Serial and Parallel Mesh Modification
Through a Unique Cavity-Based
Primitive

Adrien Loseille and Victorien Menier

Gamma3 Team - INRIA Paris-Rocquencourt
{adrien.loseille,victorien.menier}@inria.fr

Summary. A complete mesh generation or mesh adaptation process usually
requires a large number of operators : Delaunay insertion, edge-face-element
point insertion, edge collapse, point smoothing, face/edge swaps, etc. Inde-
pendently of the complexity of the geometry, the more operators are involved
in a remeshing process, the less robust the process may become. In addition,
deriving a parallel version of the process may involve a large number of mod-
ifications for each operator. Consequently, the multiplication of operators
implies additional difficulties in maintaining, improving and parallelizing a
code. The scope of this paper is to address these issues by introducing a
unique cavity-based operator. As it embeds all aforementioned operators, it
can be used as the unique operator at each step of the process from surface
and volume remeshing to boundary layer extrusion. In addition, we show
that a coarse grain parallelization is possible by using a surface-constrained
version of the operator.

Keywords: Cavity-based operators, surface and volume remeshing,
anisotropic mesh generation.

1 Introduction

We define in this paper a local mesh operator that has the ability (i) to
refine and optimize surface and volume mesh, to generate (ii) anisotropic
elements [I5, 18, @O B 07, T4, 19, 6l B3, B, 29] and (iii) quasi-structured
elements suitable for boundary layer mesh [4, 20, 21] 32 27] . This operator
is inherited from incremental methods where the current mesh #Hy, is modified
iteratively through sequences of insertion of a point P:

Hit1 = Hr —Cp + Bp, (1)

J. Sarrate & M. Staten (eds.), Proceedings of the 22nd 541
International Meshing Roundtable,
DOI: 10.1007/978-3-319-02335-9 30, (© Springer International Publishing Switzerland 2013

542 A. Loseille and V. Menier

where Cp is the cavity. It is a set of volume and surface elements that will
depend on the desired mesh modification operation. When the Delaunay in-
sertion is concerned, the cavity is the set of elements of Hj such that P is
contained in their circumcenter. Bp is the ball of P, i.e., the set of new el-
ements having P as vertex. These elements are created by connecting P to
the set of the boundary faces of Cp. This insertion pattern is illustrated in
Figure [l in 2D. Note that if H}, is a valid mesh (only composed of elements
of positive volume) then Hy11 will be valid if and only if Cp is connected
(through internal faces of tetrahedron) and Bp generates only valid elements.
If (@) is usually associated with Delaunay triangulation [6] [13], we show that
specific choices and optimization of Cp will lead to the extension of tradi-
tional mesh modification operators as swap, collapse, insertion and point
smoothing.

Hi — Cp Hisr

Fig. 1 Illustration of the incremental point insertion (I]) in the case of the 2D
Delaunay point insertion

The paper is organized as follows. In Section 2, we define the volume
version of the cavity-based operators. Then, the main modifications to use
this operator for surface mesh are described in Section 3. In Section 4, the
creation of quasi-structured entities as required for boundary layer meshing
is studied. In Section 5, we introduce the parallel version of the operator.
For each kind of operators (volume, surface and boundary layer), we give
the sequence of operators used in an adaptive process along with numerical
examples.

2 Volume Cavity-Based Operators

In this section, we rewrite the standard operators (insertion, collapse, swaps
and point smoothing) in their cavity-based form (). For each operator, an
initial set of elements Cp is built. If this initial set leads to creating valid
elements for Bp then we have a strict equivalence between standard oper-
ators and cavity-based ones. The difference occurs when Bp creates invalid
elements. In that case, the standard operator refuses the modification while

A Unique Cavity-Based Primitive 543

the cavity-based one can perform additional cavity modifications in order to
make the mesh modification possible. We propose in this paper a cavity re-
duction and a cavity enlargement corrections in order to generalize standard
operators. As these operators will be used in an adaptive context, we work
in the sequel in the metric-based framework [12] for more generality.

