
MOSS: Multiple Orthogonal Strand
System

Robert Haimes

Department of Aeronautics & Astronautics, Massachusetts Institute of Technology
haimes@mit.edu

Summary. This paper describes a dual approach which is comprised of vir-
tual boundary layer-like near-body grid coupled with an off-body Adaptive
Mesh Refinement (AMR) far-field mesh for viscous fluids simulations. Un-
like most a priori grid generation systems for the Reynolds-Averaged Navier-
Stokes equations, the strandmeshing paradigm is automatic, fast and requires
little memory in order to provide boundary-layer coverage. In addition, the
stacks of elements implied by the strands can be used to the simulation’s
advantage, where they naturally provide a line direction for semi-implicit
solving.

1 Introduction

The use of Computational Fluids Dynamics (CFD) for complex 3D geome-
tries has become commonplace in engineering analysis. This is done at var-
ious levels of modeling fidelity from panel methods, the use of the Euler
Equations, Reynolds-Averaged Navier-Stokes equations (RANS), Large Eddy
Simulations (LES) and even Direct Numerical Simulation (DNS) of the
Navier-Stokes equations (without any turbulence modeling due to the ability
to resolve the whole range of spatial and temporal scales). Each of these tech-
niques has different meshing requirements in resolution and density and, in
general, requires more and more resources (memory and CPU) as you climb
the fidelity ladder.

The DoD program CREATE has as a central goal to put HPC simulation
tools in the hands of acquisition engineers who may have domain knowledge
but are not experts in mesh generation. This makes the use of automated tools
that generate appropriate meshes important. To satisfy its mission CREATE
intends to use a number of RANS solvers for time accurate simulations in
design settings. This is an engineering compromise, in that the simulation
times are (close to) tractable and RANS can generate and convect many of
the important fluid structures that are required to answer design questions.
For example, in rotorcraft acoustics it is important to properly generate a

J. Sarrate & M. Staten (eds.), Proceedings of the 22nd 75
International Meshing Roundtable,
DOI: 10.1007/978-3-319-02335-9_5, c© Springer International Publishing Switzerland 2013



76 R. Haimes

boundary layer on the rotors that then naturally roll up into vortical struc-
tures at the tip. It is important that these vortices don’t prematurely dis-
sipate. The interaction of these features with other objects (including the
helicopter body) is the source for the typical acoustic signature.

Effective use of RANS solvers is a challenge. This is not because the solvers
themselves are fragile but getting to the point of running the simulation can
be the impediment. The requirement of a grid that is commensurate with
the flow regime and the embedded geometry is the problem. A grid can be
generated automatically for the solution of the Euler Equations with the use
of Open Source software. The elements can be isotropic, because the Euler
equations do not emit multi-scale body-based structures, but this is not true
for RANS simulations. Boundary Layers are small features and tend to have
strong variations close to walls (a single direction). This means that they
are most effectively handled by anisotropic meshes. Conceptually, it makes
sense to take structured collections of hexahedral elements, which sit on the
geometry, to generate the grid system(s). This allows for the anisotropy to be
naturally handled by the spacing of the grid planes in the structured blocks.
These blocks can be placed side-by-side (abutting) or overlapping (as used by
OverSet solvers) in 3 space. The grid generation task for either type of grid
topology is far from automatic. It can take weeks (and maybe even months)
of manual labor to successfully grid-up a single complex geometry. Clearly,
this is a problem for simple parametric studies and it is out of the question
to have (this much of) a human in the loop for design.

An early interesting attempt at a different grid topology for solving the
RANS equations can be seen in [1]. This work started from a triangulation of
the body of interest and, in a sense, inflated this tessellation outward (main-
taining the same surface topology). The number of inflation steps specified
the number of prism layers found in the mesh. The outer exposure of the
prism layers could be meshed in an isotropic manner with tetrahedra. This is
an important advance in that the entire meshing process could be automated
after the surface triangulation is produced.

Another significant automatic dual-mesh approach is discussed in [2]. Here
the off-body meshing system is AMR based. This idea is further refined into
the concept of a strand mesh by [3] and [4] which is basically a recasting of
the near-body mesh of [1] and the off-body mesh of [2].

