
Combining Size-Preserving and
Smoothing Procedures for Adaptive
Quadrilateral Mesh Generation

E. Ruiz-Gironés1, X. Roca2, and J. Sarrate1

1 Laboratori de Càlcul Numèric (LaCàN),
Departament de Matemàtica Aplicada III (MA III),
Universitat Politècnica de Catalunya (UPC),
Campus Nord UPC, 08034 Barcelona, Spain
{eloi.ruiz,jose.sarrate}@upc.edu

2 Aerospace Computational Design Laboratory,
Department of Aeronautics and Astronautics,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
xeviroca@mit.edu

Summary. It is well known that the variations of the element size have to be
controlled in order to generate a high-quality mesh. Hence, several techniques
have been developed to limit the gradient of the element size. However, the
obtained discretizations do not always reproduce the prescribed size function.
This is of the major importance for quadrilateral meshes, since they are much
more constrained than triangular ones. To solve this issue, we first define a
quantitative criterion to assess when an element reproduces the prescribed
size function. Then, using this criterion, we develop the novel size-preserving
technique to create a new size function that ensures a high-quality mesh where
all the elements are of the correct size. Two direct applications are presented.
First, the size-preserving approach allows to generate quadrilateral meshes
that correctly preserve the prescribed element size, without coarsen or refine
the mesh. Second, we show that we can reduce the number of iterations to
converge an adaptive process, since we do not need additional iterations to
generate a mesh that correctly reproduces the size function. A smoother is
applied in order to further increase the element quality while preserving the
element size. Only when combining the size-preserving technique and the
smoother, a high-quality mesh that correctly reproduces the size function is
obtained.

Keywords: Mesh size function, background mesh, adaptive process, quadri-
lateral mesh, gradient-limiting, smoothing.

J. Sarrate & M. Staten (eds.), Proceedings of the 22nd 19
International Meshing Roundtable,
DOI: 10.1007/978-3-319-02335-9_2, c© Springer International Publishing Switzerland 2013

20 E. Ruiz-Gironés, X. Roca, and J. Sarrate

1 Introduction

In several numerical simulations, such as adaptive processes [1, 2], it is of the
major importance to generate a mesh that correctly preserves the prescribed
element size. On the one hand, the element size is directly related to the error
of the final results. On the other hand, the element size influences the compu-
tational cost to obtain the final solution. One of the most used techniques to
prescribe an isotropic element size consists on assigning scalar values at the
nodes of a background mesh and then interpolate these values over the whole
domain. For instance, this technique is used in adaptive simulations, where
starting with an initial mesh, a size function is deduced from the computed
solution via an error estimate. Then, this mesh is used as a background mesh
to generate a new spatial discretization.

The size function has to verify certain requirements in order to gener-
ate a high-quality mesh that reproduces the size function. Different mesh
generation algorithms need different properties on the size function. For in-
stance, triangular and tetrahedral algorithms [1, 2, 3] can easily follow the
variation of the size function, since these kind of meshes can be coarsened
or refined where needed without generating low-quality elements. However,
this is not true for quadrilateral meshing algorithms [4, 5], where coarsen or
refine the mesh is a difficult task which may lead to low-quality elements.
For this reason, quadrilateral mesh generation algorithms benefit from size
functions with good properties. Therefore, special effort has been focused on
generating element size functions that facilitates the generation of the desired
mesh, [6, 7, 8]. Current techniques, such as the gradient-limiting algorithms
[9, 10, 11, 12], modify a given size function by limiting its gradient. Thus,
ratio of neighboring element size is bounded and it is easier for any mesh gen-
erator to provide a high-quality mesh with smooth variation of the element
size. However, the final mesh may still not correctly reproduce the initial
size function. That is, the mesh could contain elements that are bigger than
the requested size. Thus, it is still necessary to develop new techniques that,
given a prescribed element size function, modify it in such a way that a mesh
generation algorithm can provide a discretization that verifies the initial size
function.