We assume that a metric tensor field M is defined (from any error estimate
for instance [7, 10, 16, BI]) and we aim at generating a unit mesh with
respect to M. This consists in generating a mesh having edges of almost
unit-length computed in the metric. We recall that given two point/metric
pairs (A, M(A)) and (B, M(B)), the length of [A, B] is estimated by:

(pm(A,B) = /01 VIABM((1 —t)A+1tB) AB o)
r—1

m7 with

VPAB M(A) AB

~ JIABM(B)AB

~ \/"AB M(A) AB

In comparison with adaptive algorithms of [23] [24], 28], we define new opera-
tors to be used instead of classical edge-based operators. The main interests
are (i) the removal of any ad’hoc quality tolerances as in [23], (ii) faster con-
vergence of the process as the size cavity is adapted to favor the operation,
(iil) better anisotropy as during a (re)insertion, the lengths are controlled in
every directions. We first introduce the cavity-based algorithm and give the
two fundamental corrections : cavity enlargement and cavity reduction. We
then recast the traditional operators: insertion, collapse, edges/faces swaps,
within the cavity framework.

The mesh adaptation procedure relies on iterative modifications of the
mesh, where a new point (resp. an existing point) is inserted (resp. reinserted)
in the mesh, using the following scheme:

Hit1 = Hr —Cp + Bp, @

where P is the point under consideration. The construction of the cavity Cp
should guarantee that for any face [A,B,C] of the cavity boundary, denoted by
Cp, the volume of [P, A, B, O] is positive. The starting point of the algorithm
consists in choosing a proper (minimal) set to initialize Cp. We will give
below different initial choices. The only constraint for Cp is to be connected
by face meaning that given any two tetrahedra K; and K3 in C,, there exists
a path trough faces of tetrahedra in C, that links Ky to K5. This property is
necessary to ensure that then the mesh given by H — Cp + Bp remains valid.
Bp is composed of the new tetrahedra, connecting P to the external faces of
Cp. According to the length criterion for a given metric M, the cavity is first
enlarged according to Algorithm 1.

544 A. Loseille and V. Menier

Algorithm 1. Cavity enlargement for (re)insertion of P for unit-length cri-

terion
Volume Part:
For each K in Cp

For each internal face [A, B, C] of K such that P ¢ [A, B,C]:

if [A, B, C] is a boundary face then update Cp

* else if pq(P,A) <1 and (P, B) <1 and {ap(P,C) <1, add neighboring
tetrahedron to Cp
endif

EndFor

EndFor

if Cp is modified goto Volume Part.

Algorithm 2. Cavity reduction for (re)insertion of P for unit-length criterion

Volume Part:
For each K in Cp

For each internal face [A, B, C] of K such that P ¢ [A, B,C]:

if Volume([P, A, B,C]) <0 : remove K from Cp
endif

EndFor

EndFor

if Cp is modified goto Volume Part.

Once the cavity is enlarged to fit the unit-length criteria, it is reduced in
a similar fashion until a valid cavity is found, see Algorithm 2. The cavity
reduction consists in removing any external face [A, B,C|] of Cp in such a
way that the volume of [P, A, B, C] is negative. Eventually, the cavity can be
reduced to a single element.

We can now give the different initializations of Cp for the standard
operators.

Insertion and Collapse

The initial cavity for a point insertion is either an element (insertion inside a
tetrahedron), or shell of an edge (insertion on an edge), or a two tetrahedra
sharing face (if the point is on the face). Depending on the desired insertion,
the full operator then consists in choosing one of the previous initialization
then applying the enlargement cavity and the reduction one. In order to
collapse an edge [A, B], two initializations are possible: the point A (resp.

A Unique Cavity-Based Primitive 545

B) is re-inserted with the ball of elements having B (resp. A). Other option
is to insert 0.5(A + B) with the union of the ball of A and B. In the latter
case, points A and B are removed from the mesh. In a metric-based context,
choosing one option rather than another depends on the best final quality.

Edge/Face Swap

Given K = [A, B, C, D], the swap of the face [B,C, D] of K is performed by
inserting A with the cavity initialized with K and its neighbor seen across
[B, C, D]. The swap of edge [A,B] starts from the set of elements sharing this
edge (shell), then the swap is performed by (re)inserting one of the vertices
(different from A and B) of the shell. Note that with this insertion, there
is no restriction of the number of elements in the shell contrary to standard
edge swap where all possible triangulations are tested.

