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Summary. A procedure to quantify the distortion (quality) of a high-order
mesh composed by curved tetrahedral elements is presented. The proposed
technique has two main applications. First, it can be used to check the va-
lidity and quality of a high-order tetrahedral mesh. Second, it allows the
generation of curved meshes composed by valid and high-quality high-order
tetrahedral elements. To this end, we describe a method to simultaneously
smooth and untangle high-order tetrahedral meshes by minimizing the pro-
posed mesh distortion. Finally, we present several results to illustrate the two
main applications of the proposed technique.

1 Introduction

In the last two decades, high-order methods have attracted a remark-
able attention from the community of computational methods. This atten-
tion has been prompted by the potential of high-order methods to deliver
higher accuracy with a lower computational cost than low order methods
[1, 2, 3, 4, 5, 6, 7]. However, their adoption has been hampered by several
technical issues such as the difficulty of developing robust implementations
and the generation of 3D curved meshes. Note that a mesh for high-order
methods is composed by straight-sided and potentially curved elements. The
curved elements are required to approximate adequately the curved domain
boundaries and therefore, to preserve the accuracy of high-order methods
[8, 9, 10, 11, 12]. Hence, it is mandatory to develop techniques that allow
the generation of valid 3D curved meshes to obtain full benefit of high-order
methods.

A curved mesh is considered to be valid if each one of the elements can
be transformed to a regular and straight-sided element (master) through

J. Sarrate & M. Staten (eds.), Proceedings of the 22nd 109
International Meshing Roundtable,
DOI: 10.1007/978-3-319-02335-9_7, c© Springer International Publishing Switzerland 2013



110 A. Gargallo-Peiró et al.

a mapping that is differentiable, invertible and smooth (diffeomorphism).
That is, the mapping between the master element and the curved element is
expressed in terms of a differentiable function, and the curved element is non-
folded (positive determinant of the mapping Jacobian). Moreover, a curved
mesh is considered to be of high-quality if all the elements have a shape close
to regular (smooth and well-conditioned Jacobian). Note that if an element
is invalid, the determinant of the mapping Jacobian presents non-positive
values. These non-positive values invalidate the change of variables used to
compute the weak formulation integrals on a master element. Moreover, if an
element has low-quality the Jacobian could be non-smooth or ill-conditioned.
In that case, the approximation accuracy is degraded and the solution may
be polluted by the introduced error [13]. Therefore, it is required to develop
measures to quantify the validity and quality of a given 3D curved mesh.

Quality measures also have an alternative and significant application. They
allow the use of optimization based techniques to repair non-valid meshes (un-
tangle) and to improve the mesh quality (smooth) by minimizing (maximiz-
ing) the distortion (quality) of the mesh elements. Note that this technique
allows the generation of high-order meshes with an a posteriori approach
[14, 15, 16, 17, 18, 19]. That is, it allows the generation of meshes that might
contain inverted or low-quality elements, and then untangle and smooth them
a posteriori to ensure and enhance the mesh quality. Specifically, a high-order
mesh can be obtained by generating first a linear mesh. Second, the linear
mesh is converted to a high-order mesh by adding additional nodes and by
curving the boundary elements. Finally, the converted mesh is untangled
and smoothed to remove the non-valid (folded) and low-quality (distorted)
elements. However, the application of this approach together with a mesh
quality optimization has been hampered by the absence of 3D quality mea-
sures for high-order iso-parametric elements with degree superior than two.
Note that the capability of generating valid curved 3D meshes is of the major
importance for the community of high-order unstructured methods.

The main contribution of this work is to present a technique that allows
extending any Jacobian based quality measure for linear 3D elements to high-
order iso-parametric tetrahedra of any interpolation degree. In addition, we
derive how to apply the proposed technique: to quantify the validity and
quality of a given 3D curved mesh; and to generate curved meshes with an
a posteriori approach based on the minimization of the mesh distortion. To
illustrate these two main applications, we check the validity and quantify the
quality of several curved meshes. Moreover, we present several curved meshes
obtained with the presented a posteriori approach.

