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Abstract

A common representation of surfaces with complicated topology and geometry is through composite parametric surfaces as is
the case for most CAD modelers. A challenging problem is how to generate a mesh of such a surface that well approximates the
geometry of the surface, preserves its topology and important geometric features, and contains nicely shaped elements. In this work,
we present an optimization-based surface remeshing method that is able to satisfy many of these requirements simultaneously. This
method is inspired by the recent work of Lévy and Bonneel (Proc. 21th International Meshing Roundtable, October 2012), which
embeds a smooth surface into a high-dimensional space and remesh it uniformly in that embedding space. Our method works
directly in the 3d spaces and uses an embedding space in R6 to evaluate mesh size and mesh quality. It generates a curvature-
adapted anisotropic surface mesh that well represents the geometry of the surface with a low number of elements. We illustrate our
approach through various examples.
c© 2014 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of organizing committee of the 23rd International Meshing Roundtable (IMR23).
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1. Introduction

A composite parameterized surface consists of smoothly parameterized patches that meet at their common bound-
aries (curves and vertices). It is one of common representations to specify a surface which may have complicated
geometry and topology. It can represent both manifold and non-manifold surfaces. In particular, it is the default
representation in most of CAD modelers.

Let Σ be a composite parameterized surface in R3. We consider the following problem: How to generate a surface
mesh of Σ with the following properties:

• The topology and geometric features of the original surface are preserved.
• Having a small number of elements with respect to a desired resolution.
• Having nicely shaped elements.
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Such meshes are useful in many applications, such as visualization, geometric processing, and numerical simulation.
It has been shown that a surface mesh which consists of anisotropic elements fits many of the above requirements

simultaneously. In this work, we consider how to generate a mesh that respects an intrinsic natural of the surface, i.e.,
the curvature. Given a composite parameterized surface, our goal is to generate a curvature-adapted surface mesh of
that surface, i.e., more curved regions of the surface will be meshed by anisotropic elements, while nearly flat regions
will be meshed by almost equilateral elements.

Surface remeshing has been an active research subject for nearly two decades, see a nice survey given by Alliez et
al. [1]. Previous methods can be roughly characterized into two groups: parameterized remeshing in 2d [11,20] and
direct remeshing in 3d [8,21,22]. The focus of most of these methods is to generate 3d isotropic surface meshes. Many
recent methods have been developed for creating anisotropic surface meshes [16–19,23]. Most of these methods use
(or reconstruct) a metric tensor field to describe the anisotropy of the surface.

In this paper, we propose a new method for remeshing 3d composite parameterized surfaces based on the idea of
higher dimensional embedding [2,3,5]. We use the normal information of the surface, and embed the surface into
R6. Our method directly optimizes a triangular mesh of the surface in such a way that its triangles are as uniform as
possible in R6. It will result a curvature-adapted mesh of the surface. Our method will naturally result an anisotropic
mesh for a surface which has rapidly varying principle curvatures. Moreover, it easily preserves important geometric
(sharp) features of the surface.

Our method does have the following limitations: (i) It only ensures the mesh quality in the embedding space, but
not the usually mesh quality (such as the smallest angle and aspect ratio) in R3; (ii) It does not handle anisotropy
because of physics, eg, PDEs, which may be an arbitrary user-defined metric tensor field.

Our re-meshing method will create new nodes or display existing nodes whenever the quality requirements are not
fulfilled. In both cases the underlying CAD surface is queried to obtain the correct values for the local surface normals,
and the new nodes located on the surface. In addition to use the default parameterizations of the surface patches, we
implemented a set of basic geometrical operations which can query the mesh and CAD data structures. In particular,
unit vectors identifying the directional normal to the object surface are used for the evaluation of the mesh quality in
the embedding space. Such tools represent a first generalization step towards the treatment of arbitrary geometries, of
the CAD interface methods developed for quadrilateral surface mesh generation, see [25].

The remainder of this paper is organized as follows: Section 2 presents the methodology of our surface remeshing
algorithm. The proposed method is described in detail in Section 3. Section 4 describes a set of geometric operations
to query the CAD surfaces. Some experimental results are demonstrated in Section 5. Finally, a summarization and
outlook of future work are given in Section 6.

