

J. Sarrate & M. Staten (eds.), Proceedings of the 22nd
International Meshing Roundtable,

559

DOI: 10.1007/978-3-319-02335-9_31, © Springer International Publishing Switzerland 2013

Fine-Grained Parallel Algorithm for
Unstructured Surface Mesh Generation

Jianjun Chen1,2,*, Dawei Zhao1, Yao Zheng1, Zhengge Huang1,
and Jianjing Zheng1

1 Center for Engineering and Scientific Computation, and School of Aeronautics and
 Astronautics, Zhejiang University, Hangzhou 310027, China
 chenjj@zju.edu.cn
2 Civil and Computational Engineering Centre, School of Engineering,
 Swansea University, Swansea SA2 8PP, Wales, U.K.

Abstract. Surface mesh generation is one time-consuming step in preparing an
unstructured mesh model. However, its parallelisation attracts little attention. In
this study, a fine-grained parallel surface meshing algorithm is proposed by taking
advantage of the parallelism within the meshing process of a single face. Com-
pared with the scheme which meshes the faces individually in parallel, the pro-
posed algorithm behaves better in terms of parallel efficiency and scalability. One
integral part of the proposed algorithm is a novel domain decomposition approach,
which decomposes the simplified version of an input background mesh rather than
the input mesh itself. The simplification procedure is based on a set of well-
designed operations on the dual graphs of the mesh. No undesirable features are
formed in subdomain boundaries; hence, no postprocessing steps are required to
improve the quality of elements adjacent to subdomain boundaries.

Keywords: Mesh generation, Parallel algorithm, Surface mesh, Domain decom-
position, Graph partitioning.

1 Introduction

Thanks to the rapid advance of High Performance Computing (HPC) technologies,
parallel machines are more and more cost-effective. In both the academic and
industry communities, various CFD codes have been parallelised for many years
to exploit the huge computing power of parallel machines efficiently. It was re-
ported that some academic parallel CFD codes were able to exploit hundreds of
thousands of computer cores to efficiently solve a problem containing billions of
elements [1]. In the aerodynamics industry, CFD simulations usually involve
thousands of computer cores, and the simulation time ranges from hours to days.

* Corresponding author.

560 J. Chen et al.

However, the wall-clock time to finish a complex simulation is far more than
that consumed by a parallel simulation code, of which the time for mesh genera-
tion accounts for a large portion. For instance, it usually takes weeks or more to
prepare a block-structured mesh in the exterior flow simulation of a complete
aircraft model, even when the engineer is an expert user of a state-of-the-art com-
mercial or in-house meshing tool [2]. Unstructured mesh generation does not re-
quire a painful process to decompose a complex domain into blocks, hence it is
more automatic. However, the process of generating an unstructured mesh com-
posed of tens of millions mesh nodes may consume hours of CPU time if executed
sequentially [3]. In practice, when the input geometry is very complex, or a high
standard is set for mesh quality, mesh generation is a trial-and-error process, and
may need to be repeated many times. Therefore, the wall-clock time for preparing
a large-scale unstructured mesh is usually comparable with the time for conduct-
ing parallel simulations.

It is well known that parallel algorithms can speed up the meshing process.
Parallel mesh generation has been studied since the 1990s, and the principal moti-
vation was to overcome the memory bottleneck to generate a large-scale mesh in
the early stage of parallel meshing study [4, 5]. Nowadays, 64 bit computers have
become mainstream and a desktop computer may be configured with a large
amount of memory at an affordable price. Hence, the memory issue is no longer
prominent, although to break it is still beneficial. However, the other motivation of
developing parallel meshers, i.e., to overcome the time bottleneck of generating a
large-scale mesh, is still meaningful. To fully exploit the computing power of ever
emerging parallel computers, a completely parallelised simulation environment is
now highly demanded, where both the simulation code and its pre and post
processing codes are required to be parallelised [6].

For a typical 3D simulation, surface mesh generation, volume mesh generation,
and volume mesh improvement are three major steps involved in the preparation
of an unstructured mesh model. We have presented parallel schemes for volume
mesh generation and improvement recently [7]. In this study, we attempt to paral-
lelise the final sequential step, i.e. parallel surface meshing, in order to develop a
complete parallel pipeline for the generation of large-scale unstructured meshes.

Parallel volume meshing study abounds in the literature [4, 5], whereas its sur-
face counterpart has been discussed rarely so far. In [8], a very simple scheme was
proposed for CAD models composed of many faces. The original sequential pro-
cess meshes each face individually. So, considering the process of meshing each
face as a task, a task pool can be initialised. A manager/worker model is then
started to parallelise the surface meshing process: the manager monitors the task
pool and sends the tasks to hungry workers; the workers demand the unmeshed
faces from the manager and then mesh them. This scheme is essentially not scala-
ble, and in practice, its efficiency highly depends on geometric natures of the sur-
face model. If the number of faces (M) is far more than the number of computer
cores (N), and the meshing time of each face (referred to as the load of a face
hereafter) is roughly equal, a high efficiency is possible; otherwise, the efficiency
may be very low.

Fine-Grained Parallel Algorithm for Unstructured Surface Mesh Generation 561

In the parallel mesher developed in this study, the above parallel scheme is re-
visited for its simplicity. Meanwhile, an enhanced scheme is proposed to improve
its scalability and efficiency. In the enhanced scheme, a face with large loads will
be split into many smaller subdomains, and the meshing problem of each subdo-
main is individually conducted. Therefore, the proposed scheme is called a fine-
grained algorithm because it takes advantage of the parallelism within the mesh-
ing process of a face. The number of tasks is scalable with N rather than being
fixed as M. Correspondingly, the load difference between different tasks no longer
depends on the face loads, but is controlled under a limit to avoid the case where
the time consumed by one single task dominates. Moreover, each subdomain will
have a similar representation like the original face, and can be meshed without
modifying the sequential mesher. This full reuse capability of sequential codes is
very desirable for a parallel meshing algorithm because it minimises the cost of
paralleling a sequential mesh code that is improved constantly.