2 Related Work

One of the main issues in mesh generation is to quantify the validity of a
mesh for computational purposes. For linear elements, a wide range of quality
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measures have been developed [13, 20]. Specifically, this is an unresolved issue
for high-order meshes. To address this issue, we develop a technique that
allows extending to high-order elements the set of Jacobian-based measures
for linear elements presented in [21, 22]. These measures allow determining
the quality of a linear element in terms of the Jacobian of the iso-parametric
mapping. Below we review the previous developed approaches to quantify the
validity and quality of curved meshes.

On the one hand, different techniques have been proposed to determine
the validity of a high-order mesh by means of checking the positivity of the
Jacobian mapping from the master to the physical element. Specifically, it has
been studied how to detect non-positive Jacobian determinants for B-spline
based mappings [14, 15, 16, 17, 18] and quadratic iso-parametric elements [23,
24, 25]. Moreover, for higher interpolation degrees, in [26, 27] it is proposed to
compute accurate bounds on Jacobian determinants of 2D and 3D curvilinear
polynomial finite elements.

On the other hand, several approaches have been developed to quantify
the quality of non-linear iso-parametric elements. For elements of quadratic
degree, different definitions of distortion (quality) have been proposed for the
planar [28, 29, 30, 31] and 3D [32, 33, 34] elements. The main difference of
this work with the previous works is that we propose the definition of the dis-
tortion (quality) measure for tetrahedral elements (3D) of any interpolation
degree. The proposed distortion is the L2-norm of the modification of a given
point-wise Jacobian-based measure. This definition allows the detection of
non-positive values of the Jacobian determinant of the master mapping for
any interpolation degree. That is, if the quality is greater than zero, the
master mapping is a local diffeomorphism in the integration points. It is im-
portant to point out that this work is an extension to 3D of the distortion
measures for planar and surface elements presented in [35, 36].

The defined distortion measure allows both the validation of high-order
tetrahedra and the generation of high-order meshes via an a posteriori opti-
mization approach. The a posteriori approach has been previously used with
success for B-spline mappings [14, 15, 16, 17, 18], and for iso-parametric el-
ements [37, 19, 35, 38, 34, 36, 39]. Next, we highlight the two main types
of approaches to generate high-order tetrahedral meshes by means of an a
posteriori approach.

On the one hand, in [19, 38] two techniques to generate curved meshes
by means of a solid mechanics analogy are presented (non-linear and linear
elasticity, respectively). On the other hand, the curving of the mesh in the a
posteriori approach can also be achieved by the optimization of a distortion
(quality) measure. In [34] a technique is presented to generate meshes com-
posed by tetrahedra of degree 2 via topology modification and optimization
of two functions (scaled Jacobian measure and a ratio of the length and vol-
ume of the elements). In contrast, in [39] it is proposed to optimize a function
that is able to avoid Jacobians that are too small or too high.
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Fig. 1 Mappings between the master, ideal and physical linear elements

One of the main features of the optimization approach that we propose for
high-order meshes is that it allows untangling (recovering from an inverted
configuration) as well as smoothing meshes of any interpolation degree. Note
that a technique to untangle high-order meshes is strictly necessary, since
tangled elements appear in the a posteriori approach. The untangling capa-
bility is introduced explicitly in the formulation by means of the modification
of the Jacobian-based measure presented in [40, 36]. This modification leads
to an automatic and robust smoothing-untangling optimization approach. It
is important to point out that the optimization process proposed here con-
sists on a minimization of the defined high-order mesh distortion. Therefore,
the resulting untangled mesh is valid, but it also maximizes the defined qual-
ity measure. Finally, we would like to highlight that the approach presented
here to generate high-order tetrahedral meshes is an extension of the work
developed for high-order 2D meshes [35], and high-order surface meshes [36].

3 Distortion and Quality Measures for High-Order
Tetrahedral Elements

In this section, we first review the definition of Jacobian-based distortion
measures for linear tetrahedral elements. In addition, we introduce the no-
tation required for high-order elements. Finally, we propose a definition for
a distortion and a quality measure for high-order tetrahedra in terms of the
Jacobian-based distortion measures for linear elements.

