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Abstract

The finite element mesh regeneration, which is usually required during the design model verification process, is time consuming.
Mesh editing is a kind of efficient mesh regeneration technique. In this paper, a direct editing method for hexahedral mesh is
proposed to achieve high quality and adaptive hexahedral mesh regeneration. After the user applies direct editing on the CAD
model, effective mesh deformation and optimization are automatically conducted on the associated hexahedral mesh model. To
optimize the deformed mesh, firstly, simplified fundamental sheet configuration conversions are applied to improve the boundary
mesh quality; secondly, dual operations are carried out to insert/extract entire sheets; thirdly, according to the measurement of the
hexahedron deformation, those mesh regions whose mesh sizes become not reasonable due to the deformation are coarsened and
refined through localized dual operations. The proposed method can not only effectively achieve hexahedral mesh editing, but also
facilitate the interoperation of CAD model and mesh model.
c© 2014 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of organizing committee of the 23rd International Meshing Roundtable (IMR23).
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1. Introduction

In current product design, the product design model is frequently modified to meet requirement changes or new
product development. For each modification, finite element meshes are regenerated to verify the product model in
an early stage. But complete mesh regeneration for each minor modification is time consuming, especially when the
product model has hundreds of features. For hexahedral meshes which are usually preferred to tetrahedral meshes
in finite element analysis, some modifications on the CAD model even make it impossible to regenerate high-quality
hexahedral meshes from scratch. In order to solve these problems, mesh editing techniques are studied to apply
modifications on the hexahedral mesh, which improves the efficiency of mesh regeneration through mesh reuse.

Direct editing is a developing CAD model editing technique, which is able to modify the CAD model locally
without knowing modeling history. When direct editing is conducted on the CAD model, mesh deformation has to be
applied on the hexahedral mesh to conform to geometry changes. Mesh deformation(or mesh morphing) [1–3] is a
kind of efficient mesh editing method, which only updates the locations of mesh nodes, while maintaining the mesh
topology during this process. Because of the constant mesh topology, mesh elements are distorted if large deformation
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or rotation is required, resulting in poor mesh quality. Therefore, it is essential to coarsen and refine the deformed
mesh, in order to adapt the mesh size to the new CAD model and improve the mesh quality. As the model is usually
locally edited, the coarsening and refinement on the mesh also should be restricted in local regions.

Refinement templates [4–6] are usually used to refine the given domain of initial structured meshes. However,
refinement domain control and mesh size gradient control are challenging problems. In order to resolve these issues,
Borden et al. [7] and Tchon et al. [8,9] developed pillowing-based hexahedral mesh refinement method, and their
methods can be applied on unstructured initial mesh. Through iteratively pillowing, the prescribed size map can be
satisfied. Harris et al. [10] presented new refinement templates based on Tchon’s method. Their method can locally
refine the specified domain, but mesh size gradient is not well controlled, tending to degrade mesh quality.

Mesh coarsening is utilized to improve analysis efficiency through element density decreasing, which can be
achieved by sheet extraction [11] on hexahedral meshes. Because sheet extraction can only remove the entire sheets
in hexahedral meshes, this operation usually results in modification of the entire mesh. Shepherd et al. [12] generate
localized sheets in order to extract them in the specified domain, but mesh size gradient control is still not considered.

The key of adapting the deformed mesh after CAD model modification is to specify the regions for coarsening
and refinement. Sheffer et al.[13] proposed an efficient hexahedral remeshing method, that can be applied for CAD
model parameter modification. They remove and split sheets according to the measurement of aspect ratio in the
direction of sheet axis. While sheets are usually entirely compressed or stretched after parametric mesh deformation,
localized mesh coarsening and refinement are required if sheets are partially compressed or stretched caused by CAD
face rotation. Besides, different sequences of sheet operations result in different mesh qualities.

A hexahedral mesh direct editing method is presented in this paper. Its objectives are to facilitate hexahedral mesh
editing by performing direct editing on CAD models and especially to optimize the edited mesh using dual operations.
To achieve these objectives, after applying direct editing operations on the corresponding CAD model, deformation is
firstly conducted on the hexahedral mesh. Then, the mesh quality at the boundary of the hexahedral mesh is improved
through fundamental sheet insertion. In order to control mesh size gradient and to ensure mesh quality, dual operations
are performed to extract and insert sheets, and the deformed mesh is iteratively and locally refined to satisfy the desired
mesh size.