The main contribution of this work is to develop the novel concept of size-
preserving size function. To this end, we first define a quantitative criterion to
assess when an element reproduces a size function. Then, using this criterion,
we compute a new size function by solving a non-linear and implicit equation.
The new size-preserving size function ensures that all the elements are smaller
or equal to the prescribed size function and, at the same time, its gradient
is limited. In addition, we propose an implementation to solve the implicit,
non-linear equation that states the size-preserving size function.

It is important to point out that we propose a non-intrusive technique to
obtain a size field that can be realized as a mesh. The proposed technique
modifies an initial size field that is represented as a background mesh. The

Combining Size-Preserving and Smoothing Procedures 21

main goal of the modified size field is to ensure that the final mesh preserves
the prescribed size. Note that the resulting size field can be used in any
mesh generation process that queries the element size using a background
mesh such as the mesh generation or the smoothing processes. That is, the
proposed size-preserving technique is non-intrusive. To obtain the results of
this work, we have used an existing mesh generator [5], and we only modified
the code that corresponds to the initialization of the size function.

The new size-preserving size function has several advantages. For instance,
quadrilateral mesh generators benefit from this new size function since these
types of meshes are more difficult to refine or coarse. In addition, the new size
function can reduce the number of iterations needed to converge an adaptive
process, since we do not need additional iterations to properly reproduce the
size field.

In order to improve the quality of the final mesh and still obtain a mesh
that reproduces the size function, we have to apply a smoothing process
that takes into account the element quality and the element size, see [13]
for details. We will show that when this smoother is applied to a mesh ob-
tained using the size-preserving method, we obtain a high-quality mesh that
correctly reproduces the initial size function. However, this is not the case
when applying the smoother to a mesh obtained using the gradient-limiting
technique. The final mesh contains elements that do not correctly reproduce
the size function. It is necessary to apply the proposed size-preserving tech-
nique combined with the smoothing process to obtain a mesh that correctly
preserves the prescribed size function.

The outline of this paper is the following. In Section 2, we introduce the
size-preserving size functions. In Section 3, we show how to compute a size-
preserving size-function. In Section 4, we present the smoothing procedure.
Finally, in Section 5, several examples are presented to illustrate the capabil-
ities of the size-preserving size function.

2 Size-Preserving Size Function

In this section, we first motivate the use of the size-preserving size functions
and introduce the basic definitions using a one-dimensional example. Then,
we deduce the size-preserving method and analyze its properties.

2.1 Motivation

To illustrate the most common problems arising from the use of a size function
in a mesh generation process, we consider the following one-dimensional size
function defined in the [0, 1] interval, see Figure 1:

h(x) = min{0.5, 0.1 + 3|x− 0.75|)}, (1)

22 E. Ruiz-Gironés, X. Roca, and J. Sarrate

(a) (b)

(c)

Fig. 1 Node distribution using: (a) the original size function, and (b) the gradient-
limiting size function. (c) Ratio R(e) for mesh computed using: the original size
function (solid line) and the gradient-limiting size function (dashed line).

Function (1) is constant almost everywhere, with a valley at x = 0.75. The
minimum size is 0.1 and the maximum size is 0.5. Figure 1(a) presents the
node distribution generated using an advancing front method where the ele-
ment size is obtained using the size function (1). Since the size prescribed at
x = 0 is 0.5, only two elements are generated and the discretization does not
preserve the prescribed element size. The main reason of this shortcoming
is that the size function contains high gradients that the meshing algorithm
cannot reproduce.

To obtain a better discretization, a gradient-limiting technique [9, 10, 11,
12] can be applied. Figure 1(b) presents the gradient-limiting size function
obtained from (1), and the node distribution obtained using the same mesh-
ing algorithm. The maximum gradient of the new size function is imposed to
be ε = 1. Note that this node distribution does not correctly reproduce the
prescribed element size. Although the element size is smaller around the val-
ley of the size function, the minimum element size is not captured in the final

Combining Size-Preserving and Smoothing Procedures 23

mesh. To compare these discretizations we have to measure how accurately
a mesh reproduces a prescribed size function. To this end, we introduce the
following definitions.

