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Summary. A purely topological approach for the generation of hexahedral
meshes from quadrilateral surface meshes of genus zero has been proposed by
M. Müller-Hannemann: in a first stage, the input surface mesh is reduced to
a single hexahedron by successively eliminating loops from the dual graph of
the quad mesh; in the second stage, the hexahedral mesh is constructed by
extruding a layer of hexahedra for each dual loop from the first stage in reverse
elimination order. In this paper, we introduce several techniques to extend the
scope of target shapes of the approach and significantly improve the quality of
the generated hexahedral meshes. While the original method can only handle
“almost convex” objects and requires mesh surgery and remeshing in case of
concave geometry, we propose a method to overcome this issue by introducing
the notion of concave dual loops. Furthermore, we analyze and improve the
heuristic to determine the elimination order for the dual loops such that the
inordinate introduction of interior singular edges, i.e. edges of degree other
than four in the hexahedral mesh, can be avoided in many cases.

1 Introduction

Many methods of computer driven simulation like the widely used finite el-
ement analysis are based on discretizations of a given volumetric domain.
Usually, CAD programs are used to design surface meshes representing the
boundary of these domains. In most cases a decomposition of the enclosed
volume into discrete elements is neither obvious nor computationally simple
to determine. Some volumetric meshing approaches rely on triangulating the
CAD surface mesh first and computing a volumetric mesh through Delaunay
tetrahedralization of the inner volume afterwards [12, 30]. Nevertheless, in
practice, using hexahedra as the discretization element of choice offers some
important advantages, also see e.g. [29]. The most important benefits are:

• Numerical computations on hexahedral meshes are up to 75% less memory
and time consuming in comparison to tetrahedral meshes [34].

J. Sarrate & M. Staten (eds.), Proceedings of the 22nd 147
International Meshing Roundtable,
DOI: 10.1007/978-3-319-02335-9_9, c© Springer International Publishing Switzerland 2013



148 M. Kremer et al.

• The loss of numerical accuracy when non-uniformly scaling hexahedra is
significantly smaller compared to tetrahedra [3].

• Hexahedral meshes are between four to ten times less complex with respect
to the number of elements than tetrahedral meshes (with the complexity
of the input mesh being constant) [3].

Obviously, the boundary of a 3D hexahedral complex is a closed all-
quadrilateral surface mesh. So, a first approach would suggest to quadrangu-
late the boundary first and generate a surface-conforming hexahedral mesh
afterwards. Using all-quadrilateral surface meshes as input data comes with
the advantage of being more intuitive during the process of design. Moreover,
it offers the opportunity to gain higher approximation quality of a polynomial
surface by aligning the edges with the principal curvature directions which
are orthogonal [32].

However, generating hexahedral meshes of valid topology and practical
geometric properties from quadrilateral surface meshes of arbitrary genus
and possibly self-intersecting loops of quadrilaterals is unresolved in general.
In [23] Müller-Hannemann proposes a combinatorial method for the genera-
tion of hexahedral complexes from quad meshes that are of genus zero and do
not contain self-intersecting quad loops. At a first glance, this appears to be
a serious restriction of the class of hex-meshable surface meshes. Neverthe-
less, recent approaches to quad meshing significantly increased the quality of
quadrangulations of surfaces while still offering a decent amount of control
over the parameters [5, 7, 10, 15, 36, 6].

Fig. 1 The boundary com-
plex of a hexahedral mesh with
a dual cycle and its correspond-
ing sheet (gray hexahedra)

In the method from Müller-Hannemann the
dual graph of a surface quad mesh is reduced
to a topological cube by successively elimi-
nating cycles from it. Each cycle can be in-
terpreted as to enclose a sheet, i.e. a layer,
of hexahedra [24], depicted in Figure 1. The
hexahedral complex is then built by starting
with a single hexahedron and topologically
“extruding” the eliminated sheets in reverse
elimination order. In a subsequent step, the
geometric embedding of the mesh is com-
puted using the Mesquite library [9] which of-
fers methods to optimize the geometry of hex
meshes. While the method works appropri-
ately on almost convex objects, the author suggests to decompose non-convex
objects into convex ones and remesh the interfaces accordingly [23, 22]. How-
ever, cutting and remeshing the surface meshes is generally not desirable since
it either requires the user to know the interior topology of the decomposition
and/or might compromise global topological properties of the initial surface
quadrangulation.
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1.1 Contribution