The decomposition of a surface model is another essential part of the proposed
parallel scheme, where a subdomain boundary without small angles is desired.
The domain decomposition tools that prevail in parallel solutions of Partial Differ-
ential Equations (PDEs) mainly focus on reducing load imbalances and interface
communications, and are incompetent to avoid the generation of poorly shaped
subdomain boundaries that are harmful in the context of parallel mesh generation:

(1) Some mesh generation schemes require that the boundary angles are within
certain bounds in order to guarantee the termination and to achieve a provably
good element quality. When these schemes are employed on subdomain mesh
generation, the artificial features such as small angles are prohibitive [9-12].

(2) Poorly shaped boundaries are still troublesome when the employed mesh
generation scheme has no constraints on boundary shapes because low-quality
elements are usually formed in the neighbourhoods of these features. A time-
consuming post-processing step to improve these elements is then indispensa-
ble, e.g., assimilating the submeshes (if the memory allows) and then improv-
ing the assimilated mesh sequentially [7, 13, 14], or improving the distributed
mesh concurrently at the cost of inter-processor operations [15].

In this study, a novel approach for domain decomposition is examined, featur-
ing its ability to produce subdomains having good geometric properties in their
boundaries, except to meet the fundamental requirements of loads and communi-
cations. The domain to be decomposed is interiorly filled up with a non-
overlapping mesh, referred to as a background mesh hereafter. Instead of directly
sending this mesh to a graph partitioner [16, 17], which usually produces badly
shaped subdomain boundaries, an intermediate procedure is proposed to simplify
the mesh based on the well-defined operations related to the dual graphs of the
mesh. Partitioning the simplified mesh rather than the initial mesh will produce a
distributed mesh that not only fulfils the dual goals of load balancing and minimi-
sation of communications, but also contains desirable geometric properties in the
inter-domain boundary.

562 J. Chen et al.

2 Domain Decomposition Approach

2.1 Basic Terms and Definitions

Definition 1 (Non-overlapping Mesh): A non-overlapping d-dimensional mesh is
a group of mesh entities whose dimensions range from 0 to d, i.e.

{ | 0,1,..., }iM E i d= = ,

where

{ | 0,1,..., } (0,1,...,)i i
k iE e k n i d= = =

refers to the set of i-dimensional mesh entities, and

(1) , (0)i i i
k le e E i d∀ ∈ ≤ ≤ , i

ke does not intersect i
le , or intersect i

le at a mesh

entity whose dimension is less than i ;

(2) 1 (0)i i
ke E i d−∀ ∈ < ≤ , it must be a boundary entity of one or more i-

dimensional entities.

In a non-overlapping mesh, elements and sides refer to mesh entities with i d=

and 1i d= − , respectively. If an (i-1)-dimensional entity 1i
le − is the boundary

entity of an i-dimensional entity i
ke , then name i

ke the domain entity of 1i
le − .

Each mesh side may have one or two domain entities. If the side has one domain
entity, it is called a boundary side; otherwise, it is called an interior side. Two
mesh entities i

ke and i
le are neighbours if both of them are the domain entities of

an (i-1)-dimensional entity 1i
me − .

More strictly, the sides of a 3D mesh must be defined by co-planar vertices in
order to define the angles adjacent to neighbouring sides accurately. If two bound-
ary sides of an element are neighbours, the angle they form interior of the element
is called the interior angle of the element.

Definition 2 (i-Dimensional Dual Graph): Given a d-dimensional non-
overlapping mesh

{ | 0,1,..., }iM E i d= = ,

an i-dimensional dual graph (1 i d≤ ≤) of M is denoted as { , }G V A= , where

V is the set of graph nodes, and A is the set of graph edges. Each graph node

kv V∈ corresponds to one mesh entity k

ie in M , i.e.

()k

i
k vv eφ= , and 1()k

i
v ke vφ −= .

If two mesh entities of M , k

ie and l

ie , are neighbours across a shared boundary

entity 1
m

ie − , an graph edge kla A∈ exists, and

(), ()k l

i i
kl k v l va v e v eφ φ=< = = > .

Fine-Grained Parallel Algorithm for Unstructured Surface Mesh Generation 563

Particularly, kla is called a graph edge classified on the mesh entity 1
m

ie − .

The nodes and edges of a dual graph may be weighted for some application-
specific purposes. Assuming that ()()vw v v V∈ and ()()aw a a A∈ are the node

and edge weight functions, respectively, the weighted dual graph is a tetrad, i.e.

{ , , (), ()}v aG V A w v w a= .

According to Definition 2, the Side Dual Graph (SDG) and Element Dual
Graph (EDG) are two specific cases of the dual graphs of a mesh, i.e. the (d-1)-
dimensional and d-dimensional dual graphs of the mesh, respectively.

Definition 3 (Node Deletion): Node deletion defined on a graph { , }G V A= is a

local modification operation with respect to a node kv of G . After deletion, a

new graph { , }G V A′ ′ ′= is generated. The set of new graph nodes is defined as

\{ }kV V v′ = . The set of new graph edges is defined by removing all of the edges

in G that are adjacent to kv .

Definition 4 (Edge Contraction): Edge contraction is a local modification opera-
tion defined on a weighted graph { , , (), ()}v aG V A w v w a= with respect to an edge

,kl k la v v=< > of G . After contraction, a new graph { , , (), ()}v aG V A w v w a′ ′ ′ ′ ′ ′ ′=

is generated. The set of new graph nodes is defined as \{ , } { }k l mV V v v v′ ′= ∪ ,

where mv′ is a new graph node, and () () ()v m v k v lw v w v w v′ ′ = + . The set of new

graph edges is defined as follows: the edge kla is removed; and each edge

,kn k na v v=< > (or ,ln l na v v=< >) that is adjacent to kv (or lv) and another

graph node nv is removed, instead, an edge ,mn m na v v′ ′=< > is inserted. In the

case that both kv and lv are adjacent to nv ,

() () ()a mn a kn a lnw a w a w a′ ′ = + ;

otherwise

() ()a mn a knw a w a′ ′ = (or () ()a mn a lnw a w a′ ′ =).