3.1 Preliminaries

In this work, we propose to define the quality of a high-order tetrahedral el-
ement by means of a generalization of the Jacobian-based quality measures
for linear elements presented in [21, 22]. To define a Jacobian-based measure
for linear tetrahedra, three elements are required: the master, the ideal, and
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Fig. 2 Mappings between the master, ideal and physical high-order elements

the physical. The master element (eR) is the element from which the iso-
parametric mapping is defined. The ideal tetrahedron (eI) represents the tar-
get configuration. The physical (eP) is the element to be measured. First, the
mappings between the master and the ideal and the physical elements are ob-
tained. By means of these applications, a mapping between the ideal and phys-
ical elements is determined by the composition (see Figure 1)

φ : eI
φ−1

I−→ eR
φP−→ eP .

The Jacobian of this affine mapping encodes the deviation of the physical
element with respect to the ideal one. Hence, the distortion measure of the
physical element is defined in terms of Dφ. These distortion measures, herein
denoted by η, quantify the deviation of one or several features (shape, size,
skewness, degeneracy,...) of the physical element with respect to the ideal
element in a range scale [1,∞). The corresponding quality measure is defined
as q := 1/η ∈ [0, 1].

For the remaining of this work, we use the shape distortion measure [21]:

η(Dφ) =
‖Dφ‖2
3|σ|2/3 , (1)

where ‖ · ‖ is the Frobenius norm, and σ = det(Dφ). This distortion measure
quantifies the deviation of the shape of the physical tetrahedron with respect
to the ideal shape. To assign quality zero for degenerated elements (negative
σ), σ in equation (1) is replaced by σ0 = (σ+ |σ|)/2. In this way, for negative
values of σ, η = ∞ and therefore, q = 0.

To untangle meshes in the optimization procedure, we use the modification
of the determinant σ proposed in [40]. This modification can be applied to
Jacobian-based distortion measures where the determinant of the Jacobian
appears in the denominator. Specifically, we replace σ in (1) by

σδ(σ) =
1

2

(
σ +

√
σ2 + 4δ2

)
, (2)
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where δ is a numerical parameter that has to be determined [40, 36]. There-
fore, we consider a modified shape distortion measure,

ηδ(Dφ) =
‖Dφ‖2
3|σδ|2/3 . (3)

It is important to point out that without the proposed modification, η has an
asymptote when σ = 0 (where an element becomes non-valid). Note that it
is required to modify σ to remove this asymptote and therefore, allow to the
optimization procedure recovering from the non-valid configuration (tangled).
For δ > 0, σδ(σ) is a strictly increasing function, such that σδ(0) = δ and
that tends to 0 when σ tends to −∞ . Therefore, ηδ is a smooth function
with no asymptotes. Moreover, for small values of δ, the minimum of ηδ is
close to the valid minimum of η0.

3.2 Notation for Iso-Parametric High-Order
Tetrahedra

Let eP be a nodal high-order tetrahedron of interpolation degree p deter-
mined by np = (p + 1) · (p + 2) · (p + 3)/6 nodes with coordinates xi ∈ R

3,
for i = 1, . . . , np. We select a node distribution that provides a quasi-optimal
Lebesgue constant [41]. Given a master element eR with nodes ξi ∈ R

3,
being i = 1, . . . , np, we consider the basis {Ni}i=1,...,np of nodal shape func-
tions (Lagrange interpolation) of degree p. Then, the high-order isoparametric
mapping from eR to eP can be expressed as:

φP : eR ⊂ R
3 −→ eP ⊂ R

3

ξ �−→ x = φP (ξ) =

np∑
i=1

xiNi(ξ).
(4)

The Jacobian of the isoparametric mapping (4) is the matrix

DφP (ξ) =

np∑
i=1

xi∇Ni(ξ) ∈ R
3 × R

3. (5)