In this paper, we present an extension to the method described in [23] that
allows us to automatically generate surface conforming hexahedral meshes
for non-convex objects of genus zero. For this, we first analyze how the order
in which the dual cycles are eliminated from the dual graph influences the
resulting mesh’s topology and propose some practical guidelines for many
common mesh configurations in Section 4. Furthermore, for the handling of
concave objects, we introduce the notion of concave dual cycles and the sig-
nificance of their elimination from the dual graph in Section 5. From this
analysis we derive a set of rules that, applied to the heuristic that determines
the elimination order of the dual cycles, improves the topological quality of
the resulting mesh. Since the basic concepts described in [23] are provided
with a rather theoretical context, we briefly outline the basic ideas in a more
practical and implementable fashion in Section 2 and 3. However, we focus
on the concepts needed in order to understand the presented method and
deliberately omit certain details that go beyond the scope of this work. Al-
though we admit that our approach is still of rather academic value, the
class of objects that are meshable with our method is considerably extended
as compared to the original method.

1.2 Related Work

Apart from the mentioned (dual) topological hexahedral meshing approaches
there exists a large body of research on various other meshing techniques.

For a more complete overview on hexahedral meshing techniques we refer
to [3]. In the following, we only provide a brief overview of the most related
existing hex-meshing approaches. In [16, 31] hexahedral mesh primitives are
built by sweeping a surface mesh along an arbitrary path generating hexahe-
dral meshes with constant cross-section topology. The generated hexahedral
meshes are boundary sensitive. A major drawback of this method, however,
is the high manual effort required to mesh objects of complex shape.

A further class of meshing approaches generate hexahedralizations by de-
composing the original surface mesh into several simpler units. This can either
be performed using geometric decompositions as in [1, 20, 28], or integrally
during the meshing processing by using an interior mesh as the cutting mech-
anism as in [21, 13, 2, 35]. These methods have the advantage that they
are mainly boundary sensitive. However, a common drawback of all these
methods is the need for a (manual) multilevel shape detection for the de-
composition as well as the disparity of the meshed cut areas between the
components.

In recent years, a considerable amount of effort has been put into the
development of parameterization-based hex-meshing approaches [19, 14]. In
these methods, the 3D domain enclosed by a (closed) two-manifold is tetra-
hedralized first. Then a sufficiently smooth field of rotation symmetric 3D
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crosses is generated over the domain. These fields are then used to extract
the hexahedral mesh [26]. However, these methods are still subject to certain
limitations: the automatic generation of 3D cross fields with valid singularity
structures is still unsolved [19]. Thus, a certain amount of manual interaction
is potentially needed in order to meet the requirements of the mesh extraction
routine. Poorly designed cross fields often lead to inverted elements and the
existence of a topologically valid hexahedral mesh can generally not be guar-
anteed. Therefore, parameterization-based methods oftentimes only generate
hex-dominant meshes.

Another class of hexahedral meshing techniques are the so-called advanc-
ing front techniques. They are designed to generate a hexahedral mesh from
the boundary of the surface mesh inward [4, 18]. In these methods, most sin-
gularities are propagated to the medial axes of of the objects which might also
lead to poorly shaped elements. As a further development to this approach,
the whisker weaving method [33, 11] converts the surface mesh to its dual
and then generates a connectivity of “unknown” hexahedral elements in the
enclosed 3D domain. An extension to this described in [17] also incorporates
geometric information to overcome some geometric issues. The method pro-
posed in this paper is also an advancing front technique. The advantage of
this class of methods is the boundary sensitivity, i.e. the topology and geom-
etry of the boundary surface remains fixed. In these cases, many numerical
applications benefit from higher accuracies at the boundary regions. In the
proposed method we consider entire layers of hexahedra instead of single ele-
ments. These global operations effectively avoid poor quality near the medial
axes as often can be observed in local schemes.

2 Prerequisites and Terminology

In this section we will give a brief outline of the prerequisites necessary in
order to understand the proposed method.

2.1 Combinatorial Quad Meshes

Fig. 2 Left: A simple ge-
ometric quad mesh. Right:
Its combinatorial dual mesh.
Corresponding entities are
marked with the same color.