Fig. 1 presents a simple example to explain the above definitions. The left part
of Fig. 1a is a 2D non-overlapping mesh, which consists of one triangular and two
quadrilateral elements. The left parts of Figs. 1b and 1c correspond to the EDG
and SDG of this mesh, respectively. Here, only the EDG is weighted, and the
weights of its nodes and edges are initially set to be 1.0. The right part of Fig. 1a
shows the simplified mesh obtained by deleting the side de, where the adjacent
small angles def and aed vanish as well. Consequently, the elements labelled as 1
and 3 are merged to a new pentagonal element, labelled as 13. Correspondingly,
an edge-contraction operation and a node-deletion operation are required on the
EDG and SDG to obtain the respective duals of the simplified mesh, as illustrated
in Fig. 1b and 1c.

564 J. Chen et al.

(a) (b)

(c)

Fig. 1 Meshes and their dual graphs. (a) A side-deletion operation simplifies the mesh into
a new one that has fewer small angles. (b) An edge-contraction operation transforms the
initial EDG into a dual of the simplified mesh. (c) A node-deletion operation transforms the
initial SDG into a dual of the simplified mesh.

2.2 The Domain Decomposition Flowchart

Fig. 2 presents the basic flowchart of the proposed domain decomposition ap-
proach, where the frames, solid arrows and dotted arrows represent the data, algo-
rithms and inputs of the algorithms, respectively. The input is a non-overlapping
mesh composed of any type of polyhedral or polygonal elements (triangular mesh
in this study). The output is the partitioned result of the input mesh, where no
subdomains (submeshes) contain artificial small angles, and optionally, poorly
shaped sides in their boundaries. If the input mesh is appropriate, the dual goals of
load balancing and minimisation of communications are obtained as well. The
intermediate steps that connect the input and output are as follows.

(1) Build the SDG and EDG of the input mesh.
(2) Identify some mesh sides with undesirable shapes as removable, and simplify

the SDG by deleting the graph nodes that correspond to removable sides. In
this study, this option is disabled by default.

(3) Simplify the SDG by deleting some graph nodes, and identify the mesh sides
they correspond to as removable, to ensure that the mesh without these sides
contains no small interior angles less than a predefined threshold.

(4) Simplify the EDG by contracting all of the edges that are identified as
removable in Steps 2 and 3.

ab bc

cf

de

bd

df

ef ae

ab bc

cf

bd

df

efae

a b c

d

e
f

1 2

3

a b c

d

e f

13

2
2

3

1

2 13

Fine-Grained Parallel Algorithm for Unstructured Surface Mesh Generation 565

(5) Decompose the simplified EDG into a predefined number of partitions using a
graph-partitioning tool, aimed at the dual goals of load balancing and minimi-
sation of communications.

(6) Decompose the input mesh into subdomains according to the partitioning
result of the simplified EDG.

Build the SDG

Side Dual
Graph (SDG)

Element Dual
Graph (EDG)

Removable
Sides

Initial Mesh

Simplified EDG

Subdomains
(submeshes)

Partitioned
EDG

Build the EDG

Shape analysis
of sides

Node deletion

Edge contraction
Graph

partitioning

Mesh partitioning

Input the mesh

Output the subdomains
(submeshes)

Removable sides identified
in the shape analysis step

Data Algorithms Inputs

Fig. 2 The flowchart of the proposed domain decomposition approach

2.3 Node Deletion of the SDG

Step 3 of the proposed domain decomposition approach can ensure that no small
interior angles (except those adjacent to two boundary sides) will survive in the
simplified mesh with a minimal number of mesh sides removed. This is achieved
by the node-deletion operation defined on a weighted SDG. To clarify it, two
definitions are presented as follows:

Definition 5 (Weighted SDG): Given a d-dimensional non-overlapping mesh
M and a predefined angle threshold βth, the weighted SDG is the (d-1)-
dimensional dual graph of M , with its nodes and edges weighted as follows.

(1) For each graph edge, its weight equals the value of the interior angle bounded
by two sides that the end nodes of the graph edge represent. In the case that
there are two such angles (for example, in the right mesh of Fig. 1a, both an-
gles bounded by bd and df are interior of the domain), the smaller value will
be weighted to the graph edge.

566 J. Chen et al.

(2) For each graph node, if it corresponds to a boundary side, its weight equals
zero; otherwise, its weight equals the number of its adjacent edges whose
weights are less than the predefined threshold βth.

Here, a graph node with a non-zero weight is called an unqualified node, and an
SDG containing unqualified nodes is called an unqualified SDG, which corre-
sponds to a mesh having small interior angles.

Because Definition 3 only applies for the unweighted graph, a new definition is
presented for the node-deletion operation of a weighted SDG.

Definition 6 (Node deletion of a weighted SDG): Node deletion defined on a
weighted SDG is a local modification operation related to a node kv of this

graph. The graph topologies are updated as in Definition 3. The weights of the
remaining nodes and edges are kept unchanged except for the following particular
cases:
(1) For each unqualified node adjacent to kv , its weight decreases by 1.

(2) For each graph edge ended with the nodes adjacent to kv , if it is the only one

graph edge classified on one (2d −)-dimensional mesh entity (d is the mesh

dimension), reset its weight value as the smaller one of ew and 2 ewπ − ,
where ew is the original edge weight.