Strands meshes are not prismatic meshes, though prism elements can be
constructed from the strand mesh. The organization of a strand mesh is a re-
sponse to analyzing the memory footprint of any grid used for RANS. A vast
majority of the storage requirements for the mesh reside in the boundary-
layer. This can be as high as 90%. Instead of requiring the storage for every
3D vertex in the mesh and then the indices into that storage to form the
prisms, the first implementation of a strand mesh simply specified a single
straight line for each surface vertex. The result is that there really is no
near-body mesh (in the traditional manner). The mesh is fully defined at
the surface tessellation. Elements are internally constructed by the solver as



MOSS: Multiple Orthogonal Strand System 77

Fig. 1 Dual mesh near-body/off-body overset grid system (left) and strand defini-
tion (right). A single stack of prisms is depicted. From [4] and used with permission.

needed. Strand meshing is a member of an emerging suite of Virtual Bound-
ary Layer Grid systems that simply use a surface discretization to infer a
volumetric mesh. Other members include [5] and [6] (which solves the 3D
integral boundary layer equations).

Strands have a series of global settings which include: the strand length,
the number of strand positions (the knots as seen on the right of Figure 1)
and a vector of relative strand positions (numbers greater than 0 and finishing
at 1.0 – in increasing order).

Individual strands (as can be seen in Figure 1) simply consist of a direction
vector and a clipping index. This is a tiny requirement!

1.1 Issues with Current Strand Implementation

Though the strand memory requirements are compelling, the implementation
as discussed in [3] and [4] does have some problems:

• Spatial coverage. At corners, noses and Trailing Edges the total number of
strands available to fill space is limited by the initial surface tessellation.
To attempt to do a better job of filling space and maintaining consistent
element sizes at the extent of the strands, extensive smoothing was applied
throughout the strand mesh. This would significantly pivot the strands in
the region of Trailing Edges. It is not clear what effect this would have in
forming wakes and vortices (but is easy to surmise that it is not good).

• Orthogonality. After smoothing, the strands would be far from normal to
the surface at places like Trailing Edges. This makes the accuracy of alge-
braic turbulence models suspect, but even worse is the effect on resolution.



78 R. Haimes

The strand length should be specified to be the maximum size expected of
the boundary layer found in the simulation (this is a global quantity). This
ensures that the boundary layer is properly covered and therefore prop-
erly formed during simulation. If the strands are significantly pivoted, then
much longer strands are required to cover the same distance off the wall.
This is a problem in regions where the boundary layer is small or just
forming. Larger strands have poor coverage where the entire length is not
required.

• Premature cutoff. A single straight line emanating from the intersection of
a sharp Trailing Edge and the Fuselage has no good direction that can be
used to produce valid prism stacks for all of the surface triangles (see Figure
2). The right side of the Figure displays a blow-up of the flap’s Trailing
Edge and the Fuselage which has the juncture low on the body (that gives
a strong downward normal direction). Any strand direction emanating out
of that juncture that is not parallel to the Trailing Edge itself will produce
invalid stacks either above (if the strand points below the TE horizon) or
below (if the strand points slightly above the TE horizon). The smoothing
will force this strand downward. But even at a neutral position the stacks
on both sides of the flap will be significantly skewed. In any case, inverted
stacks cause the strand to have a low clipping index which forces the off-
body mesh to telescope deeply into the near-body mesh so that all volume
can be covered. This is undesirable.

Fig. 2 Trailing Edge/Fuselage junction for multi-element wing (left) and detailed
tessellation at the flap/body interface (right)



MOSS: Multiple Orthogonal Strand System 79

2 Design Goals

It is a luxury to be given a clean slate for a software project. To ensure a
success it is important to understand and explicitly state the desired function-
ality (i.e., software requirements). Automation is of paramount importance
in the recasting of the strand mesh generator. The other specifications are
to maintain the best parts of the current implementation and to obviously
mitigate its issues. Specifically this includes:

• Memory footprint. Maintain the minimal memory requirements that
roughly scales with the surface discretization of the body of interest.

• Spatial coverage. Provide a meshing scheme that can better fill volume
in convex situations. The technique described in this paper fans multiple
strands from certain surface vertices so that all volume can be consistently
covered. This is inspired by tetrahedral meshes generated in [7] and the
hybrid meshes of [8].