Point Smoothing

Point smoothing consists in moving a point P to an optimal new position
P cp. To perform this operation, it is sufficient to reinsert P,c,, with the ball
of P as the initial cavity. Note that if P, falls outside the ball of P, cavity
enlargement is used to perform the node displacement.

Comments

We now give some implementation details.

1. The cavity enlargement algorithm can be based on any other criteria. To
change the criterion, simply replace the line * of Algorithm 1, with the
appropriate criterion. For instance, we can replace the length criterion,
with a control of the tetrahedra’s height/volume or some quality bounds.
In that case, removing a bad quality element consists in re-inserting one of
its 4 vertices and increasing the cavity to ensure that the initial quality will
be improved. Note that a maximal size of the cavity should be provided.

2. Point smoothing can be done on-the-fly as soon as the final cavity is found.
Indeed, the coordinates of the (re)inserted point can be modified according
to the external point of the cavity.

3. Contrary to the Delaunay kernel, some points can be removed during a
point insertion. This feature is one explanation of the efficiency of this op-
erator. More generally, any cavity-based operator embeds a large sequence
of traditional operators (collapse/swaps).

Adaptation Procedure and Numerical Illustration

To validate the previous operators, a 3D mesh adaptation is considered. Ac-
cording to a given metric tensor field, the mesh is modified iteratively to
generate an almost unit mesh, i.e., where all edges have a length given by (2I)
close to one. Following previous works on anisotropic mesh generation [23] 28],

546 A. Loseille and V. Menier

an edge is said to be unit when its length is in the range [1/v/2, v/2]. We also
consider the quality:
2
_ 36 Ky
33 30, Buler)

as a criterium to drive mesh optimization. The previous generalized operators
are applied according to the following 2-step sequence:

Qm(K) € [0, 1], (3)

Step 1.: Generate a unit-mesh
- Collapse all edges of size lower than 1/1/2
- Split all edges of size greater than /2

Step 2.: Mesh optimization
- Perform point smoothing to improve (B
- Perform edge and face swaps to improve (3.

We use this procedure for a 3D double mach reflection unsteady simula-
tion. The flow is initialized with two discontinuous states at initial time, then
a shock propagates along the wedge geometry while creating complex flow
features like contact discontinuity (depicted in Figure[2]). The adaptive strat-
egy is based on the unsteady version of multi-scale mesh adaptation, see [1]
for details. This example was performed on 8-processors 64-bits MacPro with
an IntelCore2 chipsets with a clock speed of 2.8GHz with 32Gb of RAM. 30
mesh adaptations are performed with 5 fixed point iterations and 21 metric
intersections in time. The total CPU time is 8h55m divided into 80% for the
flow solver, and 20% for the mesh adaptation. The final mesh is composed
of 235 095 vertices, 1 310 082 tetrahedra and 57 864 boundary faces. Fig-
ure [3] shows a cut of the volume mesh. For unsteady simulation, the quality
of the mesh is of crucial interest as the flow solver’s CPU time depends on
the minimal time step. This time step is usually proportional to the minimal
altitude of the tetrahedra. Consequently, if the minimal size generated in the
adaptive mesh is 0.01 the initial targeted size, then the total cpu time will
be multiplied by 100. With the generalized operators, we can guarantee the
prescribed minimal size and thus ensure the full speed of the flow solver.

3 Surface Cavity-Based Operators

The previous operators are now extended to the case of a surface point. Con-
trary to the volume case, this means that the boundary of the cavity should
be re-triangulated. In addition, the following additional problems should be
solved: (i) projection of the point on the reference mesh, (ii) control of the
surface approximation and (iii) topological validity of the mesh. Contrary
to classical surface remeshing approaches [8, [T1], we keep a 3D valid mesh

A Unique Cavity-Based Primitive 547

Fig. 2 Density surface mesh (left) and density iso-values (right) at final time

Fig. 3 Density surface mesh and density iso-values at final time. Close view on
the shock/contact disconuity interaction, cut in the volume mesh (left) and density
iso-values in the volume (right).

throughout the surface remeshing phase. We then detail the choices made to
address these issues.