Let G = (V , E ,F) denote a closed and two-
manifold all-quadrilateral mesh with vertices V ,
edges E , and faces F . The mesh’s geometry is
defined via a function p : V �→ R3, the so-called
embedding. The topology of G is completely de-
fined by E and F . Let G∗ denote the dual mesh
of G. We henceforth refer to G as the primal
mesh. G∗ usually does not have a geometric em-
bedding and can be considered a combinatorial graph. A dual edge connects
two dual vertices if and only if the corresponding primal faces are adjacent,
i.e. they share a common edge. See Figure 2 for an example of a simple
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geometric quad mesh and its combinatorial dual mesh. Since G is a pure
quad mesh, all vertices of G∗ have valence four. Two adjacent dual edges are
said to be part of the same dual cycle if their respective primal edges oppose
each other in the shared primal face. All other dual edges in that same cycle are
determined through transitivity of this adjacency relation. A dual mesh can be
uniquely decomposed into a set of pairwise disjoint cycles in linear time. Ob-
serve that dual cycles can be self-intersecting, i.e. all four dual edges incident to
one dual vertex may belong to the same cycle. All non-self-intersecting cycles
are called simple. Two distinct cycles cross each other if they share a common
vertex. All cycles be arbitrarily but consistently oriented.

3 Dual Graph Reduction

Consider the input quad mesh to be the boundary complex of an “unknown
interior hexahedral complex”. Following the ideas of Murdoch et al. [24], each
dual cycle encloses a so-called sheet, i.e. a layer of hexahedra (Fig. 1).

3.1 Dual Cycle Elimination

Let G∗ be the dual graph of an all-quadrilateral surface mesh. Consider C
to be some dual cycle in G∗. C can be eliminated by deleting each edge in
C from G∗. Afterwards, all dual vertices incident to the deleted edges are
also removed and each pair of the remaining edges formerly incident to these
vertices is merged. See Figure 3 (a) for a simple example.

Let C be a dual cycle in G∗ with a consistent orientation and no self-
intersection. Then C splits G∗ into two connected components on either side

(a) (b)

Fig. 3 (a) The elimination of a cycle from a dual graph (upper row) and its
corresponding elimination in the primal mesh (lower row). The cycle in question
is marked with a dashed line. The resulting graphs after the removal of the cycle
are shown in the second column, respectively. (b) A dual cycle (dashed lines) on
a surface mesh. The dots on the planar area enclosed by the cycle on its right
side, denoted by V ∗

C,r, induce a connected subgraph of the dual surface graph. The
dualization of this subgraph corresponds to the primal surface sub-mesh depicted
on the right.
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of C (since the mesh has ball topology) which we denote by V ∗
C,l and V ∗

C,r. In
this notation, l and r refer to the left or right hand side of C with respect to
its orientation. The dualization of each subgraph induced by the V ∗

C,l and V ∗
C,r

is a connected part of the primal surface. See Figure 3 (b) for an illustration.
The elimination of a dual cycle can be interpreted as the elimination of an

entire layer of hexahedra by applying a series of local graph transformations—
illustrated in [23]—that successively “take away” hexahedra on the boundary
of the unknown hexahedral complex. In this approach, we define that the
elements to be eliminated from the unknown hexahedral complex are always
situated on its surface. This accounts for the fact that the surface is the only
region of the unknown complex the topological structure of which is known
to us. Therefore, the eliminated sheet can either be situated to the left or
to the right side of C (with respect to C’s orientation). In this context, let
V ∗
C,l and V ∗

C,r denote the set of dual vertices situated on the left and right
side of C, respectively, and let V ∗

C denote the vertices incident to C. Then,
when eliminating the sheet to e.g. the right side of C, each hexahedron in this
sheet is incident to exactly one primal quadrilateral in V ∗

C,r and the entire
sheet is bounded by the primal quadrilaterals that correspond to the V ∗

C . See
Fig. 3 (b) for an illustration of a dual cycle and the set of dual vertices to its
right side and Fig. 1 for the corresponding sheet of hexahedra. Consequently,
for each dual vertex in V ∗

C,l, V ∗
C,r respectively, exactly one hexahedron is

taken away from the unknown hexahedral complex. Whether a dual cycle
is eliminated with respect to its left or right side actually does not make
any difference during the elimination process. However, we will see that it
has a significant influence on the resulting hexahedral mesh’s topology when
it comes to the reconstruction step explained in Section 3.3, also refer to
Figure 5 to get a picture of the described elimination scheme.

3.2 Perfect Cycle Elimination Schemes

According to Müller-Hannemann, an elimination of a dual cycle C is called
feasible if

1. C is a simple cycle, i.e. it is free of self-intersections,
2. the subgraph of G∗ induced by the dual vertices incident to the virtu-

ally eliminated sheet on the respective side of C, thus V ∗
C,l or V ∗

C,r, is

connected1, and
3. The dual graph after the elimination of C, denoted as G′∗, is 3-vertex-

connected, i.e. it has at least four edges and cannot be disconnected by
removing one or two vertices from the graph. This can be checked in
linear time complexity, see [27] for details.