Also, due to the dual nature of the meshing system there is a require-
ment based on the interpolation scheme performed between the near and
off-body meshes. There is both less interpolation error and better con-
servation properties if the spacing seen in both meshes is consistent in
the overlap regions. Therefore having isotropic spacing is desirable for
the strand stacks at their extent (because the AMR mesh is isotropic by
nature).

• Maintain surface normal/strand coherence. Simply stated: don’t pivot
(smooth) the strands where not needed. This leaves the orthogonal na-
ture of the strand direction alone unless in regions where there is collision
of stacks.

• Keep the off-body mesh away from the surface. This is synonymous with
maximizing the strand cutoff index. It ensures that the correct resolution
is employed in order to generate and maintain the boundary layer.

This work introduces the concept of a lifted surface which is the tessellation
of the collected strand element stacks seen at the full strand length. This
concept is used because the tessellation at the surface is no longer simply
inflated, with the result being that the grid topology at the surface is not
the same as seen from above. Said another way, there are stacks of elements
produced that appear degenerate at the surface.

3 Implementation

The description of the MOSS (Multiple Orthogonal Strand System) imple-
mentation is found below. It currently starts from creation in (or import into)
a geometry kernel whose result is a solid model. It requires a watertight tes-
sellation of the solid and an indication if the strands are to emanate outward



80 R. Haimes

(external) or into the solid (for internal flows). The rest of the steps follow
from the information associated with the surface tessellation (i.e., what geo-
metric entity or entities own the surface vertex) in a completely automated
manner.

Besides the solid model, the only other inputs into this meshing system
are:

• The strand length (in the model’s units).
• The number of strand positions.
• The relative strand positions.
• The number of smoothing iterations (see Section 3.10).

3.1 Initial Import from Geometry Kernel

MOSS has been implemented on top of EGADS (OpenCASCADE), CAPRI
and Capstone (from CREATE-MG) but could be ported to any solid modeling
geometry kernel that has the following capabilities:

• Supports a Boundary Representation (BRep) which refers to the hierarchy
and connectivity of topological objects (Faces, Edges and Nodes). These
topological entities have underlying geometric objects which are surfaces,
curves and 3D positions in space, respectively.

• Supply a manifold check function that ensures that the geometry to be
meshed is, in fact, a solid.

• Provides evaluation functions (i.e. given a Face/surface and [u, v] coordi-
nates return the 3D position [x, y, z]).

• Computation of surface normals at a given a Face and [u, v].
• The ability to support the construction of (or provide) a watertight tes-

sellation of the solid (see Section 3.2).

The starting point of a solid model is not firm requirement (and will be
relaxed in the future), but is crucial for automation. It allows for knowing
how to treat the bounds of Faces and Edges, which will become obvious as
the discussion of the implementation progresses.

3.2 Tessellation Consistent with the Geometry Kernel

Since the strands emanate from a tessellation of the body of interest, it is
important that whatever scheme is used to provide that discrete view of the
geometry either comes from, or can be reassociated with, the BRep as held by
the geometry kernel. The tessellation must have the following characteristics:

• Be watertight and manifold.
• Can contain triangles and/or quadrilaterals.
• Edge vertices must be able to be traced through the tessellation to recover

a discretized representation of the curve. The Edge discretization must
begin and end at vertices that are the location for Nodes.



MOSS: Multiple Orthogonal Strand System 81

• All vertices are marked with the owning geometry (Faces, Edges and
Nodes).

• A list of Faces and [u, v] coordinates for each Face is required at any vertex
in the tessellation. The list has a single entity for a vertex interior to a
Face, usually 2 for an Edge and there are 2 or more entries in the list for
Nodes.

The list of Faces can be used to compute the surface normals that are
required for each vertex. These will represent the starting positions for the
strands. Those vertices associated with Edges and Nodes will initially have
multiple normal specifications (one for each Face touching the entity).

3.3 Classification of Vertices Associated with
Edges/Nodes

The classification of vertices in the tessellation is used to determine how
to treat specific situations found in the geometry. It indicates whether the
normals can be merged into a single strand or if adding additional strands at
an Edge/Node vertex is required.