2. Dual Operations

Hexahedron inserting and removing can be achieved through dual operations, which can be used to modify the
topology of hexahedral meshes based on the concept of sheet and chord. In a hexahedron, there are three sets of
topologically parallel mesh edges and three sets of topologically parallel quads. By finding these topologically parallel
relationships in the hexahedral mesh, sheet and chord can be defined as follows [14], as illustrated in Fig. 1(a):

• Sheet: a set of topologically parallel mesh edges, or the set of hexahedrons traversed.
• Chord: a set of topologically parallel quads, or the set of hexahedrons traversed.

Dual operations [14] including dicing, pillowing, sheet inflation, sheet extraction and chord collapse are used in
our method. Dicing is a sheet insertion operation which splits a sheet into multiple sheets, see Fig. 1(b). Pillowing
is another kind of sheet insertion operation. Given a set of connected hexahedrons called shrink set, firstly shrink the
shrink set, then insert a new sheet to fill the gap between the shrink set and the rest of the mesh, see Fig. 1(c)(d). Sheet
inflation is a type of more general sheet insertion operation, which inserts a new sheet through inflating a quad set
which can split the mesh into several disconnected parts, see Fig. 1(e)(f). Contrary to sheet insertion operations, sheet
extraction removes an entire sheet from the hexahedral mesh, see Fig. 1(g). Chord collapse removes a chord in the
mesh, varying the connection relationship of the corresponding two sheets. For example, chord collapse is conducted
on chord C in Fig. 1(a), connecting a part of sheet A and a part of sheet B to form a new sheet A′ in Fig. 1(h), and the
rest of sheet A and B also form a new sheet B′.

Among the above dual operations, the structured hexahedral mesh topology can be well kept through dicing and
sheet extraction. Pillowing and sheet inflation are more flexible, because shrink set and quad set can be determined
more freely. However, the side effect of performing pillowing and sheet inflation is that sometimes the mesh quality is
degraded. Besides, chord collapse usually increases the degree of mesh edges, which also degrades the mesh quality.
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Fig. 1. Dual operations: (a)sheet and chord in hexahedral mesh; (b)dicing on sheet A; (c)shrink set; (d)pillowing on shrink set; (e)quad set; (f)sheet
inflation on quad set; (g)sheet extraction on sheet A; (h)chord collapse on chord C.
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Fig. 2. Direct editing on CAD model and hexahedral mesh: (a)original CAD model; (b)CAD model after direct editing; (c)original hexahedral
mesh; (d)hexahedral mesh after deformation; (e)hexahedral mesh after boundary mesh quality improvement, orange elements are newly inserted
sheets; (f)mesh size control based on entire sheet insertion/extraction, red elements are newly inserted sheets, and pink lines are the boundaries of
extracted sheets; (g)distribution of hexahedron deformation metric; (h)result mesh after local refinement.

3. Algorithm Overview

In this paper, we present an approach to achieve high quality hexahedral mesh editing. In our approach, after
the user carries out direct editing on the CAD model, effective mesh deformation and optimization are automatically
conducted on the associated hexahedral mesh model. In view that after the direct editing of the CAD model, the mesh
model can be easily modified to keep the consistency with the CAD model through deformation, the key point here
is how to optimize the quality of the deformed mesh since it is normally not good. Our strategy is to improve the
quality of the deformed mesh by adding or removing certain hexahedra of the sheets and modify the topology of the
hexahedral mesh using dual operations. In particular, the following two issues are addressed:

• Evaluation of mesh quality and mesh size. We proposed series of hexahedron deformation metrics based on
dual mesh, which can evaluate the shape and size of hexahedron and sheet in the mesh.

• Planning of dual operations. The hexahedron deformation metrics are used to determine which dual opera-
tions should be used and the orders of applying them, and these dual operations are iteratively conducted to
improve mesh quality and control the mesh size.

Based on the above ideas, our algorithm mainly consists of the following three steps as illustrated in Fig. 2:

1. Use Laplacian smoothing to deform hexahedral mesh after direct editing on the CAD models is performed;
2. Improve boundary mesh quality by fundamental sheet insertion;
3. Use dual operations to coarsen and refine the mesh regions according to the hexahedron deformation metrics.

4. Mesh Deformation Based on Direct Editing of CAD Model

It’s intuitive and convenient for designers to locally modify the CAD model using direct editing. After designers
manually modified the CAD model, in order to quickly get a mesh that conforms to the model’s new geometry, the
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Fig. 3. Direct editing: (a)face translation and face rotation; (b)topology changed after face translation.

associated hexahedral mesh is automatically deformed using smoothing methods, which only change the positions of
mesh nodes while keeping the topology unchanged. To facilitate the interoperation between the CAD model and the
mesh model, we establish the mapping between the mesh boundary nodes and the geometric faces of the CAD model.

