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1 Introduction

Mesh generation and mesh adaptation are essential processes for numerical
methods like finite element and finite volume simulations. The quality of the
mesh will tremendously affect the accuracy and efficiency of the methods.
Research shows that the actual meaning of the mesh quality depends on the
real problem (isotropic or anisotropic features) and the objectives (minimizing
the interpolation error or improving the conditioning number).

The use of a metric tensor field for mesh quality and mesh size specification
is now a widely used tool for mesh generation and mesh adaptation. We adopt
the concept of an M-uniform mesh [3], which considers any adaptive mesh
as a uniform one in some metric depending on the quantity of interest. In
other words, an M-uniform mesh is an ideal mesh for a given metric which
may be a combination of several criteria, like element quality, element size,
and element orientation, etc. With this concept, the meshing problem can be
formalized as: How to generate the M -uniform mesh for a given metric. It is a
very challenging problem in theory.

Tetrahedral mesh generation has been studied extensively for decades.
There are established methods for mesh generation and mesh adaptation, see,
e.g., [2]. Robust software implementations exist and some of them are freely
available. Most of the codes provide the option to take a user-defined mesh
sizing function or a metric tensor field as input and generate an adapted
tetrahedral meshes with respect to it. A practical question naturally arises:
How close are meshes computed by some common mesh generators to being

M-uniform? So far, only few works addressed this question in theory [5, 6].
Numerical experiments suggest that, at least in two dimensions, meshes that
are close to be M -uniform can be generated in practice [3, 5, 6].

The purpose of this research note is to present a practical study of the
above question in three dimensions. We compare meshes generated with two
freely available programs, Mmg3d [1] and TetGen [7], by using isotropic mesh
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sizing functions. This study provides a fair justification of the state-of-the-art
metric-based methods for adaptive mesh generation.

2 Mesh conformity measure

We consider an M -uniform mesh approach and look at any adaptive mesh as
a uniform one in some metric M . An M -uniform mesh satisfies the equidistri-
bution and alignment conditions [4],
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where FK : K̂ → K is the affine mapping from a reference element K̂ to a
mesh element K, F ′

K is the Jacobian matrix of FK , MK is an average of M

over K and N is the number of mesh elements.
In practice, however, it is more realistic to expect that the generated mesh

is only quasi-M -uniform,
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where Ceq ≥ 1 and Cali ≥ 1 are some constants independent of K, N , and Th

(note that conditions (3) and (4) with Ceq = Cali = 1 imply (1) and (2)).
The important question is how does the difference of the generated (quasi-

M -uniform) mesh to the desired (M -uniform) mesh affects, for example, the
interpolation error? Fortunately, the bound on the interpolation error depends
continuously on the difference of the desired and the actually constructed
mesh. For example, for any quasi-M -uniform mesh satisfying (3) and (4) the
interpolation error in the H1 semi-norm is bounded by
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where E is the interpolation error bound for the M -uniform mesh [5, Theo-
rem 2.1]. (using a different norm instead of |·|H1 will change the powers of Ceq

and Cali but the essential statement remains the same).
Thus, it is natural to define the values Ceq and Cali as the mesh size and

shape conformity measures (or C
d+1

2
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eq as the global conformity measure).1

1Another mesh conformity measure was developed in [6] which can compare
two meshes in order to determine which of them is closer to the prescribed metric.
However, it doesn’t have the direct connection to the interpolation error estimates
as the measures defined in this section.
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Figure 1: Uniform meshes: Ceq and Cali vs. number of elements

3 Employed mesh generators

TetGen [7] is C++ program for generating quality tetrahedral meshes for
3D polyhedral domains. It implements the constrained Delaunay refinement
algorithm [8] to efficiently refine and improve the mesh quality and the mesh
adaptivity. Starting from a given polyhedral domain and a scalar mesh sizing
function (defined on the nodes of a background mesh), TetGen generates a
good quality isotropic tetrahedral mesh whose mesh size conforms to the given
sizing function. For our tests we use the version 1.5 of the program.