The classification is driven by the winding angle found between pairs of
Faces and the normals associated with each Face at these tessellation ver-
tices. The winding angle is simply the angle traversed starting at one surface,
pivoting at the vertex and ending at the other (in the plane generated by the
cross product of the 2 normals). If the angle is less than 180o then the pair
is concave, if greater then it is considered convex.

• Convex Edge Vertex. This is where the pair of Faces is locally convex,
which may require adding additional strands by fanning (see Sections 3.5
and 3.6) unless the vertex can be also classified as Same Normal.

• Concave Edge Vertex. If the Edge vertex displays a Face pair as concave
then it is marked for merging, which is applied in Section 3.4.

• Convex Node. This vertex has all combinations of pairs of Faces (from the
Face list) indicating convex. It is treated in Section 3.7.

• Concave Node. This vertex has at least a single Face pair flagged as con-
cave. The vertex is treaded in the same manner as a Concave Edge (see
Section 3.4) unless it can also be classified as an Opposite-Normals Node.

• Opposite-Normals Node (ONN). This classification is for situations like
that seen in Figure 2 where there is a Face pair that displays a dot
of the normals that is less than −0.95. This occurs at sharp Trailing-
Edge/Fuselage intersections and must be handled in a special manner as
described in Section 3.8.

• Same Normal. When the difference between the normals for a Face pair is
less than 3o, the vertex is marked as having the same normals. This occurs
when there is a smooth transition between Faces or the vertex is from a
periodic-like seam separating a single closed surface.



82 R. Haimes

3.4 Merging of Normals for a Concave Edge/Node
Strand

Marking a vertex as being either a Concave Edge or a Concave Node indicates
that the multiple normals will be coalesced to a single strand. The direction
of the strand is the average of the directions of all of the normals in the Face
list. Any set of normals that is marked as Same Normal will only be included
once in the sum. The new strand direction is renormalized.

This is usually just the starting strand direction. Being concave indicates
that there will probably be overlapping element stacks and this strand will
be a candidate for smoothing (see Section 3.10).

At this point we can examine the lifted surface because all of Edges and
Nodes that will not have expanded treatments have been handled. A contrived
solid geometry can be seen on left of Figure 3 with its tessellation displayed.
At this point the lifted surface is the tessellation supported by the strands
at the strand length, which can be seen as the yellow surfaces on the right
of Figure 3. Note that the locations marked as convex are open and will be
filled in next.

Fig. 3 Original BRep displayed with watertight triangulation (in red) and lifted
surface with separation at convex Edges and Nodes (yellow)

3.5 Specifying Edge Strand Fanning Numbers

Each vertex marked as a Convex Edge has the tessellation on the Face pair
examined for the local spacing perpendicular to the Edge itself. The spacing
on both Faces is averaged and by knowing the winding angle and the strand
length, it is simple to compute the number of subdivisions of the winding angle



MOSS: Multiple Orthogonal Strand System 83

that are needed to meet that average spacing requirement. This number is
stored away with the vertex.

After all of the Edge vertices are handled, each complete discretized Edge
is examined by traversing from start to end Node. Any abrupt changes in
subdivision numbering is smoothed. Note that this will taper the subdivision
numbers of any Convex Edge vertex adjacent to a Concave Node which obvi-
ously needs to collapse to the single strand. Any Convex Edge vertex touching
a Convex Node or a Opposite-Normals Node is not adjusted. The closure of a
Concave Edge vertex adjacent to an ONN is reopened in preparation for the
treatment seen in Section 3.8.

Nodes with only two coincident Edges also merit special attention. If the
Node is additionally marked as Same Normal then the fanning number at
the ends of the Edges are set to the average of the values for both.

3.6 Creation of Edge Fanned Strands

For each vertex marked as a Convex Edge, new strands are created that fan
from one of the Face normals to the other. These are the locations that will be
connected by sets of triangles constructed for each discretized Edge segment.
This is done in a manner consistent with what is seen in [7] which fills the
segment with a polytriangle strip. If the fans on both side of the strip have
the same number of subdivisions, quadrilaterals could be used but are not.
For simplicity, all added elements on the lifted surface are triangles.

The result of the construction of the fanned Edges from Figure 3 can be
seen on the left of Figure 4. The lifted tessellation and constructed triangles
are highlighted.