3.3 Definition of Distortion and Quality

In this section, we define the distortion and quality measure for a high-order
element in terms of a Jacobian-based distortion measure for linear elements.
To this end, analogously to the linear case, we consider three elements: the
master eR , the ideal eI , and the physical eP . The master element allows
the characterization of the ideal and physical elements in terms of a master
mapping. Specifically, it is required to determine a distribution of points
on the master element and the corresponding coordinates of the nodes in
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the ideal and physical element. On the one hand, the coordinates of the
nodes of the ideal element (see Section 4.1 for more details) are chosen to
determine a straight-sided high-order tetrahedron. Therefore, φI is an affine
mapping. On the other hand, the coordinates of the nodes of the physical
element determine, in general terms, a curved element. Hence, the mapping
φP presented in Equation (4), is not affine in general, see Figure 2. Moreover,
φ = φP ◦ φ−1

I is also not affine, and the Jacobian matrix is not constant.
Specifically, for a point y on the ideal element, the expression of the Jacobian
is:

Dφ(y) = DφP (φ
−1
I (y)) ·Dφ−1

I (y). (6)

Similar to the linear case, we want to define a distortion measure based
on the Jacobian matrix of φ. However, the Jacobian of a high-order element
is not constant. Nevertheless, the Jacobian on a point allows measuring the
local deviation between the ideal and the physical element. Thus, we can
obtain an elemental distortion measure by considering the L2-norm of the
Jacobian-based distortion measure on the ideal element.

We define the ideal mesh MI of a mesh M as the set of ideal elements
that correspond to each physical element. Next, we define the scalar product
of two scalar functions on MI as

〈f, g〉MI :=

nE∑
i=1

〈f, g〉eIi , (7)

expressed in terms of their inner product on the ideal element,

〈f, g〉eI :=

∫

eI

f(y) g(y)dy, (8)

where eIi is the ideal of element ePi , and nE is the number of elements of the
mesh. The norms corresponding to these scalar products are

‖f‖MI :=
√
〈f, f〉MI , (9)

‖f‖eI :=
√
〈f, f〉eI , (10)

Remark 1. We choose eI as a valid straight-sided tetrahedron. That is, φI is
an affine mapping and therefore, a global diffeomorphism. In this way, we can
use the change of variable determined by φI to compute the scalar product
as:

〈f, g〉e :=
∫

eR

f(φI(ξ)) g(φI(ξ)) | detDφI(ξ)| dξ. (11)

To compute this integral, we use a numerical quadrature that ensures that
polynomials of degree (d + 3)p − d and d variables are integrated exactly,
where d = 3 is the number of spatial dimensions. Specifically, the quadrature
use ((d+ 3)p− d− 1) /2 integration points as specified in [42].
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Next, we define the distortion at a point y ∈ eI for a high-order element with
nodes x1, . . . ,xnp

∈ R
3, as:

ηφ := ηδ (Dφ) . (12)

We point out that ηφ is a function of y, and that it also depends on
x1, . . . ,xnp , since φ does. Now, we can define the corresponding distortion
and quality measures for a high-order element:

Definition 1. The distortion measure for a high-order 3D element is

ηeP :=
‖ηφ‖eI
‖1‖eI

, (13)

where ηeP is a function of the element nodes x1, . . . ,xnp , since ηφ is. Note
that ‖1‖eI is the area of the ideal element.

Definition 2. The quality measure for a high-order planar element is qeP :=
1/ηeP .

4 Applications

In this section, we analyse the two main applications of the defined distortion
and quality measures. First, we overview the main features that allow using
these measures to validate a given high-order tetrahedral mesh. Second, we
set an optimization framework in order to generate high-order tetrahedral
meshes in an a posteriori procedure.

4.1 Validation of High-Order Tetrahedral Meshes

One of the main applications of distortion (quality) measures is to check that
the mesh is valid to perform a numerical simulation. Specifically, a quality
measure has to properly detect if an element it is non-valid (and assign 0
value). Moreover, the measure has to penalize the deviation of the element
with respect to the target ideal (and assign value 1 to the ideal).

