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Abstract. In this work, a new method for inserting a curve as an inter-
nal boundary into an existing mesh is developed. The curve insertion is done
with minimal adjustment to the original topology while maintaining the orig-
inal sizing of the mesh. The curve is discretized by initially placing vertices,
defining a length scale at every location on the curve based on the local
underlying mesh, and equidistributing length scale along the curve between
vertices. This results in the final discretization being spaced in a way that is
consistent with the initial mesh. The new points are then inserted into the
mesh and local refinement is performed, resulting in a final mesh containing
a representation of the curve while preserving mesh quality. The advantage
of this algorithm over generating a new mesh from scratch is in allowing for
the majority of existing simulation data to be preserved, and not have to be
interpolated onto the new mesh.

1 Introduction

In this paper, we examine the problem of taking a pre-existing mesh and
inserting an internal boundary into its topology, based on an arbitrary curve
defined within the domain. Internal boundaries are those within a mesh
used to support discontinuous physical behavior, such as in the simulation of
liquid-solid interactions, or other multi-material problems. Generally speak-
ing, these are defined a priori to mesh generation and the mesh is generated
from scratch with the internal boundary in mind. This work examines the
challenge of obtaining a specified internal boundary in a general, pre-existing
mesh. This work is motivated by remeshing to match the surface of a newly
deposited layer of material in the simulation of the semi-conductor manu-
facturing process. As we build toward a solution of the three dimensional
problem, we first consider the simpler, two dimensional problem for insight
and understanding.
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Previous work on unstructured mesh generation and adaptation in two
dimensions is well developed, with an abundance of algorithms available [1,
2]. These algorithms perform well, generating guaranteed quality meshes of
piece-wise linear boundaries. More recently work has been on the extension
to domains with curved boundaries [3, 4, 5]. While current algorithms are
adept at geometries with curved internal boundaries, we are interested in
a different problem. Our goal is to insert a curve into a mesh with only
local mesh adjustment, in the region near the curve. This is different than
the boundary recovery problem at the beginning of mesh generation, as we
begin with a pre-existing mesh. A similar idea is used in the simulation of
shockwaves by the shock-fitting community [6, 7], with an ad-hoc approach
to locally modifying the mesh and placing vertices along the curve. In our
work, this is accomplished by borrowing an idea from the mesh adaptation
community to determine the vertex locations on the curve: mesh movement.

The use of mesh movement for mesh adaptation (r-refinement) for improv-
ing the solution of PDEs has been around for several decades [8, 9], with the
mesh vertices moved based on equidistribution of some quantity of interest,
numerical, such as discretization error, or physical, such as density or entropy
[10, 11]. The mesh movement problem is posed as a moving mesh partial
differential equation (MMPDE), and mesh movement is treated as a stage
within the numerical simulation. This principle is adapted to our problem, to
properly space out new vertex locations on a curve by equidistributing the
length scale function of the mesh computed on the curve. Once new vertex
locations are determined and inserted into the mesh, the internal boundary
is recovered, and existing techniques for improving meshes are performed to
restore the original mesh quality.

2 Algorithm Overview

We begin with two initial inputs, an initial unstructured mesh and a curve
described by control points. Here, all initial meshes are produced using a
modified version of Shewchuk’s 2D algorithm [12, 13], guaranteeing a mini-
mum angle of 25.65 degrees. We interpolate the curve using a standard para-
metric cubic spline interpolation. The curve is then sampled on the mesh
to determine length scales at various points on the curve, creating an initial
distribution of vertices to insert in the mesh. We then move these vertices
along the curve using the principle of equidistribution, resulting in a vertex
distribution with spacing comparable to the underlying mesh.