4.1. Direct Editing on CAD Model

Different from traditional parametric based modification method, direct editing is a face-oriented modification
method, which is able to locally modify the CAD model without updating the entire model. The basic direct editing
operations include face translation and face rotation, as illustrated in Fig. 3(a). Arbitrary face translation and face
rotation may change the topology of the CAD model, which may merge old faces and create new ones, as shown in
Fig. 3(b). In our algorithm, since the mapping between mesh nodes and faces are fixed, therefore only direct editing
operations that do not change the model topology are allowed.

4.2. Mesh Deformation

The hexahedral mesh is deformed after performing direct editing on CAD models. We use Laplacian smoothing [1,
15] to perform the deformation. In order to ensure boundary constraints, the mapping between mesh boundary nodes
and geometric faces of CAD models is established and maintained during mesh deformation.

We firstly move mesh boundary nodes to the new positions according to the mapping, then smooth the rest of
the nodes that are not mapped. This procedure can improve mesh quality by rectifying most of the inverted mesh
hexahedra, while it is still difficult to eliminate inverted hexahedrons at concave boundaries.

5. Boundary Mesh Quality Improvement

Some geometric curve’s dihedral angles change during direct editing when their incident faces are rotated. After
mesh deformation, as the topology of the mesh keeps the same, hexahedra near these curves may become poorly
shaped or even tangled.

Ledoux et al.[16] proposed a method to improve the mesh quality near the mesh boundary by inserting fundamen-
tal sheets which capture geometric faces. In their method, every geometric curve can be captured by a reasonable
configuration of several fundamental sheets. However this method is not suitable in our situation since modification
of the mesh is local while fundamental sheet configurations are always computed for the entire mesh. Time is wasted
on working out global configurations and redundant fundament sheets are usually inserted.

In order to solve that problem, we propose simplified fundamental sheet configuration conversion rules. In [16],
geometric curves are labeled from 1 to 4 according to curve’s dihedral angle, and each kind of label is assigned with
an ideal fundamental sheet configuration, which is varied when the curve’s dihedral angle is changed. According to
the geometric curve label changes, we convert local configurations using the following rules as illustrated in Fig. 4:

• Label 1 to label 2: insert a level 1 or level 2 fundamental sheet to capture curve’s incident geometric faces;
• Label 2 to label 1: insert two level 1 or level 2 fundamental sheets to capture curve’s incident geometric faces;
• Label 2 to label 3: insert a level 1 or level 2 fundamental sheet to capture curve’s incident geometric faces;
• Label 3 to label 2: insert a level 1 or level 2 fundamental sheet to capture curve’s incident geometric faces.

After applying these conversion rules, the related curves are captured by ideal fundamental sheet configurations,
while the number of chords related to the other curves are not changed. The boundary mesh quality improvement for
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Fig. 4. Fundamental sheet configuration conversions: (a)label 1 to label 2; (b)label 2 to label 1; (c)label 2 to label 3; (d)label 3 to label 2.
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Fig. 5. Boundary mesh quality improvement: (a)deformed mesh; (b)prism-shaped hexahedra; (c)mesh quality improved.
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Fig. 6. Hexahedron deformation metrics: (a)hexahedron without deformation; (b)stretch deformation; (c)shear deformation; (d)twist deformation.

the example in Fig. 2(e) is illustrated in Fig. 5. In this case, prism-shaped hexahedra appear in the deformed mesh due
to face rotation. Therefore we insert a level 1 fundamental sheet at the mesh boundary, converting the configuration
of fundamental sheets from label 1 to label 2.

6. Mesh Coarsening and Refinement

In order to obtain adaptive meshes, automated mesh coarsening and refinement are conducted on the deformed
meshes. According to Section 2, sheet extraction is applied on the entire sheet which may affect the whole mesh,
while sheet insertion can be restricted within a local area. Therefore strategically, we firstly carry out coarsening and
refinement for entirely deformed sheets using dicing and sheet extraction, operations that tend to keep the mesh well
structured, then coarsen local regions by localized sheet extraction, and at last refine local regions using pillowing
and sheet inflation. In these procedures, we propose series of hexahedron deformation metrics to determine how to
insert/extract sheets.