The general idea behind the meshing algorithm is to successively eliminate
outer layers of hexahedra, i.e. “peel off” sheets on the boundary, from the

1 An undirected graph is connected if there is a path between any pair of nodes.
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unknown hexahedral complex. For this, a series of feasible dual cycle elimina-
tions that transforms the dual surface graph of the input mesh into the dual
graph of a single hexahedron has to be found. This requires the elimination
of all dual cycles except three from G∗ in a specific order. Such a series of
feasible dual cycle eliminations is called Perfect Cycle Elimination Scheme,
PCES in short. A PCES is generally not unique.

Obviously, a single hexahedron is not only the simplest hexahedral mesh
but also a convex polyhedron the dual graph of which has a planar embedding
and consists of three simple cycles. Therefore, the given criteria that have to
be satisfied in order for a dual cycle elimination to be feasible must not be
violated at any stage when determining a PCES for a given input mesh. In
order to determine the order of dual cycle eliminations, we have to examine
the reconstruction of cycle eliminations and the geometric classification of
the cycles more closely.

3.3 Reconstruction of Dual Cycle Eliminations

The reconstruction starts with a hexahedral complex which only consists of
one hexahedron. We now process a PCES in reverse order. Let Ci be the dual
cycle to be reconstructed and let furthermore Ci be eliminated with respect to
side s ∈ {l, r} (which, at this point, is still unclear how to choose). Then V ∗

Ci,s

denotes the set of dual vertices situated on side s of Ci w.r.t. Ci’s orientation.

Fig. 4 The extrusion of the lower
row of two faces

The elimination of Ci is then recon-
structed by extruding all (connected) faces
in the intermediate surface mesh G′ that
correspond to the V ∗

Ci,s
(cf. Figure 3 (b),

right). In this context, an extrusion is the
topological operation of transforming each
boundary face in question to a hexahedron
being adjacent to the hexahedron formerly
adjacent to the face. Also see Figure 4 for
an illustration of this operation.

Although the decision of whether a cycle should be reconstructed to its
left or right side is irrelevant for the cycle elimination procedure, it obviously
plays a crucial role during the reconstruction steps. Since a dual cycle elim-
ination is reconstructed by extruding all primal faces corresponding to the
dual vertices on one side of the cycle, it is desirable the cycle be situated
at geometric borders, i.e. near geometric features, and the elimination side
be chosen the feature side. If the elimination side is not chosen accordingly,
the reconstructed hexahedral mesh might contain unnecessary interior singu-
lar edges, i.e. inner edges of degree other than four in the hexahedral mesh.
In many cases, singular edges are not desired since they might cause the
hexahedral elements to suffer from compromised numerical properties. See
Figure 5 for an illustration of the two different reconstruction schemes and
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Elimination

LHS

RHS

Extrusion

Extrusion

Fig. 5 Left: A dual cycle (dashed line) is eliminated from a surface mesh. Top row:
The elimination is reconstructed with respect to the cycle’s left-hand side by ex-
truding the faces marked with a dot. Bottom row: The elimination is reconstructed
with respect to the cycle’s right-hand side. The resulting hexahedral meshes are
depicted in the right-most column. Although both meshes have the same boundary
topology, they essentially differ in their interior topology. While the mesh on top
has interior singular edges, the bottom mesh does not.

the resulting hexahedral meshes after the reconstruction. In order to avoid the
generation of these undesired configurations, a geometric classification of the
dual cycles used to introduce a basic elimination prioritization is described
in the next section.

3.4 Geometric Rating of Dual Cycles

In order to use the geometry of a surface mesh G to guide the dual cycle elimi-
nation process, Müller-Hannemann proposes to assign each dual edge a binary
status: sharp or flat. For this, we measure the (unsigned) dihedral angle of the
corresponding primal edge outside the solid for each dual edge and determine
whether it exceeds a user-defined threshold—experiments proved values be-
tween 50◦ and 70◦ deviation from flat as being reasonable. If it exceeds this
threshold it is marked as sharp, otherwise flat. In the following, let V ∗

C denote
the set of dual vertices in G∗ incident to the dual edges of a cycle C. Then, in
a subsequent step, each dual cycle is assigned three values:

Left-Hand Side Weight. Iterate over the oriented edges of C and accu-
mulate the number of sharp dual edges incident to a dual vertex in V ∗

C and
situated on the left-hand side of the cycle. The final weight is the quotient
of this number and the total number of dual edges in C.

Right-Hand Side Weight. The same as before but this time for the
right-hand side of C.

