpolation is commutative. Moreover, it has been demonstrated in [6] that this interpolation preserves the
maximum principle, i.e., for an edge pq with endpoints metrics M(p) and M(q) such that det(M(p)) < det(M(q))
then we have det(M(p)) < det(M(p + 17 pq)) < det(M(q)) for all ¢ € [0, 1].

2.3.2. Numerical computation of geometric quantities in Riemannian metric spaces

Approximation can be used to evaluate edge length in Riemannian metric space given by Relation (3). However,
an analytical expression can be obtained if we consider that the metric field conforms to a geometric variation law as
described above. Let € = p1p; be an edge of the mesh of Euclidean length ||e||>, and M(p;) and M(p,) be the metrics
at the edge extremities p; and p,. We denote by £.(e) = +/’e M(p;)e the length of the edge in metric M(p;). We
Im (©)

assume €, (€) > €pr,(e) and we set a = .
sz (e)

deduce [1]:

Considering a geometric interpolation law of the metric field, we

m@=mm;m)

(6)

The evaluation of a triangle area in a Riemannian metric space consists in computing numerically Integral (4).
Higher order approximation can be obtained by using Gaussian quadrature and metric interpolation based on the
Log-Euclidean framework. For faster area evaluation, a first order approximation is considered in this work:

3
|KIpm = f Vdet Mdx ~ +/det Mg |K|;, where Mg = exp(% Z log (Mp,.)). @)
K i=1

and p; are the three vertices of triangle K.



D. Marcum and F. Alauzet / Procedia Engineering 00 (2014) 000-000 5

3. Advancing-Front with Local Reconnection Algorithm

The overall Advancing-Front with Local Reconnection (AFRL) mesh generation procedure used in the present
work is a combination of automatic point creation, advancing type ideal point placement, and connectivity optimiza-
tion schemes. A valid mesh is maintained throughout the mesh generation process. This provides a framework
for implementing efficient local search operations using a simple data structure. Points are generated using either
advancing-front type point placement for traditional equilateral type elements or advancing-point type point place-
ment for right angle elements (cf. Figure 4). The connectivity for new points is initially obtained by direct subdivision
of the elements that contain them. Connectivity is then optimized by local-reconnection/edge(face)-swapping with
a combined Delaunay/min-max type (minimize the maximum angle, maximize the edge weight, etc.) type criterion.
The overall procedure is applied repetitively until a complete field mesh is obtained. The basic steps in the procedure
are briefly outlined below and illustrated in Figure 2. More complete details and results are presented in [19,21].

1. Generate a valid initial triangulation of the boundary points only and recover all boundary edges (faces in 3D).

2. Assign a sizing function to each boundary point based on the local point spacing (edge lengths) or a background
metric field.

3. For traditional equilateral type elements, generate points using advancing-front type point placement. Points are
generated by advancing from the edge (face in 3D) of elements that only satisfy the local sizing function on one
edge (face).

4. For right angle type elements, generate points using advancing-point type point placement. Points are generated
by advancing as in the previous step, except multiple points are created by advancing along normals from the
two (three) points of the edge (face).

(e) ®

Fig. 2. AFLR process. (a) resulting mesh after the boundary recovery phase. From (b) to (e), several steps of the point insertion coupled with
connectivity optimization where we can see the evolution of the front. (f) Final mesh after mesh quality optimization.
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5. Set the sizing function for new points from interpolation on the existing mesh or the background metric field.
Reject or average new points that are too close to other new points.

7. Insert the accepted new points by directly subdividing the elements that contain them. The resulting triangulation
is of very poor quality and will need to be improved.

8. Optimize the connectivity using local-reconnection (edge/face swapping). For each element pair, compare the
reconnection criterion for all possible configurations and reconnect using the most optimal one. Repeat this
local-reconnection process until no elements are reconnected. The only characteristic required of the starting
triangulation is that it be valid.