6.1. Hexahedron Deformation Metrics

The target of our mesh coarsening and refinement is to narrow the differences of size and shape between the de-
formed hexahedron and the ideal one. There are three types of hexahedron deformation including stretching, shearing
and twisting, see Fig. 6. We introduce several metrics to measure these types. In our algorithm, hexahedron twist
deformation which does not usually occur is not currently considered.

Definition 1 (Chord stretch metric). The scaled total difference between actual chord length and ideal chord length.
The total difference is divided by the average mesh size of the chord, as defined in Eq. (1).

Tc =

ne∑
j=1

(d j − h j)

1
ne

ne∑
j=1

h j

(1)
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The chord stretch metric(Tc) for a given chord is defined as illustrated in Fig. 6(b), ne is the number of hexahedra
in the chord, d j is the length of C jC j+1, which is the distance between the center point of the jth quad and the (j+1)th
quad along the chord, and h j is the ideal mesh size at the center position of C jC j+1, which is calculated before
mesh deformation or predefined by users. Chord stretch metric shows the average influence of inserting/removing a
hexahedron into/from the chord. We say the chord is over compressed if Tc ∈ (−∞,−1), then one or more hexahedron
should be removed; the chord is over stretched if Tc ∈ (1,+∞), then one or more hexahedron should be inserted. The
chord stretch metric is reasonable iff Tc ∈ [−1, 1].

Definition 2 (Hexahedron stretch complexity). The number of chords that satisfy Tc ∈ (−∞,−1)∪(1,+∞) and pass
through the given hexahedron.

There are three chords passing through a hexahedron, so the range of hexahedron stretch complexity is TCh ∈

{0, 1, 2, 3}.

Definition 3 (Quad inflation metric). The average inflation ratio of the internal quad’s adjacent hexahedra, and the
inflation ratio is computed along the direction of quad normal, as defined in Eq. (2).

Iq =
d1 + d2

h1 + h2
(2)

Here Iq is the quad inflation metric for a given quad, d1 and d2 are the distances between the quad and its two
neighboring topological parallel quads at their center points. h1 and h2 are the ideal mesh sizes at the center positions
of the two hexahedra. As illustrated in Fig. 6(b), d1 and d2 are C j−1C j and C jC j+1.

Definition 4 (Quad-pair shear metric). The scaled shear angle of a pair of topologically parallel quads in the hex-
ahedron, as defined in Eq. (3).

S qp =
1
π

(arccos
dp1

d
+ arccos

dp2

d
) (3)

Here S qp is the quad-pair shear metric for a given quad-pair, dp1 and dp2 are the perpendicular distances from the
center point of each quad to the other quad, and d is the distance of two center points, as illustrated in Fig. 6(c).

The above metrics can be used to evaluate the deformation of the hexahedron. Furthermore, metrics are defined on
sheet and quad set as follows to provide essential guidance for applying dual operations.

Definition 5 (Sheet inflation metric). The sum of chord stretch metrics of the over stretched chords passing through
the sheet.

Definition 6 (Sheet compression metric). The sum of chord stretch metrics of the over compressed chords passing
through the sheet.

Definition 7 (Sheet shear metric). The maximum shear metric of the quad-pairs connected by the mesh edges of the
sheet, that is S s = max{S qpi |i = 1, 2, . . . , nqp}, where nqp is the number of quad-pairs.

Definition 8 (Quad set inflation metric). The sum of stretch metrics of the over stretched chords passing through the
quad set.

In the process of mesh coarsening and refinement, we reduce the hexahedron stretch complexity of the mesh and
control the shear metrics of the hexahedron by dual operations, ensuring that most of the hexahedra are rectified to be
closer to the ideal shape.

6.2. Coarsening and Refinement on Entirely Deformed Sheets

In order to keep a mesh as structured as possible, we conduct dicing and sheet extraction followed by mesh s-
moothing to refine and coarsen the hexahedral mesh, and the hexahedron deformation metrics are recalculated after
each individual dual operation. In this step, only entirely deformed sheets are diced or extracted, and the partially
deformed sheets are dealt with in the next step. We first determine sheet candidates for dicing and sheet extraction,
then plan the order of these dual operations.



H. Zhu, J. Chen, H. Wu, S. Gao. / Procedia Engineering 00 (2014) 000–000 7

（a） （b） （c） （d） （e） （f）

Fig. 7. Sheet deformation classification: (a)non-deformation sheet; (b)partially inflated sheet; (c)entirely inflated sheet; (d)partially compressed
sheet; (e)entirely compressed sheet; (f)complicatedly deformed sheet.