Mmg3d [1] is a freely available tetrahedral re-meshing program for anisotropic
mesh adaptation. It is based on local mesh modifications and an anisotropic
version of Delaunay kernel for vertex insertion. Starting from a given tetrahedral
mesh, it produces quasi-uniform meshes with respect to a metric tensor field.

4 Numerical results and discussion

First, we check the most simple case of uniform meshes of the unit cube [0, 1]
3

with Mmg3d and TetGen. In this case, the metric M is given by the identity
matrix,

M = I,

rescaled accordingly to the software input requirements to produce a mesh
with a predefined number of elements. Figure 1 shows the values of Ceq and
Cali for a series of grids. We see that both Ceq and Cali always stay bounded
and small with Ceq < 3 and Cali < 4.5. Interestingly, TetGen seems to do a
better job on producing elements of proper size (at least for grids with smaller
number of elements) whereas Mmg3d seems to produce elements that are closer
to the uniform shape.

For the second example we use adaptive meshes of the unit cube with

M =
(

0.1 + 1000 · e−100|(x−0.5)2+(y−0.5)2+(z−0.5)2
−0.252|

)

× I,
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which is rescaled accordingly to produce meshes with a predefined number of
elements. A proper mesh should be very fine near the surface of the sphere
with the origin in the center of the cube and the radius of 0.25 (see Figs. 2a
and 2b). As in the example with uniform meshes, Ceq and Cali stay small with
the increasing number of elements (Fig. 2c); both TetGen and Mmg3d produce
very similar results with Ceq ≈ Cali ≈ 6 for finer grids.

A typical histogram for the element-wise size and shape conformity measures
(Ceq,K and Cali,K) is shown in the Fig. 2d for a mesh generated by TetGen

(results for Mmg3d are similar). Here, instead of Ceq,K we show log Ceq,K so
that elements of optimal size have log Ceq,K = 0, a positive value means that
the element is bigger than prescribed by the metric and a negative value means
that the element is smaller than prescribed. Note that Cali,K ≥ 1 by definition
and its optimal value is one. Figure 2d shows that most of the elements have
size and shape close to the optimal with larger deviations appearing only for a
small number of elements.

Thus, we can conclude that the state-of-the-art methods for isotropic
tetrahedral mesh generation and mesh adaptation are able to produce meshes
that are close to be uniform in the prescribed metric.

In the future, tests using anisotropic metric fields are planned.

References

1. C. Dobrzynski. MMG3D: User Guide. Rapport Technique RT-0422, INRIA, Mar.
2012. http://www.math.u-bordeaux1.fr/~cdobrzyn/logiciels/mmg3d.php.

2. P. J. Frey and P. George. Mesh Generation - Application to Finite Elements.
Hermes Science Publishing, Oxford, UK, 1st edition, 2000. ISBN 1-903398-00-2.

3. W. Huang. Metric tensors for anisotropic mesh generation. J. Comput. Phys.,
204(2):633–665, 2005.

4. W. Huang. Anisotropic mesh adaptation and movement. In T. Tang and J. Xu,
editors, Adaptive computations: Theory and Algorithms, Mathematics Monograph
Series 6, chapter 3, pages 68–158. Science Press, Beijing, 2007.

5. L. Kamenski and W. Huang. How a nonconvergent recovered Hessian works in
mesh adaptation. arXiv: 1211.2877 [math.NA] (submitted).

6. P. Labbé, J. Dompierre, M. Vallet, F. Guibault, and J.-Y. Trépanier. A universal
measure of the conformity of a mesh with respect to an anisotropic metric field.
Int. J. Numer. Methods Engrg., 61(15):2675–2695, 2004.

7. H. Si. http://tetgen.org, 2013.
8. H. Si. Adaptive tetrahedral mesh generation by constrained Delaunay refinement.

Int. J. Numer. Methods Engrg., 75(7):856–880, 2008.



Generation of M -uniform tetrahedral meshes in practice 5

(a) Mmg3d mesh, 312 700 elements (b) TetGen mesh, 342 990 elements
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(c) Ceq and Cali vs. number of elements
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(d) histograms for log Ceq,K (left) and Cali,K(right) (TetGen mesh, 342 990 elements)

Figure 2: Adaptive meshes