2. The Methodology

2.1. Surface Embedding in R6

The re-meshing method presented in this paper is inspired by the method of Lévy and Bonneel [2]. The basic idea
is pioneered by Cañas and Gortler [3] and is originated in the application of feature characterization [4,5] from image
processing [6]. In order to re-mesh a surface in R3, it first maps it into a high-dimensional space, i.e., Rn, n > 3, then
it re-meshes the embedded surface uniformly in that space, and transform the mesh back to R3.

Clearly, the choice of the map greatly affects the properties of resulting mesh. For a smooth surface, it is natural
to consider the Gauss map of the surface. Given a surface Ω in R3, one can use the components of the normals of the
surface as the codimension, and embed it into R6 via the embedding: Φ : Ω→ R6 defined by:

Φ(x) = (x, y, z, s nx, s ny, s nz)t, (1)

where (nx, ny, nz) denotes the unit normal to Ω at x, and s ∈ [0,+∞) is a user-specified constant. This embedding
Φ allows us to approximate the geodesic edge lengths in Ω by the Euclidean edge lengths in Φ(Ω). Each edge length
in Φ(Ω) is determined by two parts:

• its Euclidean length in R3; and
• the variation of the normals of its endpoints, scaled by the parameter s.
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Fig. 1. An experiment of using different values of s to re-mesh the surface of a cylinder.

By this transformation, in flat regions of Ω, the lengths of edges remain the same in Φ(Ω). While in regions which
have rapidly varying normals, the lengths of edges in Φ(Ω) become much larger than theirs in R3. Since the distance
in R6 are affected by the normals, an isotropic mesh of the surface Φ(Ω) in R6, when transformed back into R3,
will become a curvature-adapted anisotropic mesh of Ω. This concept has been successfully applied in generating
curvature-adapted surface meshes [2,7].

The constant s in (1) distorts the evaluation of the lengths and the angles in the embedded space. It is an important
parameter that governs the level of anisotropy, see Figure 1 for an example.

2.2. Surface Remeshing in R6

By embedding a surface in higher dimensions motivates the new problem: How to generate an isotropic good
quality surface mesh in this embedding space? A direct generalization of available methods in 3d is possible. But this
will be impractical due to the d! cost of memory requirement.

Lévy and Bonneel [2] overcome this difficulty by using their Vorpaline (Voronoi Parallel Linear Enumeration)
technique to compute a restricted centroidal Voronoi diagram (CVT) embedded in 6d. It directly computes the 6d
Voronoi cells by iterative half-space clipping. It requires only the nearest neighbor informations for a point set in R6.
This method creates a curvature-adapted anisotropic surface mesh. However, it is a global mesh optimization method,
which means that it does not support local refinement and mesh modifications. It may not preserve all important
geometric features. For example, sharp features may be smoothed and disappear in the resulting mesh.

An alternative approach to perform the surface remeshing in R6 is proposed in [14]. This method directly optimizes
an initial surface mesh in R3, but uses the quantities (edge lengths and angles) from R6. This method fits in the well-
developed mesh adaptation framework. In principle, any isotropic surface remeshing method that work in R3 can
just as well be applied in this method. With this method, local mesh refinement and modifications are supported.
Moreover, geometric (sharp) features can be easily preserved. In the next section, we extend this method for meshing
composite parametrized surfaces.

3. The Re-meshing Approach

The basic idea behind the anisotropic mesh adaptation is to distort the distance. In this framework we are going to
achieve this goal moving from the standard scalar product in R6. Consider a surface Ω and two points A, B ∈ Ω, we
apply the map Φ and we have:

Φ(A) = (xA, yA, zA, snA, svA, swA)t ,

Φ(B) = (xB, yB, zB, snB, svB, swB)t ,

where xA, yA, zA and xB, yB, zB are the R3 coordinates of A and B, respectively, and nA, vA, wA and nB, vB, wB are
the components of the unit normal vectors to Ω at A and B, respectively. Then, the standard scalar product in the
embedded space is

(A, B)6d := xAxB + yAyB + zAzB + s2(nAnB + vAvB + wAwB
)
. (2)



4 F. Dassi et al / Procedia Engineering 00 (2014) 000–000

Via this scalar product, we could define both the length of a segment AB, lAB :=
√

(A − B, A − B)6d = ||A − B||6d and
the angle

cos (∠ACB) :=
(A −C, B −C)6d

(A −C, A −C)6d(B −C, B −C)6d

,

where C is another point of the surface Ω.