Fig. 3 illustrates the above definitions with the mesh examples shown in Fig. 1a.
It is supposed that three angles are less than the predefined threshold in the unsim-
plified mesh, i.e. ∠dfc, ∠fde and ∠def. The interior sides that bound these angles
are de and df, and each of them is adjacent to two of the three small angles. There-
fore, their corresponding graph nodes are weighted to be 2, and the other nodes are
all weighted to be 0. After the graph node de is removed, its adjacent edges are
removed as well, and the weight of the node df decreases from 2 to 1. In the mean-
time, the graph edge ending with bd and df becomes the unique edge classified on
the mesh vertex d; therefore, the weight of this edge is set to be ∠fdb, which is
smaller than the original edge weight ∠bdf.

The input of the node-deletion step is an unqualified SDG, and the output is a
subgraph of the input that contains no unqualified nodes. The simplest solution is
to delete all of the unqualified nodes in the input SDG. However, the preferred
solution shall attempt to delete the graph nodes as few as possible:

(1) For the interior sides that form less-than-threshold angles with boundary
sides, remove their corresponding unqualified nodes in the SDG by node-
deletion operations.

(2) Initialise a priority queue for the remaining unqualified graph nodes in a de-
scending order of the node weights, and repeat the following steps until the
queue is empty:
(a) Remove the head node of the queue by a node-deletion operation; conse-

quently, the weights of the adjacent unqualified nodes will decrease by 1.

Fine-Grained Parallel Algorithm for Unstructured Surface Mesh Generation 567

(b) If the adjacent nodes become qualified ones, remove them from the prior-
ity queue; otherwise, insert them in the right positions of the priority
queue.

(3) Label the interior mesh sides that correspond to the deleted graph nodes as
removable.

Fig. 3 Illustration for the weighted SDG and the node-deletion operation defined on it. The
corresponding meshes are shown in Fig. 1a.

2.4 Edge Contraction of the EDG

Step 4 of the proposed domain decomposition approach inputs the EDG of the
input mesh, and outputs the EDG of the simplified mesh. The EDG is also a
weighted graph, and the weighting strategy depends on the application purposes.
For parallel mesh generation, the graph nodes and edges represent the elements
and sides of the background mesh, respectively. The domains restricted by the
background elements and sides will be refined in the following steps according to
the predefined mesh sizing information. Therefore, the nodes and edges of the
EDG will be weighted with the predicated numbers of the finer elements and sides
to be generated on their corresponding mesh entities, respectively. The accuracy
of the predication is vital to the quality of the subsequent domain decomposition
results in terms of load balancing and minimisation of communication.

Instead of sending the EDG that corresponds to the input mesh for partitioning,
a variant of this EDG is needed here to prevent removable sides recognised in
Steps 2 and 3 from appearing in the inter-domain meshes. Here, two types of vari-
ant EDGs are considered.

(1) The first one is generated by penalising the graph edges that correspond to
removable sides with very large weights [7]. Because the graph partitioner
[16, 17] intends to minimise the size of the cutting edge weights, it may pre-
vent these penalised edges from becoming cutting edges.

(2) The second one is generated by contracting all of the graph edges that repre-
sent removable sides. For the initial EDG, each graph edge only represents

∠dba

∠cba

∠cbd

∠fcb

∠efc ∠aef

∠dfc

∠fdb

∠efd

ab bc

cf

bd

df

efae

wdf=1 ∠bae∠bae

∠dba

∠cba

∠cbd

∠fcb

∠efc ∠aef

∠dfc

∠bdf ∠edb

∠aed
∠def

∠fde
∠efd

ab bc

cf

de

bd

df

ef ae

wdf=2

wde=2

568 J. Chen et al.

one mesh side. The graph edge is identified as contractable if the correspond-
ing mesh side is removable. However, in the intermediate process of edge
contraction, one graph edge may represent more than one mesh side. The
graph edge is identified as contractable if any of these sides are removable.
For instance, the graph edge between the nodes 13 and 2 shown in Fig. 1b
represents the mesh sides bd and df, and if either of them is removable, this
graph edge will be required to be contracted later.

It is evident that the process based on the first type of EDG is much simpler.
Nevertheless, the following consideration justifies why the second one is selected
as the default. The graph partitioner does intend to minimise the weights of cutting
edges, but the performance highly relies on the input. When the percentage of
edges with very large weights is very small, the partitioner will work as expected;
otherwise, the partitioner may occasionally fail to prevent these edges from
becoming cutting edges. When the partitioner works abnormally, the goal of
minimisation of cutting edge weights may lead to an undesirable result because
the punitive weights may stray a lot from the actual meaning of the edge weights,
e.g. the number of the final mesh pieces to be generated in the side represented by
this graph edge.

3 Background Meshes

When the proposed domain decomposition approach is applied for parallel mesh
generation, an issue remains regarding the generation of the input background
mesh. In the previous studies, three types of background meshes have been exam-
ined, as illustrated by a 2D example in Fig. 4:

(1) Type-I. The domain boundary is discretised into pieces that conform to the
prescribed size map. Then the boundary points are incrementally inserted to
form a Delaunay triangulation. After constrained boundary recovery, a coarse
mesh is defined interior of the domain. This mesh contains no interior Steiner
points except those occasionally generated in the boundary recovery proce-
dure for 3D domains. Said et al. [14] have even applied this type of mesh for
parallel tetrahedral mesh generation.

(2) Type-II. The type-I mesh is refined by inserting interior field points. A map
with enlarged interior element sizes controls the termination of this refine-
ment procedure in order to generate a very coarse background mesh. Löhner
[6] has recently investigated the application of this type of mesh in a parallel
advancing front mesher.

(3) Type-III. The prescribed size map is scaled, and both the domain boundary
and interior are discretised with the scaled map. Given that the number of
elements decreases with the power of the element size, a background mesh
with elements whose edge lengths are n times as large as the desired one will
only contain n−2 (n−3 for the volume mesh) elements as the desired mesh. Ito et
al. [13] have examined a parallel advancing front mesher with this type of
background mesh as input.