Surface Projection and Control of the Distance Approximation

We use in this paper a background reference surface mesh. We assume that
this surface mesh has an adequate level of details. In addition, normals and
geometrical constraints (ridges, corners, ...) are either provided (inherited
by a CAD system) or recovered, see [8]. When a point needs to be projected
on the reference mesh, a point octree is used to find initial guess, then a local
optimisation procedure based on minimizing the distance is applied on the
background mesh starting the germ given by the octree. We also compute on

548 A. Loseille and V. Menier

the reference surface mesh an anisotropic surface metric [23]. It recovers from
a local quadratic patch. The tolerance € to the initial surface is given by:

A1, 0
€
Ms(e) = (ug, ve,mi) [A2,5 0 “(us, vs,n;), (4)
g
0 0 hy?

max

where (ug, vg, n;) is the local frenet frame aligned with the principal direction
of the surface and h,,q; the maximal size along the normal direction. An
example of surface remeshing with different levels of detail for a landing gear
geometry is depicted in Figure @

5

X
K

i

B

Fig. 4 Example of surface remeshing. The original surface mesh (right) is coarsened
with a surface tolerance approximation of 0.001 (middle) and 0.1 (right) according

to (@.

Topological Validity of the Mesh

Contrary to the volume case, the topological validity of the external faces of
the cavity is no longer sufficient. Indeed, it is necessary to verify that any
new surface edges (created by the surface edges of Bp) don’t already exit in
the mesh. From a practical point of view, we maintain a global hash table
of boundary edges. In addition, as the cavity may be large, it is necessary to
verify that required vertices (corners, end-line point) are not removed.

A Unique Cavity-Based Primitive 549

Cavity-Based Surface Operators

The surface operators are recast in the same fashion as volume operators.
An initial surface cavity is first found. Enlargement and reduction cavity
algorithm in that case consists in adding or removing triangle elements. Then,
the volume cavity is computed.

Comments

1. Note that the use of a discrete mesh is not mandatory but is easier than
a CAD system to manipulate. We avoid the burden of finding paramet-
ric coordinates of the point, especially in the case of degenerated entities
(NURBS). With this discrete approach, this problem needs to be solved
only once, e.g., for the generation of the reference surface mesh.

2. As in the volume case, the surface cavity can be optimized a priori, by
swapping external surface edges of the cavity. For instance, inserting a
point on a surface edge automatically leads to creating a point connected
to 4 vertices, then adding 2 additional triangle in the cavity will lead to
the creation of a point connected to 6 vertices.

Adaptation Procedure and Numerical Illustrations

From the volume adaptation procedure, we simply add the projection back to
the reference as an additional step. The surface approximation is controlled
by (@) while an additional size metric can be added on input.

The landing remeshing in Figure[dis only controlled by the approximation
metric. As an academic example, we show a simple mechanical pump that
is uniformly remeshed, see Figure Bl A discrete mesh (exported from a CAD
discretization) is used as a geometric support.

4 Quasi-structured Cavity-Based Operators

In this section, we extend the previous cavity-based operators to the gen-
eration of quasi-structured layers as required by boundary layer mesh gen-
eration [2] 211, 27]. In Computational Fluid Dynamics, such highly stretched
meshes are employed to accurately predict complex flow features around com-
plex geometries. If some previous works [25], [30] attempted to adapt both the
mesh and the boundary layer mesh, a complete adaptive viscous simulation
remains a challenge. We summarize the general setting of boundary layer
mesh generation.

Starting from a surface mesh, we create for each point P of the surface
a point P, extruded along a normal direction with a prescribed size. The
insertion of the boundary layer point P, (issued from P) is done by:

550 A. Loseille and V. Menier

Fig. 5 Example of surface remeshing on a mechanical part. Initial surface mesh
from CAD export (top left), final surface mesh (top right) and cut in the volume
mesh (bottom).

where I is a set of constrained elements, that stores if a tetrahedron is part of
of the boundary layer or not. We refer to [26] to prove that a quasi-structured
layer of prisms will be automatically created by using (&]).

This operator can be used alone or in connection to the previous ones to
mix anisotropic mesh adaptation with structured boundary layer extrusion.
These two approaches are exemplified with the numerical examples.

Adaptation Procedure and Numerical Illustrations

We exemplify this operator on the extrusion of a boundary layer mesh around
a high lift geometry. The CPU time to insert a layer is around 10 sec (600
000 prisms / layer), see Figure[dl This example only uses the previous quasi-
structured inserter. In the next example, we use it in an adaptive context
where the boundary layer extrusion is coupled with anisotropic mesh adap-
tation. Consequently, the complete process is divided into 3 main steps:

Step 1: Surface mesh adaptation (Section 3.)
- Insertion and collapses of surfaces edges
- Optimization of the surface points: smoothing and swaps.