Flatness Weight. Accumulate the number of sharp dual edges in C.

We can now use the first two weights to incorporate the underlying geome-
try in the heuristic to determine the PCES: the elimination priority increases
proportionally with the value of the highest of either weights. The elimination
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Fig. 6 Left: A dual cycle on a surface mesh (marked with thick solid lines). The
dashed lines are the neighboring dual edges to one of the cycles sides (with respect
to its orientation). In this example, the corresponding primal edges all have a sharp
dihedral angle and thus the presented dual cycle’s weight is high. Right: An illus-
tration of a flat cycle on a planar surface region. The elimination of these cycles
should be avoided.

side is then the one whichever has the higher weight. The third weight is used
to classify a cycle as either flat, in case this weight is zero, or non-flat, in case
this weight is positive. The elimination of dual cycles with flatness weight zero
should be avoided since they are situated within a flat region and thus enclose
hexahedral sheets that have zero volume and are therefore geometrically in-
feasible. An illustration of a sharp and a flat dual cycle arrangement is given
in Figure 6. Notice that, when eliminating a dual cycle, as described in Sec-
tion 3.1, the weights of each merged edge is just the sum of the weights of both
former edges. Since we solely operate on the dual graph we do not care about
updating the geometric embedding of G during the elimination steps.

4 Dual Cycle Elimination Optimizations

In this section we describe different classes of problems commonly encoun-
tered with the original approach and discuss some tools to overcome them.
These techniques are presented in terms of simple rules that can easily be
integrated into the heuristic to determine the dual cycle elimination order.

4.1 Zero Volume Hexahedra

Elimination

Fig. 7 A simple example of a surface
mesh with a concave area. The elimina-
tion of the cycle marked as dashed lines
will result in a surface mesh that induces
at least one hexahedron with zero volume.

The main problem that occurs when
reconstructing objects with concavi-
ties is that, at some point during the
reconstruction, poorly shaped hexa-
hedra, i.e. hexahedra with small or
negative Scaled Jacobian value, will
be added to the hexahedral complex.
This is always the case if the sum of
the dihedral angles of at least two
successive crossing dual edges ad-
jacent to C is close to 180◦. The
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problem is depicted in Figure 7 at the example of a simple surface mesh
configuration.

These configurations are easy to detect. During the elimination process,
we merely have to make sure that no such dual cycle is eliminated as long as
there are still other candidates that do not contain such configurations—even
if their elimination weight is smaller. In the example of Figure 7, this would
lead to the elimination of the cycle horizontally enclosing the top layer of
hexahedra prior to the depicted one leading to the resulting hexahedral mesh
this surface intuitively suggests.

4.2 Enclosed Dual Cycles

Let C be a dual cycle to be reconstructed with respect to side s ∈ {l, r}.
Then, the primal faces corresponding to V ∗

C,s define a patch on the primal
quadrilateral surface mesh representing the boundary of the intermediate
hexahedral mesh as depicted in Figure 3 (b). Let this mesh be denoted by
Q := Q(C, s). Since we extrude one hexahedron for each dual vertex in V ∗

C,s,
a connected sheet of |V ∗

C,s| hexahedra is created when extruding the patch
Q. Therefore, the degree (or oftentimes referred to as valence) of each entity
in Q is increased by one. Note that an edge on the boundary of a hexahedral
complex is singular if it is incident to other than three faces. Analogously,
an interior edge is singular if it is incident to other than four faces. When
extruding Q, we can now observe the following (the described configurations
refer to the meshes before the extrusion):

(1) For each vertex on the boundary of Q that is incident to other than three
edges in Q a new singular boundary edge is added to the hex complex.

(2) For each vertex in the interior of Q that is incident to other than four
edges in Q a new singular edge is created in the interior of the hex
complex.

(3) Each edge on the boundary of Q that is incident to other than two faces
in the intermediate hexahedral complex becomes a singular boundary
edge.

(4) Each edge in the interior of Q that is incident to other than three faces in
the intermediate hexahedral complex becomes a singular interior edge.

Obviously, during the elimination of the dual cycles, we do not have any
knowledge about the topology of the intermediate hexahedral mesh obtained
in the reconstruction steps. For this reason, it is not possible to predict config-
urations of case (3) or (4) and thus they cannot be respected when eliminating
the cycles. However, it is possible to detect configurations of type (1) and (2).