Fine-Grained Parallel Algorithm for Unstructured Surface Mesh Generation 569

(a) (b) (c)

Fig. 4 Three types of background meshes for the domain decomposition process of parallel
mesh generation. (a) Type-I: boundary conforming mesh having no field points. (b) Type-
II: boundary conforming mesh with a small number of field points. (c) Type-III: a coarse
mesh adapt to a scaled size map for both the domain boundary and interior.

The type-I and type-II background meshes are of similar type in terms that their
boundary surface element sizes conform to the final requirement while the interior
meshes are far coarser. Therefore, when meshing the subdomains composed of
this kind of background element, only the inter-domain boundary is refined, and
the original surface boundary will be kept unchanged. However, for the type-III
background mesh, both the surface and volume meshes are far coarser than the
final ones, and are required to be refined in the parallel mesh generation process.
The type-III background mesh is adopted in this study because it has some advan-
tages over the former two background meshes.

(1) A key issue of domain decomposition is regarding how to weight the back-
ground elements and sides accurately. These weights refer to the numbers of
mesh pieces that will be finally generated in these background entities. If the
type-I and type-II meshes are input, the weights are usually estimated by the
volumes, areas or lengths of the background entities and certainly inaccurate
when the interior element sizes are highly graded. However, if the type-III
mesh is input, a uniform weighting strategy can be adopted initially because it
is generated under a coarsened size map that roughly scales to the final one in
both the domain boundary and interior.

(2) The performance of the proposed domain decomposition approach depends
on how intensive the dual graph is simplified. If the type-I or type-II mesh is
input, the simplification will be rather intensive and result in a dual graph
with many nodes and edges over-weighted. Consequently, the decomposition
of this over-simplified graph will yield a highly unbalanced load distribution.
Linardakis et al. [18] proposed to solve this issue by employing a recursive
decomposition scheme, which involves more computing costs and it remains
a challenge to extend this scheme for three-dimensional problems. However,
if a type-III background mesh is input, the intensity of simplification usually
maintains in a very low lever so that the decomposition of the simplified
graph can yield hundreds of partitions with a satisfactory load distribution.
More importantly, this scheme is extendible for three-dimensional problems.

570 J. Chen et al.

Nevertheless, it needs emphasis that the type-I and type-II background meshes
are also candidate inputs for the proposed domain decomposition approach when
surface problems are considered. A more detailed comparison between the domain
decomposition approaches based on these types of background meshes will be
interesting, but is beyond the scope of this study.

4 Parallel Surface Mesh Generation

In general, the mesher processes the surface model in a bottom-up manner, i.e., the
boundary curves are meshed first, and then the faces are meshed individually with
their boundary meshes as inputs. The curve discretisation usually runs very fast,
and the face discretisation dominates the whole process in terms of CPU time.

Tremel et al. [8] suggested a simple parallel surface meshing scheme that mesh-
es the faces individually in different processes. Its parallel efficiency and scalabil-
ity may be very low when the model contains a small number of faces and/or the
meshing time for one or several faces dominates. Based on the proposed domain
decomposition procedure, a fine-grained parallel algorithm is suggested to over-
come these drawbacks in this study, which takes the following steps:

(1) Input the CAD model and element-sizing definition.
(2) Generate a type-III background mesh using the coarsened sizing definition.
(3) Decompose the faces with large loads into subdomains (the faces with small

loads are considered as one subdomain).
(4) Mesh each subdomain individually on available computer cores using the

dynamic load balancing strategy.
(5) Merge the submeshes into one unified mesh.

4.1 Background Mesh Generation

The background mesh is generated using a coarsened element-sizing map. In the
CFD simulations, the typical element-sizing field is defined by a background mesh
and many grid sources [19]. With a scale factor input by the user, this size field
can be roughly coarsened by scaling up the size values defined on background
nodes and grid sources. In the region where geometrical proximity features are
prominent [20], the scaled size values may be too large so that the resulting type-
III background mesh contains badly shaped elements in this region. A more rea-
sonable coarsening scheme allows the smaller scale factor defined in this region.
Anyway, because the proximity features only impact a small fraction of elements,
the simpler scheme is adopted in this study.

With the size map coarsened, the coarse-grained parallel scheme which meshes
each face individually is adopted to generate the background mesh.

Fine-Grained Parallel Algorithm for Unstructured Surface Mesh Generation 571

4.2 Subdomain Formation

Because a dynamic load balancing strategy is adopted in the subsequent parallel
subdomain meshing step [7, 21], the total number of subdomains (M) ought to be
several times that of the number of computer cores (N). Given N and a multiplying
factor F1 (default value is 8), the desirable number of subdomains is N×F1. As-
suming that the total number of background elements is E, then the expected num-
ber of background elements for each subdomain is

Es=E/(N×F1).

For a face with Ef background elements, the expected number of subdomains is

Ms=(int)[Ef/(Es×F2)+0.5],

where F2 is an amplification factor (default value is 1.3).
For the face whose Ms value is greater than 1, the proposed domain decomposi-

tion approach is adopted to split the background mesh to submeshes. In order to
fully reuse the sequential mesher whose input is a group of trimmed surfaces, an
artificial trimmed surface is reconstructed for each subdomain. As we know, a
support surface and several loops of boundary curves that limit the valid geometric
region are two ingredients necessary to represent a trimmed surface [22, 23]. Here,
a subdomain can inherit the support surface from the original face, and its bounda-
ry curves are the boundary lines of the submesh. However, although the end points
of these boundary lines are located on the support surface, their interiors may de-
viate a lot from the surface. To get boundary curves that are close enough to the
support surface, these lines need be projected onto the support surface.