Definition 1. A mesh M reproduces a prescribed size function if it verifies

μ(e) ≤ βmin
x∈e

h(x), ∀e ∈ M, (2)

where μ(e) is the size of element e, and β is a scaling factor.

By introducing the ratio

R(e) =
μ(e)

βmin
x∈e

h(x)
, (3)

a valid mesh has to verify

R(e) ≤ 1 ∀e ∈ M. (4)

Figure 1(c) plots function (3) for the discretizations generated using the
original size function and the gradient-limiting size function with β = 1. Since
R(e) ≥ 1 for all the elements of the mesh, these meshes do not reproduce the
size function.

Remark 1. In several applications it is required to preserve different size func-
tions. For instance, it can be required to preserve a size field defined by the
geometric features of the domain, and a size function defined by an error es-
timation. Specifically, given the size fields hi(x), i = 1, . . . , n, we can obtain
a new size function as:

h(x) = min
i=1,...,n

hi(x).

The resulting size function ensures that all the initial size functions are pre-
served. For this reason, in this work we only consider the modification of one
size function. In the case where several size functions have to be addressed,
we can consider the minimum of all them.

2.2 Size-Preserving Size Function

In order to generate a mesh that correctly preserves the prescribed size func-
tion, we introduce the new concept of size-preserving size function. Given
the original size function, h(x), we will deduce an alternative size function,
called size-preserving size function and denoted by h∗(x), such that it allows
reproducing the size function according to Equation (2).

In fact, the new size function, h∗(x), can be written in terms of the original
one, h(x). To this end, we consider the one-dimensional example presented in
Figure 2(a). To obtain a mesh that correctly reproduces the size function, we

24 E. Ruiz-Gironés, X. Roca, and J. Sarrate

(a) (b)

Fig. 2 (a) Original size function (thick black line) and size-preserving size function
(grey line), and (b) one-dimensional size function defined in the [0, 1] interval (thick
black line) and several size-preserving size functions for different values of α (grey
lines)

assume that the new element size around a point x ∈ Ω has to be h∗(x). Then,
the new node is created at position x ± h∗(x), depending on the advancing
direction of the meshing algorithm, see Figure 2(a). For this reason, the size
of the new element, e, is μ(e) = h∗(x). Taking into account condition (2), we
deduce that the following equation has to be verified:

h∗(x) = μ(e) ≤ β min
y∈[x−h∗(x),x+h∗(x)]

h(y).

If we want h∗(x) as big as possible to generate the minimum amount of
elements, we have that

h∗(x) = β min
y∈[x−h∗(x),x+h∗(x)]

h(y).

To add more flexibility to our method, we include a parameter α that deter-
mines the trial interval (i.e. the interval in which the minimum of the original
size function is computed):

h∗(x) = β min
y∈[x−αh∗(x),x+αh∗(x)]

h(y).

Note that taking α > 1 we enlarge the trial interval. Thus, the size-preserving
size function can achieve smaller values. On the contrary, taking α < 1 we
reduce the trial interval and the size-preserving size function can achieve
larger values. The previous equation can be expressed in any dimension as:

h∗(x) = β min
y∈Bαh∗(x)(x)

h(y), (5)

Combining Size-Preserving and Smoothing Procedures 25

(a) (b)

Fig. 3 (a) Node distribution using the size-preserving function. (b) Ratio R(e) for
mesh computed using: the original size function (solid line), the gradient-limiting
size function (dashed line) and the size-preserving size function (dotted line).

where Br(x) is the set of points at distance at most r from x. Note that
β can be interpreted as a parameter that controls the maximum ratio R(e)
accepted in the final mesh. It is important to point out that Equation (5) is an
implicit and non-linear definition of the size-preserving size function. Figure
2(b) plots several size-preserving functions for different values of parameter α.
This parameter plays an important role in Equation (5). In fact, it controls:

(i) The measure of local minima in the element size function. This ensures
that small element sizes prescribed at local minima can be correctly
reproduced. That is, an element can be held at each local minima.