S1

S2

(a)

sheared hexahedrons

(b) (c)

Fig. 8. Influence of dual operation order: (a)hexahedral mesh before dual operation; (b)dicing on S 2; (c)dicing on S 1.

Candidate Sheet Determination. Candidate sheets for dual operations are determined for effective mesh size control.
Firstly entirely deformed sheets are determined according to two metrics for a given sheet: p+ which is the ratio of
the number of the over stretched chords ratio within the chords passing through the sheet; and p− which is the ratio
of the number of the over compressed chords within the chords passing through the sheet. Entirely deformed sheet
includes entirely inflated sheet (p+ ≥ p+ and p− = 0) and entirely compressed sheet (p+ = 0 and p− ≥ p−). Here
p+ and p− are the thresholds of over stretched chords ratio and over compressed chords ratio, which are set to 0.8 in
our implementation. So other deformed sheets are called partially deformed sheet, including partially inflated sheet
(0 < p+ < p+ and p− = 0), partially compressed sheet (p+ = 0 and 0 < p− < p−) and complicatedly deformed sheet
(p+ > 0 and p− > 0). The classification of deformed sheets is illustrated in Fig. 7.

Based on the above classification of deformed sheets, only entirely deformed sheets are included in the candidate
sheets. Besides, only the average influence of dual operations on the chords passing through the sheet are considered.
For the quads on the two sides of the sheet, since their neighboring hexahedra are locally compressed or stretched,
some hexahedra are possibly over compressed or over stretched. In order to avoid quad inflation metric less than 1
after dicing, candidate sheets for dicing must satisfy that min{Iqi } > 1. Here Iqi is the quad inflation metric of the
quad on the two sides of the sheet. Furthermore, fundamental sheets are not extracted, so that the geometric faces and
curves can still be captured. Above all, candidate sheets for dual operations are selected based on the following rules:

• Candidate sheet for dicing: sheet that satisfy p+ ≥ p+ and p− = 0 and min{Iqi } > 1
• Candidate sheet for sheet extraction: sheet that is not a fundamental sheet satisfying p+ = 0 and p− > p−.

Dual Operation Order Planning. Different orders for applying dual operations usually result in different meshes,
sometimes may even degrade into poor quality. As shown in Fig. 8, if carrying out dicing on sheet S 2, the number of
over sheared hexahedra increases as shown in (b). If dicing is carried out on sheet S 1 whose sheet inflation metric is
greater than S 2, there is no over sheared hexahedron in the result mesh, as illustrated in (c). We plan the order of dual
operations according to sheet inflation metric and sheet compression metric:

1. Determine candidate sheet for dicing or sheet extraction, and terminate the algorithm if no candidate sheet exists.
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Fig. 9. Local coarsening on partially deformed sheet: (a)original mesh; (b)deformed mesh with a rib shrunk and its deformed region(purple);
(c)partially deformed sheet S 1 and two sheets S a and S b intersected with S 1; (d)chord collapse on two chords of sheet S 1 shared with S a and S b;
(e)sheet S 1 is locally extracted; (f)partially deformed sheets in deformed region are locally extracted.

2. Sort candidate sheets according to the value of its sheet inflation metric and sheet compression metric, and carry
out dual operation on the candidate sheet with the maximal value, return to step 1.

After each individual dual operation is carried out, the mesh is smoothed and the hexahedron deformation metrics
are recalculated so as to sort the candidate sheet according to updated metrics. After coarsening and refinement on the
selected sheets, there are only non-deformation sheets and partially deformed sheets left in the mesh.

6.3. Local Coarsening on Partially Deformed Sheets

Our local coarsening refers to locally extracting the compressed parts of the partially deformed sheets. Direct
editing operations are usually locally applied on the CAD model, while sheet extraction removes the entire sheet
including the non-deformed parts. Shepherd et al. [12] proposed a local coarsening method on the specified region,
and sheet extraction is localized in the specified region. Based on their idea, we select the partially deformed sheets,
and try to extract only the compressed parts in the local regions.

6.3.1. Partially Deformed Sheet Selection
In order to coarsen the hexahedral mesh locally, we firstly have to determine the local region where partially

deformed sheets need locally extracting. During mesh deformation, only nodes of local mesh regions are remarkably
repositioned, so we denote this type of mesh region as deformed region, where local coarsening is performed.