To measure the validity of elements, δ is set to 0 in (12). Therefore, if there
is a point y where the Jacobian is non-positive (σ ≤ 0), then ηφ(y) = ∞.
Hence, ηeP = ∞. Conversely, if the physical element is the ideal, φ is the
identity. Then, the point-wise distortion ηφ(y) is 1 for all y ∈ eI . Thus, by
Definition 1, the element distortion ηeP is also 1. Summarizing, we state the
following remark:

Remark 2. The distortion measure ηeP for high-order tetrahedral elements
has image [1,∞), where 1 corresponds to the ideal configuration and ∞ to
a non-valid one. Hence, by Definition 2, qeP has image [0, 1], where 0 corre-
sponds to an inverted element, and 1 to the ideal one.
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The measures defined in Section 3.3 can accommodate different ideal ele-
ments. We select two different type of ideals depending on the framework of
the computation. On the one hand, for absolute quality measurement, we se-
lect the equilateral tetrahedron as ideal (standard ideal for isotropic meshes
[21]). The equilateral tetrahedron is used to obtain an absolute value of the
quality, where all the elements are measured with respect the same target
tetrahedron.

On the other hand, for optimization purposes we use a relative quality mea-
surement. That is, we assume that we have an initial linear mesh, and for each
high-order curved element we select the corresponding initial straight-sided
element as ideal. It is important to point out that we assume that the initial
linear mesh verifies the geometrical constraints for the numerical simulation,
see Section 1. Therefore, in the a posteriori mesh generation procedure, our
final goal is to optimize the location of the inner nodes to obtain a valid
(without tangled elements) high-order mesh composed by elements with a
shape similar to the one in the initial linear mesh.

4.2 Generation of Curved and High-Order
Tetrahedral Meshes

The second application for the defined distortion measures is the generation
of high-order meshes via an a posteriori approach [19]. The a posteriori mesh
generation approach is composed by several steps. First, we generate a linear
tetrahedral mesh (MI). The elements of this mesh have the shape and the size
that hold the requirements for the desired numerical computation. Second,
we increase the degree of the elements and we curve the boundary faces
to fit the CAD geometry. For each high-order element, we set as ideal the
corresponding straight-sided element in the linear mesh MI . Note that the
boundary elements can be inverted or present low quality. Finally, we smooth
and untangle the high-order curved mesh by minimizing the distortion of the
curved mesh with respect to the straight-sided ideal.

It is important to point out that the surface mesh itself can be tangled
when the faces are curved to fit the geometry. If there is a non-valid surface
element, the 3D tetrahedron can not recover from the inversion. Therefore,
the a posteriori approach that we use for 3D high-order meshes is composed
by two optimization steps. First, we smooth and untangle the surface mesh
[36]. Second, once the surface mesh is valid, we fix the nodes of the boundary
surfaces and then we optimize the volume mesh. In this section, we present
an algorithm to optimize the distortion of high-order tetrahedral meshes in
order to obtain valid final meshes.

The main goal of a simultaneous smoothing and untangling method is to
obtain high-quality meshes composed by valid (non-inverted) elements. Note
that the best possible result, can be characterized in terms of the distortion
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measure. That is, given a distortion measure η and a mesh M composed by
nN nodes and nE elements, the node location is ideal if

ηφ = 1, ∀y ∈ MI , (ideal mesh distortion) (14)

where ηφ is the point-wise distortion presented in (12), and MI is the mesh
composed by the ideal elements (initial straight-sided mesh). That is,

ηφ(y;xj,1̂, . . . ,xj,n̂p) = 1, ∀y ∈ eIj , j = 1, . . . , nE , (15)

where eIj is the ideal element corresponding to the element ej , and the

pairs (j, î) in xj,̂i identify the local î-th node of element j with their global
mesh number i. However, for a fixed mesh topology and a given surface, the
node location that leads to an ideal mesh distortion is in general not achiev-
able. That is, the constraints in Equation (14) cannot be imposed strongly
and therefore, we enforce the ideal mesh distortion in the least-squares
sense.

For a given mesh topology and a set of fixed nodes (nodes on the surface
boundary), we formulate the non-linear least-squares problem in terms of
the coordinates of a set of free nodes (nodes in the interior of the domain).
To this end, we reorder the coordinates of the nodes, xi, in such a way
that i = 1, . . . , nF are the indices corresponding to the free nodes, and i =
nF + 1, . . . , nN correspond to the fixed nodes. Defining

f(x1, . . . ,xnF ;xnF+1, . . . ,xnN ) :=
1

2
‖ηφ − 1‖2MI

,

we can formulate the mesh optimization problem as

min
x1,...,xnF

f(x1, . . . ,xnF ;xnF+1, . . . ,xnN ). (16)

In this work, we solve this least-squares problem by means of a non-linear
iterative Gauss-Seidel method, as proposed in [36].