Let C be a dual cycle to be eliminated at elimination step i with respect
to side s ∈ {l, r}. Furthermore, let G∗

i−1 denote the intermediate dual sur-
face graph after i − 1 cycle eliminations. The set V ∗

C,s induces a connected
subgraph of G∗

i−1 denoted by G∗
C,s,i−1. Let n be the total number of dual cy-

cle eliminations. Since the described method is surface conforming the dual
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surface graph after i cycle eliminations is always topologically equivalent to
the surface of the intermediate hexahedral mesh after n − i reconstruction
steps. Accordingly, if G∗

C,s,i−1 contains at least one closed dual cycle Cenc

during the elimination, i.e. C encloses Cenc on side s, we can conclude that
the corresponding surface of the intermediate hexahedral mesh contains at
least four primal vertices of degree three, thus of type (2). If, in addition,
the lengths of Cenc and C differ, the intermediate hexahedral mesh’s surface
contains at least one more vertex of type (1) and/or type (2). It turns out
that, in practice, these configurations, illustrated in Figure 8, are encountered
considerably often.

Fig. 8 A simple sur-
face mesh with two
cycle elimination can-
didates (dashed lines).
Eliminating the cycle
on the left side prior
to the right one would
introduce unnecessary
interior singular edges
into the resulting hex-
ahedral mesh.

Therefore, we extend the cycle elimination selec-
tion routine such that if a cycle C encloses another
non-flat cycle Cenc to its elimination side, then Cenc

must be eliminated first. This minimizes the num-
ber of singular vertices within the extrude region and
thus the number of singular edges added to the hex-
ahedral complex. In case Cenc is a flat cycle, we must
not eliminate it prior to C because Cenc might be part
of a so-called double cycle arrangement, see [23] for
details. In these cases, it is recommended to proceed
with the next elimination candidate if there is any.

5 Concave Cycle Elimination

The method to avoid degenerate hexahedra to be cre-
ated, as discussed in Section 4.1, works sufficiently
well for meshes with “notches” such as depicted in
Figure 7 but is insufficient when it comes to meshes
that contain closed concave regions such as cavities.
Consider the two meshes depicted in Figure 9 (a). In
this example, any cycle elimination order of the mesh

on the left side would obviously cause degenerate hexahedra to be gener-
ated during the reconstruction. Consequently, in order to cover these surface
mesh configurations, a more sophisticated technique is needed. In order to
find a practical means to overcome this issue, we divide the cycles into two
subclasses referring to their geometric properties: convex and concave dual
cycles. All concave dual cycles are then eliminated prior to the elimination
of the convex ones. The informal interpretation of the elimination of concave
cycles is to topologically add a virtual sheet of hexahedra to the “unknown
hexahedral complex” that is situated outside the volume bounded by the
surface for each eliminated cycle. The introduction of virtual layers of hexa-
hedra then successively “stuffs” the concavity so that, after the elimination
of all concave cycles, we end up with a modified surface mesh that is (almost)
convex. See Figure 9 (b) for an illustration of the topological interpretation.
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(a) (b)

Fig. 9 (a) Although both meshes have the exact same topology, the left one does
not induce an elimination scheme that avoids the generation of degenerate hexahe-
dra, whereas the mesh on the right can be meshed using only well-shaped hexahedra.
(b) Left: A surface mesh with a concavity in its center. The dual cycle marked with
dashed lines is identified as a concave cycle. Right: This concave cycle can be in-
terpreted as enclosing a sheet of virtual hexahedra outside the volume bounded by
the surface mesh filling the cavity (marked as transparent cells). The elimination
of this cycle adds the marked hexahedra to the unknown hexahedral complex and
results in a surface graph in which the concavity is removed.

5.1 Classification of Concave Dual Cycles

In the following, we require the input surface mesh to be consistently oriented.
In our implementation, we use the OpenMesh half-edge data structure [8]. At
the basis of this orientation we can now determine whether the dihedral angle
of two adjacent primal faces is convex, i.e. the angle is positive, or concave,
i.e. the angle is negative. We now extend the set of weights computed for each
dual cycle. For each dual cycle a convexity weight is computed for each side
similar to the rules described in Section 3.4. This time, the weight is set to be
the quotient of convex sharp edges and the total number of dual edges in the
cycle. Similarly, we now introduce the concavity weight for each side which is
the quotient of concave sharp edges and the number of edges in the cycle.

5.2 Elimination Scheme

We now extend the heuristic to determine the dual cycle elimination order
in a straightforward way. All dual cycles with a positive concavity weight
on either side must be eliminated prior to the ones with positive convexity
weights. Once again, the elimination priority should be proportional to the
value of the concavity weight. As a further rule, the elimination of a dual
cycle with high LHS and RHS convexity weight must be avoided as long as
there is any other elimination candidate in the graph. This is due to the fact
that it is highly likely that this cycle contains zero volume configurations
such as described in Section 4.1. Once all concave dual cycles are eliminated,
we proceed with the elimination of the convex dual cycles.