3.1. Local Mesh Operations

The proposed algorithm applies a series of local surface mesh modifications directly on the mesh. The most well-
known and commonly used local modifications are: edge-flip, edge-collapse, vertex insertion, and vertex smoothing
(Figure 2). These operations are already extensively discussed in literature, see [8–11]. In this section, we briefly
describe how we implemented these operations.

Consider a surface Ω and its discretization Ωh composed by triangular elements. Let T be a triangle of Ωh, we
define the quality of T as the minimum 6d-angle of T . By this definition, the best triangle will be the equilateral
triangle in 6d and the maximized minimum 6d-angle 60o.

Given a surface Ω it is possible to define some geometric quantities such as the curvature and the normals of a
surface Ω′ ⊂ Uδ parallel to Ω and Uδ is a shell around Ω, see [12]. To capture how close the mesh is approximating
the CAD geometry, we introduce the concept of energy of an edge and a triangle of the mesh.

Definition 3.1. Let T be a triangle in Ωh. We define the energy of T as the following quantity

ET :=
1
|T |

∫
T

(1 − n · nT )2 , (3)

where |T | is the area of the triangle T , nT is the normal of the triangle T and n is the extension of the normal to the
surface Ω.

Definition 3.2. Let e be an edge of Ωh. We define the energy of e as the following quantity

Ee :=
1
|e|

∫
e
(1 − n · nT1 )2 + (1 − n · nT2 )2 , (4)

where |e| is the length of the edge e, T1 and T2 are the triangles of the mesh Ωh that shares the edge e whose normals
are nT1 and nT2 , respectively, and n is the extension of the normal to the surface Ω.

Definition 3.3. Let T1 and T2 be two adjacent triangles. We define the total energy of these triangles be the quantity:

ET1,T2 := ET1 + ET2 +
∑
e∈S

Ee , (5)

where S is the set of edges of both T1 and T2, ET1 and ET2 are the energy of the triangles T1 and T2, respectively, and
Ee are the energies of the edges in S.

Definition 3.4. Let T be a triangle of Ωh and α be an angle. We say that this triangle is inverted if the maximum
angle between the normal to the triangle, nT , and the normal to the surface Ω evaluated at the vertices of the triangle
is greater than α, in this work we consider α = π/2.

Edge-flip is the most efficient and effective local operation to improve simultaneously the geometry approximation
and the quality of the surface mesh. An edge-flip on an edge e1 will remove the two faces T1 and T2 that share at e1
and replace them with two new faces T ′1 and T ′2 whose common edge is e2. As a result, edge e1 is replaced by e2.

In our algorithm, we want to flip an edge e1 if the new triangles are “better” than the old ones with regard to both
geometry approximation and the 6d mesh quality. Specifically, we will flip e1 if one of the following conditions is met:
(a) (geometric approximation) one of the faces adjacent to the edge is inverted and the new configuration is associated
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(1) edge flip (2) edge collapse

(3) vertex insertion (4) vertex smooth

Fig. 2. The common local mesh operations.

with a lower total energy; and (b) (mesh quality) if both T1 and T2 are not inverted and the smallest 6d-angle of the
two new configuration is larger.

Unfortunately, it is not always possible to do an edge-flip. Specifically, an edge e1 is flippable if it satisfies all these
constraints: (i) the new edge e2 does not already belong to the mesh; and (ii) the edge e1 does not belong to a sharp
feature of the surface Ω.