The boundary lines of a submesh are grouped into two different categories: the
lines defined on the original boundary curves and the interior mesh lines. The
projection procedure for the first type of lines is rather simple. If the correspond-
ing boundary curves cross over several subdomains, they are trimmed (or split
when the support mesher cannot represent the trimmed curve); otherwise, the
curves are fully reused. For the interior mesh lines, the projection procedure is
conducted individually. For each line, it is refined to a required number of seg-
ments first, and all the mesh points are then projected back to the surface. Finally,
the projection points are employed to interpolate a curve, which can be considered
as an approximate geodesic limited by the end points of the mesh line.

The procedure that calculates the projection of a point onto a surface is time
consuming. Its parallelisation is necessary to maintain the overall parallel efficien-
cy when many computer cores are employed. Here, the projection procedure of
each interior mesh line is considered as a task, and a simple parallel scheme is
implemented by distributing all the tasks on the available computer cores.

572 J. Chen et al.

4.3 Parallel Subdomain Meshing

Similar to the sequential meshing process, the parallel process also follows a
bottom-up procedure, i.e., the boundary curves are discretised first, and then the
subdomain interiors. This bottom-up process can ensure that the curves shared by
more than one faces are discretised only once. Therefore, no difficulty will be
introduced to maintain the mesh conformity on these curves in the final step of
merging the subdomain meshes.

It is obvious that the boundaries and interiors of different subdomains can be
meshed in parallel. Because both the number of boundary curves and that of sub-
domains are far more than the number of computer cores, a dynamic load balanc-
ing strategy shown in Fig. 5 is demonstrated to be very efficient to parallelise the
procedures of meshing subdomain boundaries and interiors, where each single
curve or subdomain is distributed by the manager process to the worker processes
for meshing, respectively. Communications only exist between the manager and
the workers, and no interactions are required among the workers. Therefore, the
efficiency of this parallel procedure is satisfactory.

Manager:
while (!noTask())
 sendATask(whoIsHungry(), selectATask());
tellWorkersNoTasks();

Workers:
do {
 tellMngIAmHungry();
} while (recvAndDoTask() == 1)

Fig. 5 Dynamic load balancing strategy for parallel subdomain meshing

5 Results

The numerical experiments presented here were conducted on the TH-1A system
managed by the National Supercomputer Center in Tianjin, China. Each node
contains 2 six-core CPUs whose frequency is 2.93GHz, and the local memory for
each node is 24GB. The selected geometry is the outflow computational model
of the DLR-F6 wing-body-nacelle-pylon aircraft (referred to as the F6 model
hereafter) that is composed of 36 faces and 119 curves [24]. The sequential
mesher adopts the mapping-based advancing front algorithm, and has been inte-
grated in our in-house preprocessing system HEDP/Pre [25]. Grid sources are
configured to refine the local meshes where the smaller elements are required for a
better resolution of geometrical and physical details. Fig. 6 presents the geometry,
surface grid and grid sources for the F6 model in the graphical user interface of
HEDP/Pre.

Fine-Grained Parallel Algorithm for Unstructured Surface Mesh Generation 573

Fig. 6 Visual representation of the geometry, the coarsest surface and volume grid in the
experiments for the F6 aircraft model

Fig. 7 illustrates the flowchart of parallel surface meshing and visually com-
pares the meshes generated by the sequential and parallel meshers. Fig. 7a is the
background mesh that corresponds to the coarsened size map, and Fig. 7b is the
simplified background mesh and its domain decomposition output. An element of
the simplified mesh may be a combination of some original triangular elements
and therefore be a polygon bounded with any numbers of edges. The interior an-
gles of any element of the simplified mesh, apart from those formed by two
boundary edges, are ensured to be larger than a predefined value (60 degrees in
this test). Therefore, the decomposition of the simplified mesh would not pro-
duce angles less than 60 degrees artificially on subdomain boundaries. This ena-
bles the parallel mesher to generate a mesh (Fig. 7c) whose element quality is
comparable with that generated by the sequential mesher (Fig. 7d) under the con-
straint of respecting all of the subdomain boundary edges. The parallel subdomain
meshing step would be very efficient because no inter-processor communications
are required to maintain the conformity of neighboring submeshes and improve
the quality of elements adjacent to subdomain boundaries. Meanwhile, the imple-
mentation of the parallel mesher suffers few coding efforts because the sequential
code can be fully reused for meshing all of the subdomains.

To evaluate the performance of the proposed algorithm, surface meshes with
various sizes are generated by scaling the spacing values of sources. In this test, a
background mesh is generated under a coarsened size map first, which contains
13,078 elements and 6,539 nodes. Next, under a similarly refined size map, differ-
ent surface meshes are generated by changing the number of computer cores. The
surface mesh generated sequentially contains 694,160 elements and 347,080

574 J. Chen et al.

(a) (b)

(c)

(d)

Fig. 7 The domain decomposition flowchart and the meshes generated by the sequential
and parallel meshers. (a) The original background mesh. (b) The simplified background
mesh and its decomposition result. (c) The mesh generated by the parallel mesher. (d) The
mesh generated by the sequential mesher.

nodes, and the meshing time is 1,484 seconds. The size of the meshes generated
by the proposed parallel mesher vary slightly, but the meshing time is reduced at a
speed proportional to the number of computer cores employed, as shown in Fig.
8a. For instance, the time is only 36 seconds (including I/O time) when 64 cores
are employed, and a speedup of 41 is achieved. If only the parallel subdomain
meshing step is considered, the time is 28.3 seconds, and a speedup of 53 is
achieved. As a comparison, if the conventional coarse-grained parallel mesher
which only considers the inter-face parallelism instead of the intra-face parallelism
is employed [8], the maximal speedup is only about 4. A speedup close to this
value is achieved when 8 computer cores are employed, and it increases slightly or
stays unchanged when more cores are employed. A simple analysis reveals that
the limited parallel performance of the conventional mesher can be attributed to
two geometric factors of the surface model. Firstly, the number of faces of this
model is 36; therefore, no extra speedup will be achieved when the number of

Fine-Grained Parallel Algorithm for Unstructured Surface Mesh Generation 575

computer cores exceeds 36. In addition, the meshing procedures of some faces of
this model consume the majority of computing time, of which one procedure con-
sumes about 357 seconds. This time cost is almost a quarter of the total time con-
sumed by the sequential mesher, which explains why the maximal speedup of the
conventional mesher is about 4.