With the new vertex locations determined, vertices near the original curve
are removed, creating an open region in the mesh to insert these new points.
For this work, vertices within a half length scale normal to the curve are
removed; in practice, this leads to a low number of removed vertices since
the length scale is based on the mesh and not the curve itself. The vertices
are then safe to insert, and the mesh is reconnected appropriately. Local
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Fig. 1 Algorithm Flowchart

refinement is then used to clean up the mesh. A final check is performed
to ensure an appropriate mesh quality is retained. The overall algorithm for
curve insertion is shown in Figure 1 and is described in detail in the following
sections.

3 Length Scale Equidistribution

We begin by defining the parametric cubic B-spline representation of the
curve by parameter t and coordinates (x(t), y(t)), with arc length �(t) such
that �(0) = 0. A length scale function on the mesh, denoted LS = LS(x, y),
is defined as a measure of the distance between neighboring vertices on the
mesh.

3.1 Length Scale

The length scale utilized on the curve is first defined from a vertex length
scale function as LS = LS(v). While there are many choices for vertex length
scale on an existing mesh, in this work, we use the radius of a circle around
the vertex based on neighboring vertices, calculated as
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where N is the number of neighboring cells, with area Ai and angle θi. With
this definition, the length scale at any point on the curve can be determined
by barycentric interpolation within a cell. Consider a location (x, y) in a cell
defined by vertices v1, v2 and v3. The length scale is then

LS(�(t)) = LS(x(t), y(t)) = λ1LS(v1) + λ2LS(v2) + λ3LS(v3) (2)

for barycentric coordinates λ1, λ2, λ3 corresponding to (x, y). This leads to
a continuous piece-wise linear description of the length scale on the curve,
which we will use in the discretization of our curve.

3.2 Moving Mesh PDE

Define the computational domain by ξ running from 0 to N, and the length
of the curve in this space as � = �(ξ). The governing equation for equidistri-
bution of length scale along a curve is the moving mesh PDE, written in one
dimension as

d

dξ

(
1

LS(�)

d�

dξ

)
= 0. (3)

As we are only interested in getting a ‘good’ spacing and not in solving this
exactly, we solve Equation 3 approximately using Gauss-Seidel iteration from
an initial spacing of N points, defining discrete arc-lengths i = 1, . . . , N and
updating as
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until the positions do not change.
To determine the initial spacing, a point is placed at one end of the curve

and we work our way through along the curve, placing points based on the
length scale of the previous point, until we get close to the end. Towards the
end of the curve, points are placed until we are within the length scale at
the end of the curve, where a final point is placed. This leads to a reasonably
good initial spacing on the curve, much better than a uniform or geometric
spacing would provide. This also determines N , the number of points. At
this stage, we do not add or remove points as the MMPDE is solved, though
recent research has explored and developed this idea [14].
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3.3 Curve Insertion and Mesh Cleanup

Once the locations of the new vertices on the curve have been determined,
the mesh needs to be prepared for their insertion. To ensure the new vertices
will be inserted sufficiently far from existing vertices, all vertices within one
half of a length scale normal to the curve are removed from the mesh. An
example of this measure is shown in Figure 2. After each vertex is removed,
the mesh is reconnected, maintaining a valid mesh structure throughout the
process, leading to simpler subsequent steps.

b

a’

a

b’

Fig. 2 Identifying vertices to remove. In this representative figure, the distance
from the vertex at a to a′ is less than half the length scale at a′, indicated by the
circle, thus a is chosen to be removed. The vertex at b is further away from the
curve than half the length scale at b′, and it remains in the mesh during the removal
step.

With the vertices removed, the new vertices can be inserted. We choose
to insert the new vertices independently of each other, simply by connecting
them to vertices within the cell containing them, splitting the cell into three
new cells (or if inserting on a face, two cells into four). Once all new ver-
tices have been inserted, the curve can be recovered by swapping edges until
adjacent vertices on the curve are connected by a single edge. During both
the insertion and subsequent curve recovery stage, nearby cells to the curve
have been created and modified with no consideration of cell quality. We are
primarily focused on obtaining an internal representation of the curve inside
the mesh. This leads to cells much worse than those in the original mesh, and
a cleanup stage is needed to restore mesh quality.