Our edge-flip algorithm uses two stacks S and S 1. Initially, the stack S keeps all edges to be checked and flipped,
and the stack S 1 is empty, and it will keep edges which are not flippable. Edges in S 1 are tried again if any flip has
been done. Once an edge is get flipped, we push the link edges of the new triangles into stack S 1, hence flips may
propagate to the neighboring edges. The flip process stops when no edge is flippable.

Edge Collapse is a common operation for simplifying meshes. An edge collapse unifies the two endpoints of the
edge and two adjacent faces of this edge vanish. The unification of the two endpoints can be done at either one of
the endpoints or at a new location inside the cavity of adjacent faces of this edge. In this work we choose one of
the endpoints as the new vertex. Then, we push all the link edges of this vertex into a stack, and use the edge-flip
algorithm to locally improve the mesh.

Edge Splitting is a major operation in our mesh adaptation. In this operation a vertex is put at the middle point of
an edge e and the triangles adjacent to e are split.

The creation of a new point in an edge is a key task. The new point must be on the CAD surface. In Section 4,
we will describe how to project a point on CAD models in a good way. Note that that this operation may lead to
an undesired mesh configuration such as inverted elements. We experimentally show that our edge flip algorithm
automatically fixes these undesired features, see [14] for more details.

Vertex Smoothing. Given vertex p, the smoothing operation finds a new location such that the local mesh quality
is improved without changing the mesh topology.

A generic smoothing method moves a point to a new location

p′ = p + α
∑

pi∈ωp

f (d(p , pi))ui , (6)

here α is a constant, f is a function f : R → R, ωp is the set of vertexes that are connected to p and ui are the unit
vectors that identifies the direction from pi to p, see Figure 2. Finally, d is the distance between p and pi

Different smoothing methods are characterized by different choices of the parameter α and the function f in Equa-
tion (6). For example the classical Laplacian smoothing, [13], is defined by α = 1/#ωp and f (d) = −d, where #ωp is
the cardinality of the set ωp. In this paper we use the smoothing algorithm proposed in [14]. The basic idea behind
this smoothing technique is using the distance d evaluated in the embedded space.

Like the splitting algorithm, once we have find a new location for p, the point is projected on the real surface in
order to lie as closely as possible on the surface.
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3.2. The Re-meshing Procedure

Let Ω be a CAD surface, i.e., it is a composite parameterized surface, i.e.,

Ω =

n⋃
i=1

Ωi , and Ωi ∩Ω j =

{
∅

γi j
, (7)

where the curve γi j is the common boundary of patches Ωi and Ω j. Such curves usually represent important geometric
and sharp features of the surface, hence they are needed to be preserved.

The proposed re-meshing algorithm takes as input an initial triangular mesh Ωi
h of Ω, a desired 6d-length, L, a

minimum 6d-angle, θmin and a value of s. Then it starts to modify Ωi
h with the basic local mesh operation described

in the previous subsection in order to get a final mesh Ω
f
h as uniform as possible in the embedded space, i.e., a mesh

where ||e||6d ≈ L ∀e ∈ E, where E is the skeleton of the mesh Ω
f
h .

Sampling(Ω, Ωh, Q, L)
Data: Q is a queue of triangles in Ωh.

1: while Q is non-empty do
2: pop a face f from Q;
3: Let e be the longest edge of f ;
4: if ||e||6d > 1.5 L, then
5: split e by adding v ∈ Ω into Ωh;
6: update Q;
7: end if
8: end while
9: improve the mesh quality by edge-flips;

10: put all the triangles in Q;
11: while Q is non-empty do
12: pop a face f from Q;
13: Let e be the shortest edge of f ;
14: if ||e||6d < 0.5 L, then
15: collapse e onto one of the end-points;
16: update Q;
17: end if
18: end while
19: improve the mesh quality by edge-flips;

Algorithm 1: The sampling algorithm.

The proposed re-meshing procedureconsist of two main phases:

(i) Sampling – split and collapse the edges in the mesh that are too long or too short with respect to the desired
6d-length, see Algorithm 1;

(ii) Optimizing – remove the 6d-angles that are lower than θmin and smooth the nodes in order to make the 6d-length
of the edges as uniform as possible, see Algorithm 2.