Apart from the timing performance, the stability is another key indicator of the
parallel mesher, which evaluates whether the quality data of the meshes generated
sequentially and in parallel are comparable [5]. Fig. 8b compares the distribution
of interior angles of elements generated by the sequential and parallel scheme that
employs 64 computer cores. In general, the quality data of these two meshes are
on a similar level, and only a minor difference is observed. Because the focus is
on the worst elements in numerical simulation, the distribution of the minimum
interior angles (α) in the range of 0 to 24 degrees is also analysed. A triangle is
classified as a low-quality element if its α value is smaller than 24 degrees or as a
bad element if its α value is smaller than 12 degrees. It is observed that no α value
in both meshes is less than 6 degrees (the minimal values are 6.26 and 6.47, re-
spectively). The numbers of bad elements and low-quality elements are 14 and 84
for the mesh generated sequentially, respectively. These first number changes
slightly for the mesh generated in parallel, becoming 9; the second number re-
mains unchanged, at 84.

To evaluate the entire parallel preprocessing pipeline of modeling this exterior
flow problem, the surface mesh generated by employing 64 computer cores is
input to the parallel volume mesher and improver we proposed in [7]. 64 cores
are employed in this process as well. The resulting volume mesh is composed of
49,293,607 tetrahedral elements and 9,221,028 nodes. The time costs for the paral-
lel volume mesher and improver are 92.17 and 64.34 seconds, respectively. As we
estimate, if sequential codes are executed, the time cost for generating and im-
proving the volume mesh of this magnitude will be about 1.5 hours. This time cost
will become larger if the issue remains unresolved about how to enhance a se-
quential mesher or improver to obtain a linear timing performance when the mesh
size increases to the magnitude of this experiment or larger. Here, the volume
mesher adopted is based on the Delaunay triangulation algorithm [26], and the
improver adopted is the open-source Grummp [27, 28] enhanced with the small
polyhedron reconnection routine to improve the worst elements [29]. The time
period consumed by the sequential improver is almost several times of that con-
sumed by the sequential Delaunay mesher. Here, their parallel counterparts per-
form at a comparable level because the parallel meshing time includes the cost for
a time-consuming domain decomposition step. To our knowledge, in the open-
source community, Grummp is one of the most cost-effective tetrahedral improv-
ers. Alternatively, Klingner [30] declared that his open-source improver Stellar
[31] could aggressively optimize the worst tetrahedra, and thus get a final tetrahe-
dral mesh with better quality than Grummp. However, it was also reported that the
better mesh quality was achieved at a considerably higher time cost. Therefore, it
requires more attention to speed up the mesh improvement procedure in the future.

576 J. Chen et al.

(a) (b)

Fig. 8 Timing performance and element quality data of the proposed method. (a) Timing
performance comparison for the fine-grained and coarse-grained algorithms. (b) Compari-
son for element quality of the meshes generated sequentially and in parallel.

The benefit of a complete parallel pipeline of generating an unstructured mesh
of this magnitude is evident. Roughly speaking, the total time is reduced from 2
hours to 3 minutes when a moderate parallel machine (64 cores) is adopted in our
experiment. This parallel pipeline is expected to be still scalable when hundreds of
cores are employed [7]. In that case, it is hoped that the time cost of generating an
unstructured mesh of hundreds of millions of elements can be reduced from 10
hours to less than 10 minutes.

6 Conclusions

Surface mesh generation is a time-consuming step when complex CAD models
are input and large-scale simulations are considered. Parallelisation is an essential
methodology to speed up this step. The previously proposed parallel algorithm
does not consider the decomposition of a single face; therefore, its parallel per-
formance is limited. In this paper, a fine-grained parallel algorithm that allows the
decomposition of a single face is proposed. Satisfactory parallel performance is
achieved irrespective of the nature of the input CAD model and the number of
computer cores employed. Moreover, the proposed domain decomposition ap-
proach introduces no artificial features in subdomain boundaries. The stability of
the parallel algorithm is ensured without a time-consuming postprocessing step
that is usually required by many parallel meshers to improve the quality of ele-
ments adjacent to poorly shaped subdomain boundaries.

Geometry idealization and element-sizing assignment are two labor-intensive
preprocessing stages of surface meshing. In the next step, we will focus on both
issues to get a more automatic preprocessing pipeline. In addition, the parallel
meshing issues in the unsteady CFD simulations with moved boundaries are being
investigated in our group.

Fine-Grained Parallel Algorithm for Unstructured Surface Mesh Generation 577

Acknowledgments. The authors appreciate the joint support for this project by the National
Natural Science Foundation of China (Grant No. 11172267, 10872182 and 61100160),
Zhejiang Provincial Natural Science Foundation (Grant No. Y1110038). The first author
acknowledges Dr. Hongtao Wang in Zhejiang University for his help in accessing a parallel
computer, and the joint support from Zhejiang University and China Scholarship Council
for his visiting research at Swansea University, UK.