Fig. 4 Fans completed on Edges (left) and full unsmoothed lifted surface (right)



84 R. Haimes

3.7 Filling in of Convex Nodes

For the situation where two Edges hit a Node marked as Same Normal then
the fans match up by construction. This situation is then simply closed where
all other Convex Nodes are open.

Voids in the lifted surface can be seen on the left of Figure 4 where Convex
Edges come together at a Convex Node. The number of sides of this convex
open polygonal region is determined by the number of Edges meeting at the
Node. A new spacing requirement is set for each void as the average of the
exposed segment distances. The void is closed by the following procedure:

1. Creation of center strand. This is done by averaging the direction of all of
the strands that outline the convex region to be filled.

2. Close up the exposed Edge segments by creating triangles that have 2
positions on the exposed Edge opening and connect to the new center
strand.

3. Insert a new strand where the spacing is too large by splitting the interior
triangle side which creates 4 triangles from the original 2.

4. Use a MINMAX angle criteria to drive swapping of interior triangles in
order to maintain a good quality tessellation.

5. Iterate on 3 and 4 above until the spacing requirement is satisfied.

The resultant lifted surface after filling the Convex Node vertices can be
seen on the right of Figure 4 (where only the constructed triangles are out-
lined). Since this geometry has no ONN vertices, the entire object is now
closed by the complete tessellation of the original object and the constructed
triangles. All element stacks from the original tessellation are a simple reflec-
tion of the surface and could produce series of prisms for triangles and stacks
of hexahedra for quadrilaterals. All constructed triangles (at the lifted sur-
face) do not exist in the original tessellation and collapse to a single surface
vertex (associated with either a BRep Edge or a Node). The stack is primar-
ily prismatic except at the base (the surface vertex) where it degenerates to
a tetrahedron.

3.8 Filling in of ONN – Terminating a Fanned
Trailing Edge

This operation is like the procedure found in Section 3.7 except that, because
the situation is actually closed (like for a Concave Node), the construction
is done producing triangles in the opposite orientation. The first step is to
generate a strand from the node which is aligned with the Trailing Edge (the
Face pair creating the Opposing Normals Node). This is used as part of the
reopening of a Concave Edge vertex adjacent to this Node as described in
Section 3.5. And in the case of Figure 2 it is the first Trailing Edge segment
that touches the body. This new strand is marked as frozen for the smoothing
operation described in Section 3.10. Then these steps are used:



MOSS: Multiple Orthogonal Strand System 85

1. Creation of center strand. This is done by averaging the direction of all of
the strands that outline the region to be filled. This strand is also marked
as frozen.

2. Close up the exposed Edge segments by creating triangles that have 2
positions on the exposed Edge opening and connect to the new center
strand.

It should be noted that the prismatic stacks inferred by these triangles
are also of the opposite orientation of the rest of the elements (the lifted
surface orientation is opposite). This construction is only used to close the
lifted surface tessellation and these stacks should not be passed on to the
solver. The two created strands and the constructed triangles are all marked
as inverted. See the discussion in Section 3.11.

The left portion of Figure 7 depicts these stacks as they close off the
Trailing Edge fans. It should be noted that most of the volume represented
by these stacks is currently inside the Fuselage (which has been removed from
the figure for clarity).

3.9 Verify the Closed Lifted Surface

The following criteria are used in order to check the validity of the lifted
surface:

• Do all lifted elements have neighbors? If any elements in the tessellation
that makes up the lifted surface does not have a neighbor, then the dis-
cretization is not manifold and something has gone wrong in the construc-
tion.

• Is the first volume element in all stacks valid? If this is not the case there
is something wrong with the orientation of one or more stands and the
smoothing phase may not be able to fix the problem.