9. Repeat the point generation and local-reconnection process, described above, until no new points are generated.

10. Smooth the coordinates.
11. Optimize the connectivity using the local-reconnection process.

*

4. Aligned metric-based anisotropic mesh generation
4.1. Local remeshing quality issues

As stated in the introduction, local remeshing strategies [4,7,8,11-13,18,22] have been very successful in gener-
ating highly anisotropic adapted meshes mainly because they end-up to be very robust. Indeed, the main idea is to
modify an existing valid mesh to generate the desired adapted mesh. Therefore, any operations which may create an
invalid element is simply rejected. Usually, the local remeshing algorithm consists in analyzing the length of all the
mesh’s edges: edges that are to long are split into two and edges that are too short are collapsed. Then, the mesh
quality is optimized using local reconnection and vertex relocation. One can immediately see that the usual algorithm
cannot reach exactly a size of 1 for all edges and it cannot control explicitly control the point insertion location as this
depends on the analyzed edge. Moreover, it is very difficult to control the angle of the generated elements.

Figure 3 shows a fully unstructured anisotropic adapted mesh obtained with a well-establish remeshing method,
i.e.,, Yams [9]. The mesh globally fulfills the size and the orientation of the metric field and overall quality of the
elements is excellent in metric space. However, in physical space a majority of elements have obtuse angles and the
overall quality of the elements is poor. While such a mesh will produce good accuracy with typical solvers, the solver
efficiency and stability can be adversely impacted by the physical space quality. The issue of physical space quality
will be emphasized in Section 5. It is clear that the ideal situation would be to produce meshes that are optimal in both
physical and metric spaces. An advancing-front method combined with a proper choice of point placement strategy
and metric alignment is a good candidate to solve this issue.

Fig. 3. Anisotropic adapted mesh obtained with well-establish local remesher. The mesh globally fulfills the size and the orientation of the metric
field but locally a majority of elements have obtuse angle.
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4.2. Metric-based AFLR issues

The AFLR algorithm - given in Section 3 - can utilize a sizing function that can be defined by a simple isotropic
length scale based on local edge lengths or a anisotropic metric field. For anisotropic elements a generalized metric
approach is used. Modifications to the original algorithm for anisotropy are accomplished by using a functional
approach for calculation of all geometric properties such as dot products, cross products, reconnection criterion, etc.
Those modifications are described in Section 2.2 and in [20]. Moreover, a dynamic representation of the metric field is
needed during mesh generation. In the present work a metric field is generated from a previous solution and mesh. To
maintain the accuracy of the representation of the metric, the logarithm of the metric In(M) is stored for each vertex
on the given background mesh. Each time, a point is inserted inside the mesh, it is localized in the background mesh
and its metric is interpolated according to Formula (5). The background mesh and metric field can also be represented
by an analytical function for testing purposes.

However, this leads to a mesh generation method equivalent to a local remeshing approach in resulting physical
space quality and doesn’t fully take advantage of using an advancing-front meshing strategy. This shape quality issue
is due to the non-alignment of the edges of the mesh with the metric field. This will be pointed out in Sections
4.3 and 5.1. The unmodified advancing-front approach is lacking an ability to align the elements generated with the
metric field. Modifications are required in order to fully control the point placement by adding alignment. This is the
purpose of the next section.

4.3. Study of point placement strategy in metric spaces

The basics of the two different point insertion strategies previously described in Section 3 and in [19,21] are
illustrated in Figure 4. The advancing-front type placement leads to generation of equilateral type elements. In
this case, each active edge e (the local front) proposes one point from the middle of the edge and in the orthogonal
direction at a distance { = ‘/Tgt’(e). The advancing-point type placement leads to generation of right angle type
elements from which quads can be created. In this case, each active edge e (the local front) proposes two points, one
for each vertex. These points are issued from each edge vertex and in the orthogonal direction at a distance £ = £(e).

Fig. 4. AFLR point placement strategies. Left, standard advancing-front type placement. Right, right-angle advancing-point type placement.

Now, we analyze the behavior of each strategy in the context of metric-based mesh generation depending whether
the front - the active edge - is or is not aligned with the metric direction, i.e., the metric eigenvector.

In the case of active edges not aligned with the metric direction, we notice for both methods that if the point
placement is not aligned with the metric eigenvectors, i.e., it is still done orthogonally to the active edge, this leads to
a loss of anisotropy and the creation of almost isotropic element in physical space while the element is unit in metric
space. On the contrary, if the metric eigenvector direction is used to propose the point then anisotropy is preserved,
see Figure 5 (middle left vs. far left and far right vs. middle right). This adverse effect is illustrated in Figure 7 (far
left and middle right) where adapted meshes have been generated while proposing point in the orthogonal direction
of the active edge. We clearly see the creation of isotropic elements. This is not the case with point placement aligned
with the metric as shown in Figure 7 (middle left and far right).