A Unique Cavity-Based Primitive 551

‘a‘A”AV' R

Fig. 6 Example of typical boundary layer grids around the high-lift geometry
from ATAA hight-lift workshop

Fig. 7 Initial domain of the plume exhaust

Step 2: Boundary layer extrusion (Section 4.)

Step 3: Volume mesh adaptation (Section 2.)
- Use of generalized cavity-based operators: insertion, collapses, swaps and
point smoothing.

552 A. Loseille and V. Menier

A

/N AVAN
\AVA

LR

VAV i

JAYAVAYNN
VAVAVAN
Y

N
YAV

AN
JAVAN
L ‘AV

VAVAN
Vi
SRk

Time: 0

Fig. 9 Surface mesh near the exhaust (left) and Mach iso-values (right)

The second example is the adaptive computation of a plume exhaust at
Mach 2.2 with a Reynolds number of 1.8 Million. We use a mixed struc-
tured /unstructured boundary layer with an adaptation on the Mach and
density variables. The error estimate controls the L? norm of the interpola-
tion error, see [22]. 20 total adaptations were performed with 5 steps at a
fixed targeted number of nodes:

[400 000, 800 000, 1 200 000, 1 600 000]

The total CPU time is 6 hours on a 8 processors, see Section 1. For each
adaptation 10 quasi-structured layers are recovered in the anisotropic mesh.

A Unique Cavity-Based Primitive 553

Fig. 10 Cut in the volume, red elements are part of the structured extruded layers

The final mesh is made of 1,4 million of vertices, and 8 millions of tetrahedra,
see Figures [[I1l

5 Parallel Mesh Adaptation

We now used the previous operator to perform parallel mesh adaptation. We
used a constrained version of the operator where interface boundary are kept
untouched during one step of the refinement.

General Description of the Parallel Mesh Adaptation Process

The initial mesh is split into N meshes. This requires to duplicate the vertices
which belong to at least two parts and to create new faces at the interfaces.
Each mesh is then assigned to one processing core which performs a mesh

554 A. Loseille and V. Menier

Fig. 11 Cut in the volume, red elements are part of the structured extruded layers

adaptation. A unique global id is given to each interface vertex in order to
merge the parts by hashing the interface triangles their vertices’ global ids.
During the mesh adaptation process, the vertices and triangles on the
interfaces have to remain untouched. It will allow to merge the parts together
in the end but a consequence is that the tetrahedra close to the interfaces still
need to be remeshed. In order to do so, we split the parts again: we perform
a frontal starting from the interface and extract the elements that belong

A Unique Cavity-Based Primitive 555

Table 1 Scaling observed on a uniform mesh refinement on a shuttle geometry

64 32 16 8 4 2
32 min|45 min|66 min|123 min|253 min|423 min

Fig. 12 From left to right, initial mesh of a shuttle, one of the 32 partitions, and
close view surface mesh

{)
| ; "
| i d 1}
! Initial Mesh ! create interface 1!
i ! triangles (in i d
| o_red)
:

|)

;

|

'

! Part 1 Part 2

|

:

|

:

:

b
[

i core
i

[

3
1
1
1
1
! Ifthe
| interface
| meshes
i 1 i are not
Ro small
i i i: 3 enough,
! | Adapted Adapted | ! interface | ! gotostep
| | sub-part sub-part | | elements ! !
' P part | 4SBT i P2
i ' i
i i i
1 ' 1
i ! i
\ ! i
1 1
Ifthe | 1 I
interface . ' Parallel " !
meshes are | | ! Splitting of the 1! |
small 3 | | interface 117TTTTTTTTOT
enough | i ___meshes ___i!
I O sl
””””” I
|
/ =2 O \ T N
i I Merge and o v n . |
| | remeshalithe 1} | ad:rg;'sfbr ! ! Finalparallel
! | interface meshes 1 L 5| aﬂz oneach = splitting for load- |
; i_.ononecore 33 i P ! 1 balancing |
: . ;
: Vol |

Fig. 13 Parallel mesh adaptation algorithm

to the first and the second layers. For each part we obtain two meshes: one
containing the elements close to the interface (we call it interface mesh) and
one containing the rest of the partition, which adaptation is finished. New
interface triangles are created.