5.3 Reconstruction Scheme

After the elimination of all concave dual cycles the unknown hexahedral com-
plex contains additional hexahedra making the complex convex. After
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applying the reconstruction step of the convex dual cycle eliminations in re-
verse order, the reconstructed hexahedral complex contains these additional
hexahedra used to fill the concavities. Consequently, as a last reconstruction
step, we reconstruct the elimination of the concave dual cycles in reverse elim-
ination order. Let C be a concave dual cycle to be reconstructed to side s ∈
{l, r}. This time, instead of extruding the connected region induced by V ∗

C,s on
the hexahedral mesh’s surface, we apply an intrusion of the layer of hexahe-
dra incident to the primal faces corresponding to the V ∗

C,s in the intermediate
hexahedral mesh. An intrusion is the opposite operation of an extrusion: all
hexahedra incident to the primal faces corresponding to the V ∗

C,s are deleted
from the hexahedral complex. More formally, let HC,s be the set of hexahedra
being incident to the primal faces corresponding to V ∗

C,s. Then, when intrud-
ingHC,s, all entities of the intermediate hexahedral complex of any dimension
that only have incidence relations to elements in HC,s are deleted.

5.4 Problems

Although the elimination and reconstruction of concave cycles is a straightfor-
ward extension to the schemes described by Müller-Hannemann that extends
the class of meshable objects, there are still scenarios that cause problems.

Insufficient Cycle Alignment

The idea of classifying dual cycles as either concave or convex requires that
the cycles be aligned with the feature (curvature) lines of the surface mesh.
Therefore, it is understood that finding a topologically simple as well as geo-
metrically meaningful quad mesh layout is crucial for generating high quality
hexahedral meshes. In case the cycle layout’s alignment diverges significantly
from the mesh’s main features, the resulting hexahedral mesh will presumably
contain undesired degenerate elements. This also applies for the alignment of
the convex dual cycles.

False Positives

Fig. 10 A dual cy-
cle that is falsely
classified as concave
because its paral-
lel neighboring pri-
mal edges (below the
cycle) are all charac-
terized as concave

In some cases it occurs that a concave cycle is not part
of a concave area on the surface mesh. In Figure 10, the
dashed dual cycle is identified as being concave but,
in fact, does not enclose a concavity. In order to cor-
rectly detect these configurations, we implemented the
following workaround: for a cycle C with elimination
side s ∈ {l, r} we assume that the primal faces corre-
sponding to the V ∗

C,s form an almost flat region, i.e. we
check if all edges in the subgraph induced by V ∗

C,s are
flat. If so, the cycle in question is marked concave.
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Invalid Intrusion Operations

The elimination of a concave dual cycle C with respect to side s ∈ {l, r} is
equivalent to adding |V ∗

C,s| hexahedra to the unknown complex. Accordingly,
it is a necessary requirement that each intrusion operation removes exactly
|V ∗

C,s| hexahedra from the hexahedral complex. However, since we still do not
have general control over the topology of the reconstructed hexahedralmesh, it
might occur in some cases that the number of intruded hexahedra differs from
|V ∗

C,s|. That is the case if multiple primal faces corresponding to the V ∗
C,s are in-

cident to the same hexahedron in the complex as illustrated in Figure 11 (a).
As soon as the reconstruction of another dual cycle involves a subset of the
newly revealed faces, the algorithm will get stuck since the requirement of sur-
face conformity is violated in these cases. This is still an open problem and
can only, up to this state, be partially addressed via the technique described
in Section 5.4. Unfortunately, these configurations are not rare in complex ge-
ometries and thus this aspect needs further investigation.

(a)

Intrusion

(b)

Fig. 11 (a) The surface of a hexahedral complex before (left) and after an intru-
sion (right). This is a scenario where the number of revealed primal faces after an
intrusion is not equal to the number of faces in the original intrusion region. These
configurations cause the algorithm to get stuck in most cases. (b) Two examples of
input surface meshes in which a cycle that is classified as concave encloses another
cycle to its elimination side. Left: the enclosed cycle is classified as concave. Right:
the enclosed cycle is classified as convex.

Enclosed Concave Cycles

Since the lack of information about the intermediate hexahedral complex
during the elimination steps we still do not have control over the problem
described in Section 5.4.