In the case of active edges aligned with the metric direction, we observe that the advancing-front type placement
creates obtuse angle if the largest triangle side proposes a point in the smallest size direction, see Figure 6 (bottom
left) and Figure 7 (middle left). However, nice angles are obtained if the smallest triangle side proposes a point, see
Figure 6 (top left). With the advancing-point placement and metric alignment, good angles are generally produced
and right angle shape elements are still preserved and quads can be produced, as shown in Figure 6 (top and bottom
right) and Figure 7 (far right).
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From the previous considerations, the adopted strategy is:

Point insertion uses the advancing-point type placement.

Point insertion follows the metric eigenvector direction to propose a new point.

All geometric operations and quality functions are computed in Riemannian metric spaces.

Metric field is defined on a background mesh and the log-Euclidean interpolation used to define the metric at
new points.

The point placement algorithm with metric alignment must be modified as there is not a single unique metric that can
be used for alignment and sizing. An iterative strategy is used wherein the metric at the starting point on the edge
is initially used to place the proposed point. The metric at the proposed point is then evaluated from the background
mesh. If it differs from the starting metric then the metric used for alignment and sizing is evaluated according to
Formula (5) with the starting and proposed point metrics. If this produces a distinct difference in the proposed point
location (as it does when the local metric field variation is large) then the metric is re-evaluated at the proposed point.
This can be iterated upon until convergence. Alternative strategies such as mid-point evaluation (between the starting
and proposed points) can also be used.

Fig. 5. If the active edge is not aligned with the metric direction, then orthogonal point placement produces a local loss of anisotropy for both
point placement strategies (far left and middle right). No loss of anisotropy is produced with point placement aligned with the metric (middle left
and far right).

Fig. 6. If the active edge is aligned with the metric direction, then good angles are obtained (top left, top right, and bottom right), except with
advancing-front when a triangle with an obtuse angle is created (bottom left).

it
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Fig. 7. Illustration of the loss of anisotropy for a typical case using physical space alignment with the advancing-front placement (far left) and
advancing-point placement (middle right). With metric alignment, obtuse angles can still be created with the advancing-front placement (middle
left) and good angles are generally produced with advancing-point placement (far right).
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5. Numerical examples

Several 2D examples are presented to illustrate the effectiveness of the proposed metric-aligned point placement
strategy for generating high-quality aligned anisotropic adapted meshes. For the presented results, the adapted meshes
shown are obtained directly from the aligned anisotropic AFLR method without final quality improvement. This
means that there is no edge collapse, smoothing or final mesh optimization. This better illustrates the effectiveness
of the point placement. Further improvement is expected with those operations included. In addition, for the quad
dominant meshes shown, no metric specific modifications have been incorporated and the merging of triangles can
clearly be improved upon in this respect. The original quad formation algorithm [19] used in the results presented here
is based on boundary/geometry driven alignment and in these cases we have metric-driven alignment. It also relies
heavily on quad based smoothing that is not used in the present cases. The final optimization and quad formation
algorithms were considered add-ons for the present work and while they will be added for production type usage, they
were not considered essential to the present effort which is focused on metric-aligned point placement.

For the results presented in this section, CPU usage for mesh generation with metric alignment is minimal and
of order 15 seconds or less on a MacBookPro laptop computer. No significant effort was put into optimization for
efficiency and the CPU time with further work is expected to decrease significantly.

5.1. Analytic metric fields

In this section, the metric is defined analytically, meaning that each time a new point is inserted its exact metric
value is evaluated. For these analytic examples, results using the metric-aligned advancing-front and advancing-point
placement strategies are shown to emphasized the issues relative to the chosen strategy as mentioned in Section 4.2.

Cross function. The first metric function considered represents two straight anisotropic features that intersect and
form a cross. The direction of these features is aligned with the unit square boundary geometry. The function is

B h)—(Z 0 hy = min(2* X hin, Amax)
Meross(x,y) = ( 0 h;z) where {hy = min(2* X Amin, Amax)

with Apin = 0.005, Apax = 0.1, @, = 20 X [x — 0.5] and @, = 20 X |y — 0.5|. Thus, the initial front of active edges at
the boundaries is perfectly aligned with the metric field and correspond to the smallest edge size. Thus, both AFLR
metric-aligned point placement strategies should act properly.