556 A. Loseille and V. Menier

At this point, each processing core has a an interface mesh to adapt. If
the number of vertices of all those meshes combined is small enough, we
migrate all of them to one core which then gathers them and runs the mesh
adaptation.

If however the interface meshes are still too big to be remeshed on one core,
we split them in parallel. Each processing core sends parts of its interface
mesh to other processes and receives parts of others. It then merges the part
of its interface mesh that hasn’t been sent with the parts it received into a
new interface mesh. The interface elements that remained to be remeshed
are now inside the volume and can now be modified. Each core having a part
mesh to adapt, we can go to the step following the initial mesh splitting. So
each interface mesh is remeshed and split and so on... until we get interface
meshes that are small enough to be remeshed on one core.

Once the last interface mesh has been remeshed, each core merges all the
parts it created into one final part. At this stage the final parts might have
different sizes. In order to preserve the load-balancing we perform a final
parallel splitting.

Figure [[3] resumes the parallel mesh adaptation process.

Numerical Results

We consider the generation of a uniform mesh starting from a coarse (volume
and surface) mesh of a shuttle. The final required size consists in inserting
more than 10 million vertices in the initial mesh. The process is tested on
a 80 cores linux architecture having Xeon E7 chipset and a 1 Th of shared
memory. The scaling for 2 to 64 cores is reported in Table [[] while Figure
shows the initial mesh, and example of partition and a close view of the final
surface mesh.

6 Conclusion

A new mesh modification operator is introduced in this paper. It is used
at each step of the generation of an adapted mesh: during surface remesh-
ing, boundary layer mesh generation, volume mesh adaptation and mesh
optimization. This operator generalizes traditional edge-based operators [24]
(insertion, collapse) and optimization operators [12] (swaps of edges - faces),
by automatically modifying the cavity in order to allow the current modifica-
tion to be effectively made. Additional constraints on surface approximation,
quality or minimal tetrahedra height are also implemented in order to control
the resulting quality. From a practical point of view, this operator simplifies
the maintenance of the mesh adaptation code as only one operator is used
throughout the code. The different operators are simply derived from differ-
ent cavity initializations.

A Unique Cavity-Based Primitive 557

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Alauzet, F., Olivier, G.: Extension of metric-based anisotropic mesh adaptation
to time-dependent problems involving moving geometries. ATAA Paper, 11-
0896 (2011)

Aubry, R., Lohner, R.: Generation of viscous grids at ridges and corners. Int.
J. Numer. Meth. Engng. 77, 1247-1289 (2009)

Bottasso, C.L.: Anisotropic mesh adaption by metric-driven optimization. Int.
J. Numer. Meth. Engng. 60, 597639 (2004)

Bottasso, C.L., Detomi, D.: A procedure for tetrahedral boundary layer mesh
generation. Engineering Computations 18, 66-79 (2002)

Coupez, T.: Génération de maillages et adaptation de maillage par optimisation
locale. Revue Européenne des Eléments Finis 9, 403-423 (2000)

Dobrzynski, C., Frey, P.J.: Anisotropic delaunay mesh adaptation for unsteady
simulations. In: Proc. of 17th Int. Meshing Rountable, pp. 177-194. Springer
(2008)

Formaggia, L., Perotto, S.: New anisotropic a prioiri error estimate. Numer.
Math. 89, 641-667 (2001)

Frey, P.J.: About surface remeshing. In: Proceedings of the 15th International
Meshing Roundtable, pp. 123-136. Springer (2000)

Frey, P.J.: Yams, a fully automatic adaptive isotropic surface remeshing proce-
dure. RT-0252, INRIA (2001)

Frey, P.J., Alauzet, F.: Anisotropic mesh adaptation for CFD computations.
Comput. Methods Appl. Mech. Engrg. 194(48-49), 5068-5082 (2005)

Frey, P.J., Borouchaki, H.: Surface meshing using a geometric error estimate.
Int. J. Numer. Meth. Engng. 58(2), 227-245 (2003)

Frey, P.J., George, P.-L.: Mesh generation. Application to finite elements, 2nd
edn. ISTE Ltd and John Wiley & Sons (2008)