5 Results

In this section, we present two examples in order to illustrate the properties
of the proposed quality measures. First, we show that the defined measures
allow checking the validity of high-order tetrahedral meshes. Second, we show
the a posteriori mesh generation approach. To this end, we present the main
steps for the generation of a a mesh of interpolation degree 4 of the exterior
domain of a Falcon aircraft. The proposed algorithm has been implemented
in C++ in the meshing environment ez4u [43, 44].
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5.1 Validation of High-Order Tetrahedral Meshes

In this section, we illustrate that the defined measure is capable of quanti-
fying the validity of a high-order tetrahedron. Specifically, we show that the
measure detects when an element is valid or not. Moreover, it properly deter-
mines the deviation of a given element with respect to the considered ideal.
Finally, we show that the presented untangling procedure is robust and can
untangle high-order meshes composed by inverted elements.

We consider the geometry presented in Figure 3(a), and we generate a
coarse tetrahedral mesh. Then, we generate three meshes of interpolation de-
gree 2, 4 and 6 with the same topology, and we tangle them, see Figures 3(a),
3(b) and 3(c). In Figures 3(d), 3(e) and 3(f) we present the smoothed meshes.
Note that the optimization approach generates valid and high-quality meshes.
In Table 1 we present the quality statistics of the obtained mesh, where we
see that all the inverted elements have been untangled and the overall quality
statistics improved. The quality statistics and the displayed quality in Figure
3 is computed taking as ideal the initial linear mesh. Therefore, we observe

(a) (b) (c)

(d) (e) (f)

Fig. 3 Tetrahedral meshes of degree 2, 4 and 6 colored according to the shape
quality measure (initial straight-sided ideal) on a hollow sphere: (a-c) initial meshes,
and (d-f) smoothed meshes
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Table 1 Shape quality statistics for a hollow sphere. The mesh is composed by
160 elements.

Degree #nodes Mesh Figure Min. Q. Max. Q. Mean Q. Std. Dev. Tang. el.

2 302
Initial 3(a) 0.00 0.97 0.51 0.40 59

Smoothed 3(d) 0.91 0.99 0.98 0.02 0

4 2042
Initial 3(b) 0.00 0.97 0.81 0.28 16

Smoothed 3(e) 0.95 1.00 0.99 0.01 0

6 6502
Initial 3(c) 0.00 0.96 0.81 0.27 15

Smoothed 3(f) 0.95 1.00 0.99 0.01 0

that in Figures 3(d), 3(e) and 3(f) almost all the elements are of quality one.
That is, the optimized mesh is close to the straight-sided one.

5.2 Generation of Curved and High-Order
Tetrahedral Meshes

The main goal of this example is to show the a posteriori mesh generation
process on a CAD geometry. We choose a Falcon aircraft to generate a mesh
of degree 4 with valid and high-quality elements on the exterior domain. As
it has been previously introduced, first we generate a linear mesh on the
geometry, presented in Figure 4(a). We choose this mesh as the ideal, since
we want to preserve the features (shape, size, isotropy...) that have been
assigned to the linear mesh. It is important to point out that we do not
explicitly impose that the element size is preserved. We use the shape quality
measure presented in Equation 3. That is, we only impose that the shape
of the initial linear mesh is preserved. In practice, this approach leads to
meshes that resemble the element size of the initial linear mesh. To impose
explicitly that the element size is preserved, it is required to use a distortion
that combines at the same time a shape and size measure as we proposed in
[36].

Once a linear mesh is generated, the degree of the mesh is increased and
the boundary faces are curved to fit the CAD representation. In Figure 4(b)
we present the initial curved mesh. This process leads to several non-valid and
low-quality elements, see Table 2. In Figure 5(a), we illustrate some inverted
elements that are originated after curving the boundary faces.