Indeed, the resulting adapted meshes are perfectly aligned in the anisotropic regions, see Figure 8. We also observe
that symmetry is preserved by both methods and the resulting adapted meshes are composed of only high-quality
elements. The resulting angle distribution in physical space is excellent and appropriate with respect to the chosen
point placement strategy as illustrated in Figure 8 (top right). In the quad dominant case, aligned anisotropic quads
appears naturally. The quality at the junction is somewhat abrupt as no optimization has been used.

Circle function. The second metric function represents a curved anisotropic feature having the shape of a quarter
circle. The domain is still a unit square. The analytical function reads:

-2 2 -2 qin2 -2 _ -2 : oo o
Morere (. y) = (hl cos> 0 + hy* sin* 6 (h;* — h; )005051n0) here {hl min(0.002 X 5%, max)

(h;2 - h;z) cos@sinf hIz sin? 6 + hgz cos? 6 hy = min(0.05 X 29, hyax)

with 0 = arctan(x, y), fmax = 0.1, @ = 10 x]0.75 = y/x2 +?|.

The main difficulty of this example is to properly account for the change in direction of the metric field. We observe
that the resulting adapted meshes are largely aligned with the metric field, see Figure 9. We notice - as expected - that
the advancing-front placement creates large obtuse angle while the advancing-point placement preserves the right-
angle triangle shape for the elements. This is emphasized in the angle distribution in physical space histogram shown
in Figure 9 (top right) where the metric-aligned advancing-point placement achieved clearly a better distribution. In
particular, we observe that 24% of the angle are greater than 150 degrees for the advancing-front placement while it
drops to less than 2% for the advancing-point placement. In the quad dominant case, aligned anisotropic quads again
appears naturally. The quality of the quad dominant mesh can clearly be improved by optimization and accounting
for the metric alignment during quad formation.
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Fig. 8. Cross analytical metric. Adapted meshes generated with advancing-front placement (left), advancing-point placement (middle) and its
resulting quad dominant mesh (right). Top right, angle (in physical space) distribution histograms for the metric-aligned advancing-front placement
(in green) and for the metric-aligned advancing-point placement (in blue) approaches.
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Fig. 9. Circle analytical metric. Adapted meshes generated with advancing-front placement (left), advancing-point placement (middle) and its
resulting adapted quad dominant mesh (right). Top right, angle (in physical space) distribution histograms for the metric-aligned advancing-front
placement (in green) and for the metric-aligned advancing-point placement (in blue) approaches.
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5.2. Analytic functions defining a metric on the background mesh

In this section, the metric is computed numerically from a given analytical function linearly interpolated on a
background mesh. The metric is given by the absolute value of the Hessian of the function which corresponds to
control the interpolation error of the function in L*-norm [2]. As the metric is defined on the background mesh:
each time a new point is inserted the metric is interpolated to get its value. For these two analytic examples, we now
compare results obtained with the metric-aligned advancing-point placement and a well-establish remeshing method
using Yams [9].

Diagonal function. The first function is a simple diagonal anisotropic feature. Unlike the purely analytical case, the
direction of this feature is not aligned with the unit square boundary. The function is

Jaiag(x,y) = tanh (S0 X (y = 0.2x - 0.5)) .

Comparison between the resulting adapted meshes for this easy function clearly demonstrates the improvement in
quality obtained using alignment coupled with an metric-aligned advancing-point method, see Figure 10. With local
remeshing, the mesh is globally aligned with the metric field and globally respects the size field. Locally, elements
are almost aligned and almost of correct size. With metric-aligned advancing-point placement case, the mesh is better
aligned globally and locally. Two diagonal anisotropic bands are expected and observed. Moreover, all elements have
the same size in constant size regions. The mesh is quasi-structured resulting in a very-high quality quad dominant
adapted mesh. We observe no bias due to the metric interpolation on the background mesh. The angle (in physical
space) distribution histogram (for triangle meshes only), shown in Figure 10 (top right), highlights these comments
where only 1.5% of the angle are greater than 120 degrees for the advancing-point strategy while this percentage rises
to 29% for the local remeshing method, 18% being above 160 degrees.