The following procedure is used to test for stack validity, drive the smooth-
ing (Section 3.10) and set the clipping index (Section 3.11), which starts at
the first strand index off the surface:

1. Generate the triangle/quadrilateral at the specified strand height (or
index)

2. Produce the triangle/quadrilateral normal
3. Dot the normal with each strand direction supporting the triangle/

quadrilateral
4. Stop if any is less than or equal to zero
5. Increment the strand index
6. Goto 1 until the complete strand length is reached



86 R. Haimes

3.10 Smoothing (Strand Pivoting)

The purpose of the smoothing is to adjust strands that locally collide with
the goal that all strands provide valid stacks up to the specified strand length.
A seductively simple Laplacian smoother is used in a manner similar to that
described in [1]. The procedure is as follows:

• Mark all strands where the stack validity check indicates that the direc-
tions are converging. This is a tighter criteria than inversion where the
minimum dot product of the strands supporting the stack and the lifted
surface facet normal is at 24o or less. Initially there should be no candi-
dates from Concave Edges/Nodes due to their cylindrical and radial-like
construction.

• Flood the lifted surface neighbors up to a specified depth away from
marked strands (currently this is set to 4 neighbors). This allows for piv-
oting into a larger region.

• Update the touched strands by performing the Laplacian smoother (aver-
aging neighboring strand directions and renormalizing) unless the strand
is marked as frozen.

Generally the strand smoothing is done in 2 phases, each is terminated by
the convergence of strand directions or by reaching a maximum number of
iterations. Each phase is performed a user specified number of times (5 by
default):

1. Edge/Node phase. This only adjusts strands emanating from either Edge
or Node vertices.

2. Interior phase. Only smoothes strands that can be found interior to Faces.

Fig. 5 Smoothed lifted surface (left) and examination of smoothed fans (right)



MOSS: Multiple Orthogonal Strand System 87

On the left of Figure 5 the completed smoothed lifted surface can be seen.
Most of the tessellation is left undisturbed; only where there was the collision
of stacks have the strands been adjusted. The picture on the right of Figure 5
displays the constructed tessellation from Convex Edges and Convex Nodes.
Note that the smoothing occurred primarily where the fans have tapered-off
towards Concave Nodes.

Fig. 6 Smoothed lifted-surface for flap Trailing Edge/Fuselage junction (as seen
in Figure 2) for multi-element wing (left) and a display of only the fans from the
complete lifted-surface (right)

The left picture of Figure 6 displays a blow up of the completed smoothed
lifted surface at the flap/body juncture as seen initially in Figure 2. The
right part of Figure 6 shows the smoothed fanned lifted surface covering the
Trailing Edge. It can be noted that the smoothed ONN treatment shows
a similar structure to the tapered fans that can be seen in Figure 5 which
is partially do to the strands pivoting away from the juncture. In addition,
the fanned triangles have moved from intersecting the Fuselage to providing a
gap (which is filled by neighboring stacks) of approximately the strand length.
This movement was along the direction of the Trailing Edge even though the
predominate strand direction in this region has a strong downward component
(due to the Fuselage).

The control of the strand smoothing is accomplished by the construction
of inverted stacks as described in Section 3.8. The right hand side of Figure
7 shows the apex of the conical region defined by these stacks which start at
the ONN and extend to the base of fanned trail-edge treatment (originally at
the Fuselage). This ensures that the movement is limited by the strand length
and also allow for the frozen strands to guide that movement. The limited
movement is accomplished because all inverted stacks include at least one of
these strands that are static and aligned with the appropriate direction.



88 R. Haimes

3.11 Finish by Setting the Clipping Index

The strands and inverted stacks constructed to deal with the Opposing Nor-
mals Node treatment can be removed. The region these stacks occupy is
completely overlapped by other stacks and they should not be exposed to the
solver (their internal orientation generates negative volumes). This leaves a
tear in the lifted surface but in a covered concave region.

Fig. 7 Opposite-Normals Node treatment for both wing and flap Trailing
Edge/Fuselage junction before smoothing (left) and after smoothing (right). Cyan
indicates the sides of the inverted stacks. The Fuselage and lifted surface (except
for fans) has been turned off so not to obscure the view.

The algorithm described in Section 3.9 is used to set the clipping index
associated with each strand. The index used is the minimum found by all
lifted surface elements touching the strand.

Non-local interference (when a parts of a body come closer to itself than
the strand length) or body/body interference can now be computed and the
strand clipping index adjusted down where appropriate. This is not done as
part of MOSS but is performed by PICASSO [9] for the CREATE-AV suite
of solvers.