Table 2 Shape quality statistics of a mesh of interpolation degree 4 for a Falcon
aircraft. The mesh is composed by 27511 elements and 317854 nodes.

Mesh Quality Figure Min. Q. Max. Q. Mean Q. Std. Dev. Tang. el.

Initial
Absolute 4(b),6(a) 0.00 1.00 0.77 0.11 9
Relative 6(c) 0.00 1.00 0.99 0.02 9

Smoothed
Absolute 4(d),6(b) 0.21 1.00 0.78 0.11 0
Relative 6(d) 0.32 1.00 0.99 0.04 0
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(a) (b) (c)

(d)

Fig. 4 Tetrahedral meshes of interpolation degree 4 colored according to the shape
quality (equilateral ideal) measure on a Falcon aircraft: (a) initial straight-sided
mesh, (b) initial curved mesh, and (c) smoothed mesh.

Next, we optimize the mesh. To this end, we relocate the nodes on the
CAD surface [36], and afterwards we optimize the 3D mesh by means of the
approach presented in Section 4. In Figures 4(c) and 4(d) we present the
optimized mesh. Note that all the non-valid elements of the mesh have been
repaired. Specifically, in Figure 5(b) we show the smoothed set of elements
that correspond to the originally inverted ones in Figure 5(a).
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(a) (b)

Fig. 5 Tetrahedral meshes of degree 4 colored according to the shape quality mea-
sure (equilateral ideal) on a Falcon aircraft. Detail of the mesh where inverted
elements can be observed: (a) initial curved mesh, and (b) smoothed mesh.

It is important to point out that we illustrate the meshes displaying the
quality with respect to two different ideals: the equilateral tetrahedron, and
the initial straight-sided tetrahedra. The optimization is developed taking
as ideal the initial mesh, since we assume that this mesh has the necessary
computational requirements. However, the equilateral tetrahedron is used in
isotropic meshes to allow the comparison of the qualities between different
elements.

On the one hand, in Figures 6(b) and 6(b) the elements are colored taking
as ideal the equilateral tetrahedron. On the other hand, Figures 6(c) and
6(d) are colored with the quality respect to the initial straight-sided mesh.
In Figure 6(c), we observe that almost all the elements have initially quality
one. This is due to the fact that except the elements on the boundary, the
rest are still straight-sided. On the contrary, the curved elements have lower
quality and they can even be non-valid. In Figure 6(d), the elements have
been smoothed in order to untangle the inverted ones.

Table 2 presents the quality statistics of the generated meshes. It is impor-
tant to point out that the final mesh is composed by valid and high-quality
elements. Moreover, the minimum quality respect to the straight-sided mesh
has been improved from 0 to 0.32. That is, the proposed procedure has gen-
erated a high-order curved mesh with high-quality elements that preserves
the geometrical features prescribed in the linear mesh.
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(a) (b)

(c) (d)

Fig. 6 Detail of the tetrahedral meshes of interpolation degree 4 on a Falcon air-
craft. (a,c) Initial meshes colored with respect to the equilateral and initial straight-
sided ideals. (b,d) Smoothed meshes colored with respect to the equilateral and
initial straight-sided ideals.

6 Concluding Remarks

In this work, we present a new technique to define distortion (quality) mea-
sures for high-order tetrahedral meshes. The proposed definition is valid for
any interpolation degree and allows detecting the validity of a high-order
tetrahedron. Moreover, the defined distortion measure can be used to gen-
erate 3D curved high-order meshes. Specifically, the distortion is capable of
smoothing and untangling high-order meshes by means of an optimization
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procedure. Note that this is the final step of a curved meshing a posteri-
ori approach. Finally, we show that this technique allows the generation of
curved meshes from real CAD geometries.
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35. Roca, X., Gargallo-Peiró, A., Sarrate, J.: Defining quality measures for high-
order planar triangles and curved mesh generation. In: Quadros, W.R. (ed.)
Proceedings of the 20th International Meshing Roundtable, vol. 90, pp. 365–
383. Springer, Heidelberg (2011)
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