We also notice that the local remeshing method generates a mesh with 45% more vertices for the same metric field
(517 vs 356). Two reasons explain this difference. First, when a right-angle triangle is create with the advancing-point
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Fig. 10. Diagonal analytical function. Adapted meshes generated with local remeshing (left), advancing-point placement (middle) and its resulting
adapted quad dominant mesh (right). Top right, angle (in physical space) distribution histograms for the local remeshing (in green) and for the
metric-aligned advancing-point placement (in blue) approaches.
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placement it has generally two edges of length 1 and one edge of length V2. Second, as a better aligned quasi-
structured mesh is generated, it more optimally fills the space using less vertices. This leads to an average edge length
of 1.13 for the new approach against an average edge length of 0.89 with the local remeshing.

x-shape function. The second function is more complicated and represent a y-shape feature. It has higher anisotropy
than the previous examples and combines straight and curved features. The function reads:

fy(x,y) = tanh (=100 X (y — 0.5 — 0.25 sin(27 x))) + tanh (100 X (y — x)) .

On this more complex function, the same conclusions as previously arise. A higher-quality mesh is clearly obtained
with the metric-aligned advancing-point placement in comparison to the local remeshing approach, see Figure 11.
With metric-aligned advancing-point placement a quasi-structured mesh is achieved in most regions which is empha-
sized by the quad-dominant mesh. The angle (in physical space) distribution is again improved (see Figure 11 (top
right)): 32% and 10% of the angle are greater than 120 and 160 degrees for the local remeshing method, respectively,
which has to be compared to 4.7% and 1.7% for the metric-aligned advancing-point strategy. The new method having
50% of the angles between 70 and 100 degrees.

H AFLR W Local Remeshing
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Fig. 11. Chi-shape analytical function. Adapted meshes generated with local remeshing (left), metric-aligned advancing-point placement (middle)
and its resulting adapted quad dominant mesh (right). Top right, angle (in physical space) distribution histograms for the local remeshing (in
green) and for the metric-aligned advancing-point placement (in blue) approaches.
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Again in this case, the local remeshing method has generated a mesh containing 57% more vertices for the same
metric field (6 793 vs 4 312) for the same reasons stated above. This leads to an average edge length of 1.21 for the
new approach against an average edge length of 0.93 with the local remeshing.

5.3. CFD examples

Three CFD simulations have been run to compare a classic local remeshing approach using Yams [9] and the new
metric-aligned advancing-point method proposed in this paper. In these cases the same non-adapted mesh is used as
the starting point and the metric field is obtained from a corresponding CFD simulation in a classical solution-adapted
mesh/solution manner.

Supersonic scramjet. The first CFD example is an internal steady flow representing a Scramjet engine configuration
at Mach 3. This simulation is representative of compressible problems involving highly anisotropic phenomena with
several strong shocks. Multi-scale anisotropic mesh adaptation is used during the simulation to control the interpola-
tion error of the density flow variable in the L?-norm [15]. Results are shown in Figures 13 and 14.

Supersonic NACA0012. The second simulation is a steady external flow around a NACA(0012 at Mach 1.4 with an
angle of attack equal to 0° where the bottom part of the domain represents the ground. In this simulation, a strong
bow shock appears in front of the airfoil and is reflected by the ground. Goal-oriented anisotropic mesh adaptation
is used during the simulation to control the error of the pressure signature on the ground [17]. Results are shown in
Figures 15 and 16.

Shock-bubble interaction. The third simulation is from an unsteady supersonic straight shock wave impacting a
bubble region of low density. When the shock wave interacts with the bubble, its shape is curved and vortices are
created inside its wake. Time-dependent multi-scale anisotropic mesh adaptation is used during the simulation to
control the interpolation error of the density flow variable in the L?-norm [5]. A single point in time is shown in the
results. Results are shown in Figures 17 and 18.

Comments. Similar to the analytical cases, we observe that the new metric-aligned advancing-point method ends up
with higher quality anisotropic adapted meshes in comparison to classical remeshing. Good alignment of the elements
is obtained even for these cases with a complex widely varying metric field generated from differing error estimates

Table 1. Adapted mesh number of vertices for the CFD examples.