With a wealth of two dimensional techniques for guaranteed mesh quality,
we use the refinement techniques described in [15, 3]. These involve inserting
vertices at the circumcenters of badly formed cells until the desired quality
is met. As only cells near the curve have been modified, refinement can be
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done locally. We also intentionally avoid boundary edge splitting to preserve
our length scale based spacing. Prior to refinement, the point smoothing of
Freitag and Ollivier-Gooch [16] is done on all vertices adjacent to the curve.
Smoothing improves the mesh around the newly inserted surface, minimiz-
ing the amount of refinement needed. Following smoothing, local refinement
is performed if needed, resulting in a final mesh that not only contains the
inserted curve, but has maintained a reasonable quality while only a small
number of vertices have been modified. While in two dimensions, an arbi-
trary initial spacing combined with quality-based smoothing could be used
to generate a good spacing, this is impractical in three dimensions and we
believe our presented algorithm extends better.

4 Numerical Results

In this section, numerical results for several representative examples are
shown. In each example, the initial mesh is generated by GRUMMP [13].
While more complex boundary domains could be examined, we are more
interested in the performance on the interior of the mesh and the utility of
equidistribution of length scale. Gauss-Seidel iteration is considered complete
when the total relative movement is less than 1%,

∑
i ||�n+1

i − �ni ||/�n < 0.01.
Three examples are shown to verify the effectiveness of the algorithm.

4.1 Example 1 – Uniform Mesh, Cubic Spline

We begin with a uniform isotropic mesh consisting of 104 vertices into which
we would like to insert a cubic function, described by the four coordinates
(x, y) = (0.0, 0.5), (0.3, 0.4), (0.7, 0.6), (1.0, 0.5), across the mesh, as shown in
Figure 3a. This mesh is of good quality, with the minimum angle of any cell
in the mesh greater than 34◦. The first step is to determine the spacing, by
starting from one end of the line and inserting points based on the length scale
at the previous point. The initial placement is shown in white and leads to
eleven points along the curve, a reasonable number for a mesh of ∼ 10 vertices
in each direction. Iterating using Equation 4 until the stopping criterion is
met leads to the final point locations in black. As we start our initial spacing
from the left side, (0,0.5), the locations closed to the start are left relatively
unchanged; points placed later in the initialization move further (Figure 3b).
Had the initialization been started from the right side, the opposite behavior
would be observed. This validates the utility of the moving mesh procedure,
improving the spacing of vertices on the curve.

With the spacing determined, vertices near the line are checked and those
that are too close are removed, leading to seven removed vertices. The mesh
connectivity is retained within this process, resulting in the mesh in Figure 3c.
After inserting the new vertices into the mesh and recovering the edge along
the straight line (Figures 3d and 3e), we are left with a mesh containing
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the initial curve. The quality of this mesh is lacking, with poorly shaped
cells created within this process. This is easily resolved by local Delaunay
swapping in the near line region, followed by smoothing. For this geometry,
after smoothing, no additional refinement was needed to achieve minimum
quality, demonstrating the efficacy of the placement of vertices on the curve.

The final result, illustrated in Figure 3f is a mesh that contains the line
as a boundary and is of reasonable quality, with a minimum angle of 33.31◦.
In all, around 11% of the mesh vertices are modified through this algorithm,
demonstrating the locality of our algorithm. These results are consistent on
finer meshes, shown in Table 1. On the finer meshes, the locality of the
algorithm is evident, with a smaller percentage of total vertices affected and
a larger percentage of the original mesh unchanged. On the finest mesh, only
0.6% of vertices from the original mesh are modified to insert the curve.

4.2 Example 2 – Graded Mesh, Cubic Spline

With the algorithm demonstrating good performance on uniform meshes, a
graded mesh is examined. The initial mesh in this example has 49 vertices,
with the majority of them clustered around the right boundary edge. The
curve we wish to insert is that of section 4.1, a cubic spline. In Figure 4b, the
initial and final spacing is shown. As the mesh is graded, the initial placement
of points on the curve is not as close to optimal as on the uniform mesh,
and more movement and iterations of the moving mesh equation are needed
before an optimal spacing is achieved. As in Example 1, after smoothing, no
refinement is needed.