For the partially deformed sheets in the deformed region, they are sorted in a partially deformed sheet queue(Qpds)
to select the most effective sheets for localized extraction. Here the partially deformed sheets are sorted according
to the greater values of their sheet inflation metric and sheet compression metric by descending order, and only the
deformed hexahedra in the deformed regions are considered for computing these metrics. For instance, we shrink one
of the ribs through face translation in Fig. 9(a). Then the region with node repositioning ratio greater than 10% is
determined as the deformed region, see Fig. 9(b). In the partially deformed sheet queue, we can see the first sheet S 1
is very complex and goes beyond the deformed region, so its partially compressed part has to be locally extracted.

6.3.2. Detailed Procedures of Localized Extraction
For partially deformed sheets, extracting is only required on its compressed parts. Therefore we use the existing

sheets in the deformed region to localize the extraction of the compressed parts as much as possible, in order not to
introduce excessive hexahedra in each iteration. Detailed process is as follows:
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(a) (b) (c)

Fig. 10. Refinement regions: (a)region not to be refined; (b)simple
refinement region; (c)complex refinement region.

internal boundary quad set

(a) (b) (c)

Fig. 11. Shrink set optimization: (a)initial shrink set; (b)pillowing on
initial shrink set; (c)pillowing on optimized shrink set.

1. Sort the partially deformed sheets in queue Qpds, and get the first sheet S 1.
2. If S 1 is completely in the deformed region, extract it and go to step 1.
3. Check Qpds by its order until sheet S a is found, that S a is intersected with S 1 at chord C1, and S 1 can be

converted to an entirely compressed sheet in the deformed region after collapsing C1. Once S a is found, extract
the converted sheet after chord collapse, smooth the mesh and recalculate the related metrics, then go to step 1.

4. Check Qpds by its order until a pair of sheets (S a, S b) is found, that S a and S b are respectively intersected with
S 1 at chords C1 and C2, and S 1 can be converted to an entirely compressed sheet in the deformed region after
collapsing C1 and C2. Once (S a, S b) is found, extract the converted sheet after chord collapse, smooth the mesh
and recalculate the related metrics, then go to step 1, see Fig. 9(c-e).

5. Go to step 1 if S 1 is not the last sheet in Qpds.
6. If no sheet in Qpds can be locally extracted in the previous steps, we use the method described in [12] to pil-

low the deformed region and insert a sheet at the boundary of the region, then collapse the chords which are
the intersections between the sheets in Qpds and the newly inserted sheet, so as to localize these sheets in the
deformed region and then extract them, smooth the mesh and recalculate the related metrics. In this step, sheets
are extracted by pairs until no sheet is partially compressed.

6.4. Local Refinement on Refinement Regions

Finally, local regions that include partially inflated sheets are refined using pillowing and sheet inflation. Due
to its importance, the refinement region and the order of dual operations are carefully determined. No hexahedron
is removed from the mesh during the refinement process, therefore the refinement is bound to be terminated till no
refinement region can be effectively refined. The procedures of local refinement are as follows:

1. Determine refinement regions and put them in a priority queue.
2. Refine the refinement region with the highest priority in the queue. If the region is successfully refined, clear

the queue and return to step 1; if refinement failed, try other refinement regions in the queue. The algorithm is
terminated when the queue is empty.

6.4.1. Refinement Region Determination
Refinement region is a set of hexahedra that connect to each other through quads and share the same hexahedron

stretch complexity. The complexity of the refinement region is the hexahedron stretch complexity of its hexahedra.
Refinement region is classified into two groups according to its complexity(Cr): simple refinement region if Cr = 1;
complex refinement region if Cr > 1. Fig. 10 shows refinement regions of the example in Fig. 2(g).

Then we determine the priorities of refinement regions. Because the neighboring hexahedra of refinement region
with high complexity are usually over stretched, refinement on complex refinement region also decreases the defor-
mation complexities of its neighboring hexahedra. Therefore, the larger its complexity is, the higher the priority of
the refinement region is. Besides, refinement regions should not be too small since it is hard to avoid hexahedra being
over compressed within such a small area. In order to effectively refine local regions, the refinement region with the
highest priority is selected for refinement: select refinement region with the highest complexity for refinement, and
select refinement region with the most hexahedra if existing more than one region with the same highest complexity.
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6.4.2. Complex Refinement Region Refinement
Complex refinement region is stretched in multiple directions, therefore we use pillowing and sheet inflation to

refine the whole region. Besides, the shrink set is optimized for mesh quality when using pillowing, and quad set is
carefully selected when using sheet inflation.