CFD cases Metric-aligned advancing-point Local remeshing
Supersonic scramjet 6354 9216
Supersonic NACA0012 5274 7257
Shock-bubble interaction 13674 18241
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Fig. 12. Angle distribution histograms for the three CFD simulations for the local remeshing (in green) and for the metric-aligned advancing-point
placement (in blue) approaches.
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applied to a numerical CFD solution. Quasi-structured adapted meshes are readily obtained for these more complex
features. This is again emphasized by the angle (in physical space) distribution histograms for each case shown in
Figure 12. The number of angles greater than 120 degrees is considerably reduced by the new approach while a pick is
obtained around 90 degrees as expected. The resulting meshes size, see Table 1, is again smaller with the new method
for the same prescribed level of error for the reasons stated in Section 5.2. The local remeshing method generates
approximately 50% more vertices in each case.

6. Conclusion

A new metric-aligned advancing-point placement strategy has been implemented in a metric-based anisotropic
mesh generation procedure and results have been presented. The approach uses an advancing-point type point place-
ment that aligns the elements with the underlying metric field. It is based on a well-proven methodology and adds
novel point-placement strategies that produce solution-adapted anisotropic meshes that are optimal in size and align-
ment with the solution gradients upon which the metric field is based. The overall methodology was implemented in
a 2D process that is be extendable to 3D. Results were presented for several examples, including analytical cases and
actual CFD simulations. These results demonstrate that aligned high-quality anisotropic meshes that are more optimal
for the solution process can be reliably generated.

Fig. 13.  Supersonic scramjet simulation. Adapted meshes generated and solutions obtained with local remeshing (left) and metric-aligned
advancing-point placement (right).

Fig. 14.  Supersonic scramjet simulation. Close-up view of the adapted meshes generated with local remeshing (far left and middle left) and
metric-aligned advancing-point placement (middle right and far right).
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The 2D implementation presented is an initial version and subsequent work is needed to finalize the methodology
for production usage. Additional work required includes improving mesh alignment and quality using smoothing
during final mesh quality improvement. In addition, incorporating metric alignment into the quad element formation
and smoothing algorithm is needed to improve quad mesh generation

The 2D work presented is fully extendable to 3D. An initial 3D implementation of metic-aligned point placement
using a local remesher, Feflo.a, with a cavity-operator and a version of point placement that is similar in concept
to advancing-point is presented in [14]. The easiest direct extension is to 3D surface meshing (required of any 3D
process). The surface version of the current methodology is largely based on the 2D algorithm [19] and the primary
changes needed are intersection of the 3D metric with the local surface geometry during point placement along with
a variation of the advancing-point placement strategy to account for the 3D surface. For 3D volume mesh generation
the metric-based approach has already been implemented without alignment using a non-aligned advancing-front
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Fig. 15.  Supersonic NACA0012 simulation. Adapted meshes generated and solutions obtained with local remeshing (left) and metric-aligned
advancing-point placement (right).
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Fig. 16.  Supersonic NACA0012 simulation. Close-up view of the adapted meshes generated with local remeshing (far left and middle left) and
metric-aligned advancing-point placement (middle right and far right).
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type point placement [20]. The aligned version of the advancing-point placement strategy as presented is directly
extendable to 3D. Where considerable work will be required is any subsequent non-tetrahedral element formation as
in hex-element generation. Non-trivial issues remain with generalized transition from hex to tetrahedral elements with
transition via pyramids or split-quad-faces (solver dependent applicability). In addition, sliver elements can create
bottlenecks to pseudo-structured elements in a generalized approach without considerable control. Established work
and experience over several years with pseudo-structured boundary layer (BL) generation [19] provides confidence
that these obstacles can be overcome. The potential benefits and payoft in 3D of an aligned metric-based anisotropic
approach are significant and also would enable creation of a single unified approach to BL and field mesh generation.
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Fig. 17. Shock-bubble interaction simulation. Adapted meshes generated and solutions obtained with local remeshing (left) and metric-aligned
advancing-point placement (right).

Fig. 18. Shock-bubble interaction simulation. Close-up view of the adapted meshes generated with local remeshing (far left and middle left) and
metric-aligned advancing-point placement (middle right and far right).
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