Note that the vertex smoothing operation is in the most internal loop of the optimization step, see line 3 in Algo-
rithm 2. To increase the speed of the entire re-meshing process, we decide to move not all of the vertexes of the mesh,
but only the ones that are furthest away from their desired positions.

The proposed re-meshing procedure applies Algorithm 1 and 2 iteratively to get the final mesh Ω
f
h . Algorithm 3

summarizes this re-meshing procedure.
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Optmizing(Ω, Ωh, L, θmin, I, J)
Data: I and J are user-specified iterations.

1: for j ∈ {1, ..., I} do
2: for k ∈ {1, ..., J} do
3: Smooth the 30% of the vertexes;
4: improve the mesh quality by edge-flips;;
5: end for
6: Collapse edges for removing angles < θmin;
7: improve the mesh quality by edge-flips;
8: end for

Algorithm 2: The optimizing algorithm.

Re-meshing(Ω, Ωh, L, θmin, K, I, J)
Data: K is user-specified iterations.

1: for j ∈ {1, ...,K} do
2: call Sampling(Ω, Ωh, Q, L)
3: call Optmizing(Ω, Ωh, L, θmin, I, J)
4: end for

Algorithm 3: The re.meshing algorithm.

4. Enhanced Geometric Operations on CAD Surfaces

A common strategy for generating grids on CAD surfaces is to exploit the manifold space for the generation of
new nodes. In this framework, any node is created in the parametric space of each —NURBS or B-spline— CAD
patch, resulting in a point which will be automatically located on the desired surface. Despite this clear advantage,
such approach presents several drawbacks when applied to industrial CAD geometries.

• It is very common in the CAD framework that the geometrical models are characterized by surfaces composed
by patches which are not logically connected, i.e., not water-tight. Any small gap or overlap among the patches
will also be found in the mesh generated.

• Even the presence of a continuous junction between two adjacent patches, the mesh will present non conformal
elements unless the surface parameterization coincide on the shared edge (see Fig. 3).

Γ2

v1

Γ1

v2

u2

u1

Fig. 3. Neighboring parametric surfaces with non consistent parameterizations at the common edge. Using such parameterizations to obtain the
nodes of computational grid might result in a non conformal interface between the grids generated on the two CAD surfaces. The situation can get
even worse if the faces are not even connected.

The latter —very strong— constraint is too restrictive for the common practice of CAD model design. Yet, even
in presence of a CAD model fulfilling such requirement, the mesh generated with this approach will present a series
of edges constrained to be on the patches junctions. In most cases such junctions are not geometrically meaningful,
as they connect faces with continuous normal (see Fig. 6). Thus, constraining the mesh nodes to be located on the
patches junctions is unacceptable, especially when the model contains extremely small patches.
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In this work, we employed a different approach which consists of generating new nodes in the physical, three
dimensional space in which the CAD model is embedded. We implemented a surface projector which queries the
CAD data structure to obtain the surface projection of the newly generated points. The developed surface projector
consists of the projection of the specified point on the surface along a direction prescribed by the user. In practice, this
projection is realized by intersecting a straight line passing through the desired point and directed along the specified
direction, with each of the surface patches. The projected point is selected as the closest intersection with respect to
the original point. This operation only needs to compute line-surface intersections which can be done efficiently. In
addition, this projection algorithm leads to higher quality meshes, as the axis of projection is not solely dependent
on the underlying CAD surface, but can be selected to preserve mesh quality. We decide to get the projection axis
from the triangular surface mesh. More precisely we use the normal approximation at a mesh vertex proposed in
[15]. Figure 4 illustrates the cell refinement procedure obtained adopting the surface projection in the mesh normal
direction. It is worth noting that the projection algorithm described is completely independent of the parametrization
on each patch composing the CAD surface. Thus, the grid generated with this strategy will not have nodes located
on the patches junctions, nor non conformal interfaces across the patches. Once the actual projection is performed,
the projector function implemented is also able to provide the local geometrical features of the surface needed by the
re-meshing procedure. In particular, the surface normal unit vector and mean curvature value at the projected point
can be evaluated through the projector.