Shrink Set Optimization. When using pillowing on complex refinement region, the shrink set is the set of hexahedra
in the region. The mesh quality is usually poor if the surface of the shrink set is wrinkled, hence the shrink set has
to be optimized to ensure mesh quality, as shown in Fig. 11. When carrying out pillowing, only shrink set’s internal
boundary quad set(internal quad set at the boundary of the shrink set) is inflated, otherwise geometric faces can not
be captured by fundamental sheets.

The shrink set is optimized through hexahedron set modification, and the original hexahedra are kept as much
as possible to have the refinement region refined effectively. Based on observations, thin-wall boundaries, corner
boundaries, slot boundaries and step boundaries result in highly wrinkled internal boundary quad set. The rules of
shrink set optimization are listed as follows:

• For a hexahedron in the shrink set, if it has a pair of quads which are both in the internal boundary quad set, this
hexahedron is a thin-wall hexahedron and it is excluded from the shrink set.

• For a hexahedron out of the shrink set, if it has at least three quads in the internal boundary quad set, this
hexahedron is a corner hexahedron and it is included in the shrink set.

• For a hexahedron out of the shrink set, if it has a pair of quads which are both in the internal boundary quad set,
this hexahedron is a slot hexahedron and it is included in the shrink set.

• For a hexahedron out of the shrink set, if there are two hexahedra in the shrink set neighboring it, and any of
the two hexahedra has two quads which are both in the internal boundary quad set, this hexahedron is a step
hexahedron and it is included in the shrink set.

If existing over compressed hexahedra after region refinement, we say the refinement region is over refined and the
refinement is failed. The refinement capability of shrink set is measured using shrink ratio:

Definition 9 (Shrink ratio). The ratio of average hexahedron size after and before pillowing on shrink set.

Shrink ratio reflects the impact of pillowing on mesh size variation. Ideally, half of the newly inserted sheet after
pillowing is inside the shrink set region(the region of the shrink set before pillowing), and the other half is in the rest
of the mesh. In this situation, we say that the number of hexahedra in the shrink set region is increased by half of the
number of quads at the internal boundary, so we estimate shrink ratio using the following equation:

Rshrink =
nq

2ne
+ 1 (4)

Where nq is the number of quads in the internal boundary quad set, and ne is the number of hexahedra in the shrink
set. Pillowing is not conducted on the shrink set if shrink ratio falls below the threshold. Because only one hexahedron
is inserted into every chord passing though the shrink set on average, the shrink ratio threshold of complex refinement
region is set to 0.4.

Quad Set Selection. Hexahedra in the complex refinement region are compressed in all directions after pillowing, so
it is possible to have hexahedra over compressed at some directions. Therefore sheet inflation is carried out instead
of pillowing. Besides, the internal boundary quad set of the refinement region is not always connected, so only the
best self-connected quad subset is selected for sheet inflation. In order to avoid over refining the region, the ratio of
over stretched chords (p+) passing through the candidate quad set is required to be over the threshold (p+), and the
candidate quad set with the greatest sum of chord stretch metric is selected for sheet inflation, then smooth the mesh
and recalculate the related metrics for the other candidate quad sets. Refinement on the complex refinement region
fails if no candidate quad set exists.
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Fig. 12. Refinement on simple refinement region: (a)partially inflated part of the sheet; (b)refinement through pillowing on partially inflated part.

6.4.3. Simple Refinement Region Refinement
In order to prevent simple refinement region from being over refined, pillowing is conducted on part of the hexa-

hedra of the region. The simple refinement region is composed of several contacting partially inflated sheets, so the
partially inflated part of one of these sheets is refined using pillowing. The refinement process is as follows:

1. Select the partially inflated sheet with the highest priority in the simple refinement region.
2. Set the partially inflated part of the selected sheet as the shrink set, and optimize the shrink set.
3. Carry out pillowing on the shrink set, smooth the mesh and recalculate the related metrics.