Of possible concern is the poor resolution of the curve in the final mesh
(Figure 4f) due to the length scale being independent of the curve itself.
This could be easily corrected in either the length scale definition or in the
refinement process but we leave this for future investigation. As in the other
examples, as the original mesh is refined, the locality of the algorithm is more
evident, with less than one percent of the original mesh modified to insert
the curve.

4.3 Example 3 – Uniform Mesh, Maple Leaf

In this example, we demonstrate the method on inserting a maple leaf shape
into a uniform mesh. The maple leaf is defined by thirty-three lines of varying
length, constraining the length scale based on the end points of the shortest
lines. In Figure 5, the initial coarse mesh and final mesh containing the shape
are shown. Unlike the previous examples, after smoothing, some additional
refinement is needed, with 11, 7, and 3 vertices inserted through refinement
on the coarse, medium and fine initial meshes respectively. The additional
refinement is needed around small angles, where the cell quality from the
initial vertex placement is often bad due to the angles in the maple leaf.
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Comparing the initial and final meshes, Figures 5a and 5b, reveals that 78%
of the initial mesh remains unchanged by the algorithm.

4.4 Example 4 – Bad Meshes, Cubic Spline

In the three examples shown, the initial mesh is of good quality. As a final
test of the algorithm, poor quality uniform and graded meshes are generated
and used as initial meshes for the cubic spline. These meshes are generated
by randomly perturbing the good quality mesh. In Figures 6a and 6c, poor
quality meshes generated from the meshes shown in Figures 3a and 4a. The
cubic spline is inserted into the mesh, and final meshes are shown in Figures
6b and 6d after local smoothing and refinement. In both examples, the mesh
quality is improved in the near curve region, with the remainder of the mesh
unmodified. While the mesh is still of overall poor quality, this could be im-
proved using the refinement and smoothing techniques over the whole mesh,
as opposed to simply in the vicinity of the curve.

4.5 Summary

Results for each test example are summarized in Table 1. Additional re-
sults for medium and fine grid examples (not pictured) are also included.
Comparing minimum angles before and after the process demonstrates our
algorithm’s effectiveness in preserving mesh quality. For each mesh, the final
quality is above 25.65◦, the minimum angle guarantee provided by the refine-
ment scheme [15]. In the third example, the mesh quality decreases slightly

Table 1 Summary of Results for Examples 1-4 on meshes of increasing size. In
this table, “Remove” is the number of vertices in cleared out to make room for,
“Insert”, the number of vertices inserted on the curve. “Smooth” is to the number
of vertices moved in the smoothing process. “Min ∠” is the minimum angle of any
cell in the mesh, a measure of mesh quality. Lastly, “Unch. Verts” is the number
of vertices left unchanged from the original mesh, a measure of the locality of the
algorithm.

Initial Mesh Curve Recon. # Verts Final Mesh

Example Verts Min ∠ Remove Insert Smooth Verts Min ∠ Unch. Verts

1 - Coarse 104 34.02◦ 7 11 2 108 33.31◦ 95
1 - Medium 8315 30.24◦ 71 112 42 8356 30.01◦ 8202
1 - Fine 40315 30.24◦ 157 253 110 40411 30.04◦ 40048

2 - Coarse 49 30.40◦ 7 8 7 35 30.18◦ 35
2 - Medium 8254 30.17◦ 74 107 51 8287 29.04◦ 8129
2 - Fine 33952 30.06◦ 214 316 117 34054 30.06◦ 33621