George, P.-L., Borouchaki, H.: Delaunay triangulation and meshing: application
to nite elements. Hermés Science, Paris (1998)

George, P.-L., Borouchaki, H.: Back to edge flips in 3 dimensions. In: Proceed-
ings of the 12th International Meshing Roundtable, Santa Fe, NM, USA, pp.
393-402 (2003)

Hecht, F.: BAMG: bidimensional anisotropic mesh generator. INRIA-
Rocquencourt, France (1998),
http://www-rocq.inria.fr/gamma/cdrom/www/bamg/eng.htm

Huang, W.: Metric tensors for anisotropic mesh generation. J. Comp. Phys. 204,
633-665 (2005)

Jones, W.T., Nielsen, E.J., Park, M.A.: Validation of 3D adjoint based error
estimation and mesh adaptation for sonic boom prediction. ATAA Paper, 2006-
1150 (2006)

Laug, P., Bourochaki, H.: BL2D-V2, mailleur bidimensionnel adaptatif. RR-
0275, INRIA (2003)

Li, X.L., Shephard, M.S., Beall, M.W.: 3D anisotropic mesh adaptation by
mesh modification. Comput. Methods Appl. Mech. Engrg. 194(48-49), 4915—
4950 (2005)

Lohner, R.: Matching semi-structured and unstructured grids for Navier-Stokes
calculations. ATAA Paper, 1993-3348 (1993)

Lohner, R.: Generation of unstructured grids suitable for RANS calculations.
ATAA Paper, 1999-0662 (1999)

http://www-rocq.inria.fr/gamma/cdrom/www/bamg/eng.htm

558 A. Loseille and V. Menier

22. Loseille, A., Alauzet, F.: Optimal 3d highly anisotropic mesh adaptation based
on the continuous mesh framework. In: Proceedings of the 18th International
Meshing Roundtable. Springer (2009)

23. Loseille, A., Lohner, R.: On 3D anisotropic local remeshing for surface, vol-
ume, and boundary layers. In: Proceedings of the 18th International Meshing
Roundtable, pp. 611-630. Springer (2009)

24. Loseille, A., Lohner, R.: Adaptive anisotropic simulations in aerodynamics.
ATAA Paper, 2010-169 (2010)

25. Loseille, A., Lohner, R.: Boundary layer mesh generation and adaptivity. ATAA
Paper, 2011-0894 (2011)

26. Loseille, A., Lohner, R.: Robust boundary layer mesh generation. In: Jiao, X.,
Weill, J.-C. (eds.) Proceedings of the 21st International Meshing Roundtable,
vol. 123, pp. 493-511. Springer, Heidelberg (2013)

27. Marcum, D.L.: Adaptive unstructured grid generation for viscous flow applica-
tions. ATAA Journal 34(8), 2440-2443 (1996)

28. Michal, T., Krakos, J.: Anisotropic mesh adaptation through edge primitive
operations. ATAA Paper, 2011-2159 (2011)

29. Pain, C.C., Umpleby, A.P., de Oliveira, C.R.E., Goddard, A.J.H.: Tetrahedral
mesh optimisation and adaptivity for steady-state and transient finite element
calculations. Comput. Methods Appl. Mech. Engrg. 190, 3771-3796 (2001)

30. Park, M.A., Carlson, J.R.: Turbulent output-based anisotropic adaptation.
ATAA Paper, 2011-0168 (2011)

31. Picasso, M.: An anisotropic error indicator based on Zienkiewicz-Zhu er-
ror estimator: Application to elliptic and parabolic problems. STAM J. Sci.
Comp. 24(4), 1328-1355 (2003)

32. Pirzadeh, S.: Viscous unstructured three dimensional grids by the advancing-
layers method. ATAA Paper 1994-0417 (1994)

33. Tam, A., Ait-Ali-Yahia, D., Robichaud, M.P., Moore, M., Kozel, V., Habashi,
W.G.: Anisotropic mesh adaptation for 3D flows on structured and unstruc-
tured grids. Comput. Methods Appl. Mech. Engrg. 189, 1205-1230 (2000)

	Introduction
	Volume Cavity-Based Operators
	Surface Cavity-Based Operators
	Quasi-structured Cavity-Based Operators
	Parallel Mesh Adaptation
	Conclusion
	References