Partially Inflated Sheet Selection. Then we measure the priority of the partially inflated sheet in the simple refinement
region according to the possibility that the region is over refined after pillowing. Pillowing is conducted on the internal
boundary quad set of the partially inflated part, so hexahedra are inserted around the partially inflated part in two
directions: along the chords topologically perpendicular to the sheet(c⊥) and along the chords topologically parallel
to the sheet(c∥), as illustrated in Fig. 12. Denoting the number of c∥ as nc∥ , and denoting the number of c⊥ as nc⊥ , the
priority of the partially inflated sheet is defined in Eq. (5):

p =
1

nc∥


nc∥∑
i=1

Tci

 nc⊥∑
j=1

Tc j (5)

Shrink Set Optimization. For the purpose of mesh quality improvement, the partially inflated part of the sheet, which
is the shrink set, is optimized before pillowing. After optimization, the shrink set must still be a part of the sheet,
therefore only slot hexahedra and step hexahedra are dealt with in the shrink set optimization procedure. Detailed
rules are described in Section 6.4.2. Because two hexahedra are inserted into every chord passing though the shrink
set on average, the shrink ratio threshold of simple refinement region is set to 0.3.

7. Experimental Results

The proposed algorithm is implemented using C++ based on ACIS geometric engine. Preliminary experimental
results are illustrated in Fig. 13, 14 and 15, and the running time and scaled Jacobian after mesh editing are listed in
Tab. 1.

Due to the irregular shape of the wedge-shaped model, it is difficult to generate its hexahedral mesh using volume
decomposition-based methods [17]. In Fig. 13, a cubic-shaped hexahedral mesh is deformed into a wedge-shaped
mesh by direct editing, and its mesh quality is better than the example in [17], whose size-shape metric [18] and
scaled Jacobian are illustrated in (c) and (d).

In Fig. 14, the radius of the blind hole is modified. Compared with Sheffer’s method, our method is able to
successfully obtain the deformed mesh with good mesh quality even if sheets are partially deformed.

In Fig. 15, the shape of sim-courier(simplified courier) mesh model is optimized through direct editing. The
detailed model modifications include the modifications of the radius and the length of the centre hole, and material
reduction at the connection parts. Geometric faces are rotated when editing the connection parts, so the associated
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Fig. 13. Direct editing on cubic-shaped mesh: (a)cubic-shaped mesh before direct editing; (b)complex refinement region and simple refinement
region; (c)distribution of size-shape metric after direct editing; (d)distribution of scaled Jacobian after direct editing.

(a)

(b)

Fig. 14. Direct editing on blind
hole: (a)before direct editing;
(b)after direct editing.

（a） （b）
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Fig. 15. Direct editing sim-courier mesh: (a)mesh of sim-courier; (b)distribution of scaled Jacobian af-
ter direct editing; (c)connection part after mesh deformation; (d)connection part after fundamental sheets
insertion; (e)connection part after coarsening and refinement.

Table 1. Scaled Jacobian after mesh editing and running time
Hex Num. Scaled Jacobian Running Time(s)

Before After Min. Max. Mean Std.Dev. Deform Boundary Adapt Total
Cubic 1728 666 0.626 0.994 0.915 0.080 0.520 0.001 10.72 11.24

Sink hole 2354 2360 0.506 1.000 0.949 0.071 0.631 0.000 27.62 28.25
Sim-courier 7393 6114 0.541 1.000 0.935 0.075 2.408 251.2 328.8 582.4

geometric curves are captured by fundamental sheets through sheet insertion and extraction, improving mesh quality
at concave curves, as shown in (c),(d) and (e).

8. Conclusion and Future Work

In this paper, a novel hexahedral mesh editing method is proposed. By using direct editing technique, mesh editing
becomes easier and more flexible. The most remarkable characteristic of our method is being able to get the edited
mesh optimized automatically. Specifically, we determine mesh regions that need optimizing by evaluating mesh
quality and size with our measuring metrics, and utilize suitable dual operations to effectively conduct optimizations.
Based on these dual operations we put forward new local mesh coarsening and refinement methods that can control
the mesh size of local regions according to the ideal mesh size. With our method, through direct editing on both CAD
model and mesh model, the interoperation of them is also facilitated, and the efficiency of analysis can be improved.
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In addition, the method could be extended to work on assemblies or connected volumes as well as other morphed
meshes with poorly shaped hexahedra.

There are several problems to be resolved in our future work. In our method, it is supposed that the topology is not
changed after direct editing operations while sometimes direct editing may change the model’s topology. After mesh
deforming using Laplacian smoothing, hexahedra are usually tangled at concave curves. It is difficult to determine
reasonable dual operations if a large number of hexahedra are tangled, so we are looking forward to applying other
options of smoothing methods. Besides, we are also exploring the feasibility of parallelization through GPUs of the
mesh smoothing and the computation of chord stretch metric which is updated after each dual operation.
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