4 Discussion and Status

This paper presents a straight-forward approach to strand grid generation.
Coupled with an off-body AMR mesh, this dual scheme removes the grid
generation expert and manual procedures from the process of getting results
from CFD RANS solvers. The fairly simple meshing technique outlined in
this paper meets the lofty goals articulated in Section 2. Specifically:



MOSS: Multiple Orthogonal Strand System 89

• Fast and automatic. This is due to the fact that the formation of the lifted
surface requires simple construction and bookkeeping. Most of the CPU
time consumed in the overall process (after the initial tessellation) is in
the strand smoothing. And, this is a trivial iterative process of applying a
local Laplacian operation.

• Strand pivoting (smoothing). This is where there may be a requirement for
user intervention. The pivoting, infrequently, does not produce the desired
result. There is nothing in the smoothing operator that will limit or bound
the strand direction. The end result is that the local Laplacian smoother
can diverge away from maximizing the strand cutoff index. When this
happens the user is left with the only option of reducing the number of
outer smoothing iterations, which may have the negative effect of possibly
leaving other regions unfinished.

This can clearly be improved upon at the expense of CPU time. Limits
could be placed on the pivoting of the strands, which would allow main-
taining the local nature of the operator. Global operators could be applied
such as an optimization that explicitly maximizes the strand cutoff index
or equalizes the areas (or spacings) at the top of the element stacks. The
latter is consistent with the desire to be isotropic for the mesh-to-mesh
interpolation.

• Solver Requirements. What is needed is a solver that can deal with the fact
that the elements within MOSS’ stacks are not explicitly defined (if you
wish to take advantage of the small memory footprint). At a minimum, the
solver needs to be able to effectively handle prisms and more importantly
occasional tetrahedra that have a single vertex on the surface. Also, if the
initial tessellation contains quadrilaterals, then the solver will see stacks
of hexahedra.

Initial testing of traditional CFD solvers based on finite-volume discretiza-
tions has not shown promising results [10]. This class of solver is sensitive to
abrupt changes in spacings, triangle/tetrahedron elements types and high
valence numbers in the mesh. MOSS grids display all of these characteris-
tics in one region or another. More recent findings using finite-element CFD
solvers display none of these problems in 2D [11] with no reason to believe
that these results would not be seen in 3D as well. This has prompted an
unusual set of circumstances where the ability to mesh has driven choices
in solver technology (instead of visa-versa). Work is currently underway in
the CREATE-AV program to write a 3D finite-element CFD solver that
can natively deal with the near-body mesh that MOSS can produce.

• Adaptation at the lifted surface. Though not explicitly part of the ini-
tial release of MOSS, adaptation can be supported. By specifying trian-
gle/quadrilateral element at the lifted surface as well as the barycentric
coordinates in that element, the strand mesh can be adapted. If the tri-
angle is constructed, then there is no explicit surface involvement, a new



90 R. Haimes

strand emanates from the single surface vertex so that the barycentric
coordinates in the element at the lifted surface is pierced. If internal to
the element, then 3 triangles are produced from the one. If the position is
along a triangle side, then the neighboring element is also involved. If the
neighbor is a triangle, then the 2 triangles are broken up along the shared
side and 4 triangles result. If the neighbor is a quadrilateral, the triangle
is broken into two and the quadrilateral is slit into 3 triangles.

For element stacks that map to surface elements, the barycentric coordi-
nates described at the lifted surface are used on the corresponding surface
element to query the geometry kernel for the actual normal (at that point).
The new strand is created and if the barycentric coordinates indicate an
internal position, the stack is split into 3 for triangles or into 4 trian-
gles (for a quadrilateral). If the position is on a side, then like above, the
neighboring element is also involved where quadrilaterals are broken into
3 triangles. For the situation where there is no neighbor (the ONN treat-
ment) an error should be raised. At this point the new stacks need to be
checked for collisions and smoothing applied when needed.

A final comment needs to be made about the absolute minimum mem-
ory usage shown by the strand mesh implementations; this is an engineering
compromise that could be relaxed (at the expense of a larger solver mem-
ory footprint). For example, the global strand length could be made local
(an additional floating-point word per strand) so that boundary layer cover-
age could be better managed. One could even imagine using a 3D integral
boundary layer code [6] to provide that individual stand length.