Γ2

Γ3

Γ4

Γ2

Γ3

Γ4

Γ1 Γ1

ΓΓ

P3

P1

P2

r

P ∗
4

P1

P2

P3

P4

Fig. 4. Triangle refinement procedure which makes use of the surface projection in the mesh normal direction. On the left, the new node P∗4 is
created on the mesh edge flagged for refinement. The mesh normal direction is estimated via the method proposed in [15]. A straight line r having
such direction and passing from P∗4 is created and intersected with the surface Γ. On the right, the two cells resulting from the refinement are shown.

To fully support the mesh generation algorithm, a strategy for the generation of new nodes on sharp edges of the
CAD model must also be implemented. To preserve the geometrical features of the specified object, it is in fact
important that whenever the grid is refined or modified in correspondence with a sharp edge the new or displaced
nodes are still located on the edge. Thus, we implemented an arc-length projector which, once assigned two points
defining an arc on a CAD curve, is able to identify the point splitting such arc at a specified length fraction. Figure 5
shows such an example. Such arc-length projector is employed in the re-meshing procedure to split all the mesh edges
located on CAD curves and flagged for refinement. Also in this case, the new nodes of the grid are generated without
any dependence on the local CAD curve parameterization.

The surface and arc-length projectors described represent the only geometrical operations effectively carried out
on the CAD model during the re-meshing procedure. Yet, for the re-meshing procedure and the projectors to work
correctly, the information contained in the CAD model and mesh data structured must be properly organized. Firstly,
it is important to identify the sets of surfaces in the model, that are mutually separated by sharp edges. Each of such
sets (which have for most geometries null mutual intersections) is then used to create a separate surface projector.
Finally, all the mesh cells are assigned to one of the projectors created. This ensures that the new points on mesh cells
located on the two sides of a sharp edge of the geometry will be safely placed on the respective sides of the edge,
preserving its sharpness through each mesh refinement. In a similar way, all the curves defining the sharp edges in the
CAD model are identified. Then, the identified curves are checked for possible duplicates (i.e.: curves that coincide
up to a specified tolerance), and eventually concatenated into the smallest set of smooth curves. These curves will
be used for the generation of arc-length projectors. Finally, all the mesh edges on such curves are assigned to the
corresponding arc-length projector.
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γ

l = 0.4
l = 0

P2

l = 1

l = 0.65

l = 0.9
P5

ΓΓ

P1

P3

P4

P2Γ1

Γ2

Γ3

Γ4

P1

P3

P4

Γ1

Γ2

Γ3

Γ4

Fig. 5. A sketch of the sharp edge refinement procedure. In the picture, the CAD surface Γ is composed of unconnected patches Γ1, Γ2, Γ3 and Γ4.
The surface normal has a significant jump between patches Γ1 and Γ4, and patches Γ2 and Γ3. Thus, CAD surface Γ presents a sharp edge. In the
preliminary CAD processing phase, the boundaries of patches Γ1, Γ2, Γ3 and Γ4 lying along the sharp edge are checked for possible duplicates and
concatenated in a single curve γ. In this example, the curvilinear abscissa on γ is used to refine the edge P2P3 of the original grid (left picture).
The new point P5 splits the arc of γ between P2 and P3 in two arcs of equal length (right picture).

5. Application Examples

In this section, several examples are presented to illustrate the properties of the proposed method. The inputs are
surfaces from CAD models that present sharp features. The statistical information and the CPU times are given in
Table 1. To evaluate the level of anisotropy of the resulting mesh, we consider the so-called aspect ratio: q(T ) := 2 rT

RT
,

where T is a triangle of the mesh, rT and RT are the radii of the inscribed and circumscribed circle, respectively. If
q(T ) ≈ 0, the triangle T is stretched, while, for triangles close to the equilateral one, we have q(T ) ≈ 1.