3 - Coarse 614 30.01◦ 66 125 80 697 25.84◦ 468
3 - Medium 14601 30.07◦ 356 560 296 14843 26.63◦ 13949
3 - Fine 57077 30.30◦ 719 1105 640 57499 26.78◦ 55770
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 Example 1 - Coarse Mesh. Each cell is colored by minimum angle. a) Initial
mesh, with curve. b) Initial (white) and final (black) points to insert. c) Vertices
too close to the curve have been removed. d) Points are now inserted as vertices.
e) Boundary edges are recovered. f) Final mesh, after local swapping, refining, and
smoothing.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 Example 2 - Coarse Mesh. Each cell is colored by minimum angle. a) Initial
mesh, with curve. b) Initial (white) and final (black) points to insert. c) Vertices
too close to the curve have been removed. d) Points are now inserted as vertices.
e) Boundary edges are recovered. f) Final mesh, after local swapping, refining, and
smoothing.
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(a) Initial Mesh

(b) Final Mesh

Fig. 5 Example 3 - Maple Leaf - Coarse Mesh. Each cell is colored by minimum
angle. a) Initial mesh, with curve. b) Final mesh, after local swapping, refining, and
smoothing. The mesh inside the maple leaf has been left unchanged, outside of a
layer of vertices around the curve. The mesh inside the stem is also minimal, with
a single layer of cells between bounding lines.
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(a) (b)

(c) (d)

Fig. 6 Example - 4. Two initially poor quality meshes are shown on the left with
the canonical cubic spline. Final meshes are shown on the right for the two initial
meshes respectively. In both cases, the near curve region shows triangles of good
quality, while away from the curve the algorithm leaves the mesh unmodified.

due to the new complex internal geometry, but a reasonable quality is still
obtained. It important to observe that as the initial mesh size increases, a
smaller percentage of the mesh is modified to insert the curve.

As a comparison for the first three examples, meshes generated from ini-
tial geometry including the curve are illustrated in Figure 7. For each pair of
meshes, there are approximately the same number of vertices. Though gen-
erated in different ways, both meshes are similar in topology and quality.
In Figure 7f, a mesh generated with the maple leaf as an internal boundary
has aditional vertices placed near smaller boundary angles, a result of the
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(a) Ex. 1, initial mesh gener-
ated, then curve inserted

(b) Ex. 1, mesh initially gener-
ated with internal boundary

(c) Ex. 2, initial mesh gener-
ated, then curve inserted.

(d) Ex. 2, mesh initially gener-
ated with internal boundary.

(e) Ex. 3, initial mesh gener-
ated, then curve inserted.

(f) Ex. 3, mesh initially gener-
ated with internal boundary.

Fig. 7 Comparison between meshes produced by curve insertion into existing mesh
(left) and by generation of mesh with the curve as an internal boundary in the initial
boundary geometry (right). Comparable meshes for Example 1 (top), Example 2
(middle), and Example 3 (bottom).
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initial Delaunay triangulation. For larger meshes, curve insertion is prefer-
able and computationally less expensive than generating a new mesh. Again,
the true value of our presented algorithm is in the simulation side, where min-
imal mesh adjustment allows for less interpolated of simulation data, such as
cell-averaged data, onto the new mesh.

5 Conclusions

In this paper we have developed and implemented an algorithm for curve in-
sertion into an existing mesh. This algorithm adopts the principle of equidis-
tribution from the moving mesh community to determine the location of new
vertices on the curve. This results in minimal additional work in the addition
of these vertices to the mesh. With the new vertices inserted, existing mesh
refinement and smoothing techniques are used to produce a final mesh with
the curve as an internal boundary and acceptable mesh quality.

In three dimensions, the natural extension of the problem is inserting a sur-
face into an existing tetrahedral mesh. The algorithm remains similar, with a
length scale based surface mesh generated and the initial mesh cleaned up and
reconnected around it, followed by smoothing and refinement. Mesh move-
ment based on equidistribution for triangular meshes on a surface has been
demonstrated effectively [17, 18] and is similar to two-dimensional metric-
based mesh adaptation [19]. In our algorithm, the metric would be based on
the length scale of the underlying initial mesh.
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