However, it is possible to avoid the occurrence of these configurations in
many cases. It is easy to understand that, whenever a concave cycle encloses
another cycle to its elimination side, it is highly likely that two faces within
the intrusion area will be incident to the same hexahedron. Therefore, it is
straightforward to overcome this issue: for a concave dual cycle C, all enclosed
dual cycles except flat cycles must be eliminated prior to eliminating C. This
has to be done regardless of whether the enclosed cycle is classified as concave
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or convex. An illustration of two respective cycle arrangements is shown in
Figure 11 (b). It is easy to see that, in order to generate a feasible hexahedral
mesh in a concave region, the topology of the surface mesh in the concave
area and its “backside”, i.e. the surface on the opposite side, have to match.

6 Results and Evaluation

We have run the proposed algorithm on a set of quadrilateral surface meshes
which predominantly have been generated using an implementation of the
mixed-integer quadrangulation method [7] with manual singularity placement
and connectivity constraints [25]. Figure 13 shows some hexahedral meshes
generated using our method. The geometric embedding is computed using the
Mesquite library [9]. We compare our results to the results produced with the
original method (without cutting and remeshing of concave objects) in terms
of number of elements and the Scaled Jacobian footprint. The statistics for the
results are shown in the table below. The columns from left to right: mesh,
number of hexahedra, minimum, average, and maximum Scaled Jacobian
(SJ). The numbers on the left (green) are the results from the original method
and those on the right (blue) are our results.

Mesh # Hex. Min. SJ � SJ Max. SJ

Drilling H. 12196/10260 -.99/.38 .86/.98 .99/.99

Fandisk 16088/16088 .14/.14 .98/.98 .99/.99

Knotted H. 4713/1529 -.99/.92 .53/.99 .99/.99

RockerArm 13302/3572 -0.99/.15 .51/.76 .99/.99

Sphere 900/900 .04/.04 .81/.81 .99/.99

Fanpart 188/188 .85/.85 .97/.97 .99/.99

Bullet 188/56 .39/.28 .65/.72 .97/.98

It can be seen that, in most cases, our algorithm generates fewer elements as
compared to the original approach. Furthermore, in most cases, our minimum
and average Scaled Jacobians are not only exclusively positive but are signif-
icantly greater than those generated with the original approach. This is due
to the fact that, in the original method, many degenerate hexahedra are cre-
ated near concave regions whereas the proposed approach is able to generate
well-shaped elements in these regions. Compared to the results in [19] (using
CubeCover), one can see that the minimum and average Scaled Jacobian for
the Fandisk model is greater using our method. However, since the resolution
of our mesh is considerably higher, this comparison is rather insignificant.
Figure 12 shows a comparison of the topology of a mesh generated with the
original approach and our method. Due to the cycle elimination dependency
rules, our method produces the hex-mesh topology as suggested by the input
surface. The original method creates many asymmetric interior singularities.
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Fig. 12 Left: the original bullet quad mesh. Middle: the result from the original
method. Right: the result from our algorithm.

Fig. 13 Top row, left: The RockerArmmodel and dissections that reveal its interior
structure. The mesh was modified such that the handle in the middle is closed with
two planar patches. Right: The Fanpart mesh with dissection. Bottom row, from left
to right: Drilling Hole, Fandisk, Furch’s Knotted Hole, Sphere. Interior singularities
are shown as blue lines and orange lines indicate exterior singularities.

7 Conclusions

We describe a set of improvements to the conceptual hex-meshing method ini-
tially proposed by M. Müller-Hannemann that not only considerably increase
the quality of the generated meshes but also extends the class of meshable
surface meshes. The proposed method can handle many concave surface con-
figurations without the need of mesh surgery prior to the actual meshing.
Also, we describe means to minimize the number of generated singularities
by incorporating a set of simple rules in the dual cycle elimination routine.
Our techniques advance the rather theoretical original approach further to-
wards being a practical solution for the problem of finding feasible hex-meshes
for surface meshes of genus zero. However, the restriction to input meshes
of genus zero that do not have self-intersecting dual cycles still is a serious
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limitation the realization of which may need a considerable amount of manual
intervention. Furthermore, as both the original method and the proposed one
are surface conforming, the quality of the resulting meshes crucially depends
on the quad mesh layout of the input mesh. The more a quad mesh’s layout is
aligned with its inherent geometric features the better results will be achieved
using the proposed method. Nevertheless, as recent research tends to produce
increasingly powerful approaches to quad meshing, the described method is
a valuable alternative to parameterization-based hex-meshing methods that,
in the current state, also require user interaction and are more error-prone.
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