References

1. Zhou, M.: Petascale adaptive computational fluid dynamics. PhD Thesis, Rensselaer
Polytechnic Institute (2009)

2. Baker, T.J.: Mesh generation: art or science? Progress in Aerospace Sciences 41, 29–
63 (2005)

3. Weatherill, N.P., Hassan, O., Morgan, K., Jones, J.W., Larwood, B.G., Sorenson, K.:
Aerospace simulations on parallel computers using unstructured grids. International
Journal for Numerical Methods in Fluids 40, 171–187 (2002)

4. de Cougny, H. L., Shephard, M.S.: Parallel unstructured grid generation. In: Thomp-
son, J.F., Soni, B.K., Weatherill, N.P. (eds.) CRC Handbook of Grid Generation, ch.
24. CRC Press, Inc., Boca Raton (1999)

5. Chrisochoides, N.: Parallel mesh generation. In: Bruaset, A.M., Tveito, A. (eds.) Nu-
merical Solution of Partial Differential Equations on Parallel Computers, ch. 7, pp.
237–266. Springer (2006)

6. Löhner, R.: A 2nd generation parallel advancing front grid generator. In: Jiao, X.,
Weill, J.-C. (eds.) Proceedings of the 21st International Meshing Roundtable, vol. 123,
pp. 457–474. Springer, Heidelberg (2013)

7. Chen, J., Zhao, D., Huang, Z., Zheng, Y., Wang, D.: Improvements in the reliability
and element quality of parallel tetrahedral mesh generation. International Journal for
Numerical Methods in Engineering 92, 671–693 (2012)

8. Tremel, U., Deister, F., Hassan, O., Weatherill, N.P.: Parallel generation of unstruc-
tured surface grids. Engineering with Computers 21, 36–46 (2005)

9. Chew, L.P.: Guaranteed-quality mesh generation for curved surfaces. In: Proceedings
of the Ninth Annual Symposium on Computational Geometry, San Diego, CA, USA,
pp. 274–280 (1993)

10. Ruppert, J.: A Delaunay refinement algorithm for quality 2-dimensional mesh genera-
tion. Journal of Algorithms 18, 548–585 (1995)

11. Shewchuk, J.R.: Delaunay refinement mesh generation. PhD Thesis, Carneigie Mellon
University (1997)

12. Si, H.: An analysis of Shewchuk’s Delaunay refinement algorithm. In: Proceedings of
the 18th International Meshing Roundtable, Salt Lake City, UT, USA, pp. 499–518
(2009)

13. Ito, Y., Shih, A.M., Erukala, A.K., Soni, B.K., Chernikov, A., Chrisochoides, N.,
Nakahashi, K.: Parallel unstructured mesh generation by an advancing front method.
Mathematics and Computers in Simulation 75, 200–209 (2007)

14. Said, R., Weatherill, N.P., Morgan, K., Verhoeven, N.A.: Distributed parallel Delau-
nay mesh generation. Computer Methods in Applied. Mechanic Engineering 177, 109–
125 (1999)

578 J. Chen et al.

15. Freitag, L., Jones, M., Plassmann, P.: A Parallel Algorithm for Mesh Smoothing.
SIAM Journal on Scientific Computing 20, 2023–2040 (1999)

16. METIS - Serial graph partitioning and fill-reducing matrix ordering (June 08, 2013),
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

17. Karypis, G., Kumar, V.: Multilevel algorithms for multi-constraint graph partitioning.
In: Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, San Jose,
CA, USA, pp. 1–13 (1998)

18. Linardakis, L., Chrisochoides, N.: A static geometric medial axis domain decomposi-
tion in 2D Euclidean space. ACM Transactions on Mathematical Software 34, 1–28
(2008)

19. Zheng, Y., Weatherill, N.P., Edward, A.T.S.: Interactive geometry utility environment
for multi-disciplinary computational engineering. International Journal for Numerical
Methods in Engineering 53, 1277–1299 (2002)

20. Xie, L., Chen, J., Liang, Y., Zheng, Y.: Geometry-based adaptive mesh generation for
continuous and discrete parametric surfaces. Journal of Information & Computational
Science 9, 2327–2344 (2012)

21. Larwood, B.G., Weatherill, N.P., Hassan, O., Morgan, K.: Domain decomposition ap-
proach for parallel unstructured mesh generation. International Journal for Numerical
Methods in Engineering 58, 177–188 (2003)

22. Peirò, J.: Surface grid generation. In: Thompson, J.F., Soni, B.K., Weatherill, N.P.
(eds.) CRC Handbook of Grid Generation, ch. 19. CRC Press, Inc., Boca Raton (1999)

23. Tremel, U., Deister, F., Hassan, O., Weatherill, N.P.: Automatic unstructured surface
mesh generation for complex configuration. International Journal for Numerical Meth-
ods in Fluids 45, 341–364 (2004)

24. NASA DLR-F6 Geometry (June 08, 2013),
http://aaac.larc.nasa.gov/tsab/cfdlarc/
aiaa-dpw/Workshop2/DLR-F6-geom.html

25. Xie, L., Zheng, Y., Chen, J., Zou, J.: Enabling technologies in the problem solving en-
vironment HEDP. Communications in Computational Physics 4, 1170–1193 (2008)

26. Chen, J., Zhao, D., Huang, Z., Zheng, Y., Gao, S.: Three-dimensional constrained
boundary recovery with an enhanced Steiner point suppression procedure. Computers
and Structures 89, 455–466 (2011)

27. Ollivier-Gooch, C.: GRUMMP (June 8, 2013),
http://tetra.mech.ubc.ca/GRUMMP/

28. Freitag, L.A., Ollivier-Gooch, C.: Tetrahedral mesh improvement using swapping and
smoothing. International Journal for Numerical Methods in Engineering 40, 3979–
4002 (1997)

29. Liu, J., Chen, B., Sun, S.: Small polyhedron reconnection for mesh improvement and
its implementation based on advancing front technique. International Journal for Nu-
merical Methods in Engineering 79, 1004–1018 (2009)

30. Klingner, B.: Improving Tetrahedral Meshes. PhD Thesis, University of California
(2008)

31. Klingner, B.M., Shewchuk, J.R.: Stellar: A tetrahedral mesh improvement program
(June 8, 2013), http://www.cs.berkeley.edu/~jrs/stellar