Examples 1 2
1. L 50 500
2. # vertexes in Ωi

h 681 113
3. # triangles in Ωi

h 1280 192
4. # vertexes in Ω

f
h 2185 2526

5. # triangles in Ω
f
h 1158 4679

6. Sampling Time (sec.) 2 113
7. Optimizing Time (sec.) 78 336
8. Minimum Aspect Ratio 2.112e-03 4.059e-03

Table 1. Statistics of Examples. Here we call Re-meshing(), see Algorithm 3, with different surfaces Ω and K = 3, I, J = 4.

Example 1. The CAD model is shown in Figure 6. Not all the curves in this model have to be considered as sharp
features, such as the curves γ12 and γ34 which join the surface Ω1 and Ω3 with Ω2 and Ω4, respectively. Such curves
do not have to be preserved. The initial and final mesh of our method are shown in Figure 7. Several views of the
details of the final mesh and a histogram of the distribution of the minimum 6d-angles are shown in Figure 8.

Example 2. The input geometry of this example is a CAD model of a ship (Figure 9). It is composed by many
smooth surface patches, joined along their common curves. Note that not all curves in this model need to be preserved.
The initial and final meshes of this example are shown in Figure 10. Some details of the final mesh are displayed in
Figure 11 and Figure 12, respectively.

Example 3. In this example, a CAD model that used by the work of Levy and Bonnel [2] was tested. It is shown
in Figure 13. We used the Gmsh library [24] (http://geuz.org/gmsh/) to produce an initial surface mesh of this
model. Our method was then used to sample and optimize the mesh. We compared our resulting mesh with that given
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Fig. 6. The CAD surface of Example 1. It consists of the curves, γ∗, and the smooth surface patches, Ω∗. The highlighted curves γ12 and γ23 are
not treated as sharp features.

Fig. 7. Left: the initial mesh. Right: the final adapted mesh.

Fig. 8. Details of the mesh presented in Figure 7 and the histogram of the distribution of the minimum 6d-angle of the adapted mesh.

in [2]. Some detail of the difference are shown in Figure 14. One can observe that our method well preserved the
geometry and did not oversample the surfaces.
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Fig. 9. The CAD surface of Example 2. Different colors highlight the smooth surface patches of the ship.

Fig. 10. Top: the initial mesh. Bottom: the final adapted mesh and the histogram of the minimum 6d-angles of the triangles of the adapted mesh.

Fig. 11. Mesh detail of Figure 10. Left: the initial mesh. Right: the final mesh.

Fig. 12. Mesh detail of Figure 10. Left: detail of the final mesh. Right: detail of the rectangular region of the left.

6. Conclusion

In this paper, we presented a curvature-adapted surface remeshing method for remeshing CAD surfaces. It is based
on the idea of high-dimensional embeddings of surfaces. This method is in principle simple. It fits the well-developed
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Fig. 13. Example 3. The initial mesh (left) and the optimized mesh (right).

Fig. 14. Example 3. Detail of the mesh generated by the method in [2] (shown in red boxes) and the same detail of the mesh obtained by our
method (colored).

mesh adaptation framework. It has several notable advantages. For instances, important geometrical features are
preserved; it is robust in handling strong anisotropy, and it is easy to implement. Our experimental results showed that
this method is able to produce well-adapted meshes for various CAD surfaces.

There are many questions which are still open. A very important theoretical question is: How well does this
mapping Φ approximate the geodesic distances in 3d surfaces? Are there upper or lower bounds on distance variations
by this mapping? A theoretical study of these question could lead to more efficient methods, and will result much
smaller mesh size. The edge-flip algorithm we described in this paper appears very useful in improving both geometry
approximation and mesh quality. However, its termination is not yet proven. We found that the threshold angle for
checking inverted faces is very crucial. A good value will give edge-flip more freedom and may produce highly
stretched triangles. In practice, many surfaces are given as a polygonal mesh, i.e., the original geometry is not
available. A good recovery and estimation of the surface normals are necessary in order to achieve good results. We
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plan to implement such feature into our code. Finally, the running time for our implementation is far from optimal.
There are many possibilities to improve it.
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