The strands could be curved. A quadratic (instead of linear) strand would
cost an additional 3 floating-point words, in addition bending could be cubic
at the expensive of 6 additional floating-point words per strand. Obviously a
more complicated smoothing scheme would be needed that would also bend
the strands when required.

Acknowledgements. This work was supported through NASAAward #NNX10A-

J98G (“Geometric Control for Design Through Analysis”) whereMichael J. Aftosmis

acted as the technical monitor. BobMeakin (CREATE-AV) provided the inspiration.

William Chan (Nasa Ames) and AndrewWissink (Army Rotorcraft) provided guid-

ance. Romain Aubry (CREATE-MG) assisted in improving this paper.

References

1. Kallinderis, Y., Ward, S.: Prismatic Grid Generation for Three-Dimensional
Complex Geometries. AIAA Journal 31(10) (October 1993)

2. Delanaye, M., Aftosmis, M.J., Berger, M.J., Liu, Y., Pulliam, T.H.: Automatic
Hybrid-Cartesian Grid Generation for High Reynolds Number Flows around
Complex Geometries. AIAA Paper 99-0777, 37th AIAA Aerospace Sciences
Meeting and Exhibit, Reno NV, pp. 99–777 (January 1999)



MOSS: Multiple Orthogonal Strand System 91

3. Meakin, R.L., Wissink, A.M., Chan, W.M., Pandya, S.A., Sitaraman, J.: On
Strand Grids for Complex Flows. AIAA Paper 2007-3834, 18th AIAA Compu-
tational Fluid Dynamics Conference, Miami FL (June 2007)

4. Wissink, A.M., Katz, A.J., Chan, W.M., Meakin, R.L.: Validation of the Strand
Grid Approach. AIAA Paper 2009-3792, 19th AIAA Computational Fluid Dy-
namics Conference, San Antonio TX (June 2009)

5. Moro, D., Nguyen, C., Peraire, J., Drela, M.: Advances in the Development of
a High Order, Viscous-Inviscid Interaction Solver. AIAA Paper 2013-2943, 21st
AIAA Computational Fluid Dynamics Conference, San Diego, CA (June 2013)

6. Drela, M.: Three-Dimensional Integral Boundary Layer Formulation for Gen-
eral Configurations. AIAA Paper 2013-2437, 21st AIAA Computational Fluid
Dynamics Conference, San Diego, CA (June 2013)

7. Aubry, R., Lohner, R.: Generation of viscous grids at ridges and corners. Int.
J. Numer. Meth. Engng. 77, 1247–1289 (2009)

8. Ito, Y., Shih, A.M., Soni, B.K., Nakahashi, K.: An Approach to Generate
High Quality Unstructured Hybrid Meshes. AIAA Paper 2006-0530, 44th AIAA
Aerospace Sciences Meeting and Exhibit, Reno NV (January 2006)

9. Wissink, A.M., Katz, A.J., Sitaraman, J.: PICASSO: A Meshing Infrastructure
for Strand-Cartesian CFD Solvers. AIAA Paper 2012-2916, 30th AIAA Applied
Aerodynamics Conference, New Orleans, LA (June 2012)

10. Katz, A.J., Wissink, A.M.: Efficient Solution Methods for Strand Grid Applica-
tions. AIAA Paper 2012-2779, 30th AIAA Applied Aerodynamics Conference,
New Orleans, LA (June 2012)

11. Wissink, A.M., Katz, A.J., Sitaraman, J., Burgess, N., Haimes, R.: Progress in
Automatic Viscous Meshing from CAD Using Strand/Cartesian Meshes. AIAA
Paper 2013-3075, 21st AIAA Computational Fluid Dynamics Conference, San
Diego, CA (June 2013)


	Introduction
	Issues with Current Strand Implementation

	Design Goals
	Implementation
	Initial Import from Geometry Kernel
	Tessellation Consistent with the Geometry Kernel
	Classification of Vertices Associated with Edges/Nodes
	Merging of Normals for a Concave Edge/Node Strand
	Specifying Edge Strand Fanning Numbers
	Creation of Edge Fanned Strands
	Filling in of Convex Nodes
	Filling in of ONN – Terminating a Fanned Trailing Edge
	Verify the Closed Lifted Surface
	Smoothing (Strand Pivoting)
	Finish by Setting the Clipping Index

	Discussion and Status
	References