(ii) The maximum gradient allowed. This ensures that a high-quality mesh
can be generated. Although we do not have a formal proof, experience
has shown that the maximum gradient of the size-preserving size func-
tion is limited to β/α.

Although in Equation (5) parameters α and β are arbitrary, it is recom-
mended to select β ≤ 1 and α ≥ β in order to obtain a mesh that satisfies
Equation (2). In addition, we use β = 1 through the rest of the paper if it is
not explicitly stated.

Figure 3(a) presents the original size function stated in Equation (1), the
corresponding size-preserving size function, and the node distribution of the
generated 1D mesh. The size-preserving size function is computed according
to Equation (5) with α = 1. Note that the region around the minimum is
automatically enlarged in order to held an element of the requested size. In
addition, the gradient of the size-preserving size function has been automat-
ically limited.

Figure 3(b) presents the ratio R(e), see Equation 3, for the meshes gen-
erated using: the original, the gradient-limiting and the size-preserving size

26 E. Ruiz-Gironés, X. Roca, and J. Sarrate

functions. Note that for the size-preserving size function the distribution of
nodes correctly preserves the original size function.

3 Size-Preserving Size Function Generation

In this section, we present an algorithm to compute a size-preserving size
function, h∗(x), from an original size function, h(x). This process is per-
formed for each node of the background mesh. That is, at each node of the
background mesh we compute h∗(x) such that Equation (5) is verified.

Given a node, n0, of the background mesh, located at x0 ∈ Ω, the main
idea of the algorithm is to shrink a ball centered at x0 and, at the same
time, compute the minimum value of h(y) in the ball. The ball radius, r, is
decreased until the following equation is verified:

r = α min
y∈Br(x0)

h(y). (6)

Thus, by construction, the size-preserving size function is less or equal to
the original one. To compute the nodes that belong to the ball, we store
the nodes using a min-heap. A min-heap is a data structure such that its
values are stored in ascending order. In this case, the nodes in the min-heap
are sorted according to the distance to the center of the ball. Algorithm 1
details the calculation of h∗(x) for a given node n0. In this algorithm, the
distance between an arbitrary node n of the background mesh and node n0

is computed as the distance along the edges. The distance to node n0 is
initialized to infinity (for instance, the maximum value for an object of type
double).

First, some variables are initialized, Lines 2–6. The initial node, n0, located
at distance 0 from the center of the ball, is inserted in the min-heap container.
The radius of the ball is initialized as r = αh(x0). The main loop of the
algorithm begins at this point. Each node, n, of the min-heap is removed
from the container and then it is processed. We denote by d the distance
between this node and node n0. In addition, we denote by xn the location
of node n and we define an auxiliary variable r′ = αh(xn) that stores the
radius of a ball centered at x0 and computed according to the prescribed
size at node n. Then, the algorithm updates the value of the ball radius, r,
(and thus the value of the size-preserving size function at x0) according to
the values of r, r′ and d. Five cases are considered:

(i) r′ < r and d ≤ r′, Lines 14–16
In this case, the radius defined by the current node, r′, is less than the
previous value, r. In addition, this node belongs to Br′(x0), since d ≤ r′.
For this reason, the value of r is updated to r = r′. Then, we update
the distance of the adjacent nodes to node n according to Algorithm 2.

Combining Size-Preserving and Smoothing Procedures 27

Algorithm 1. Computation of h∗(x)
Ensure: h∗(x)
1: function sizePreserving(BackgroundMesh M, Node n0, Real α)
2: NodeMinHeap N
3: setDistance(n0 ,0)
4: insert(n0,N)
5: Real v0 ← h(x0)
6: Real r ← α · v0
7: while getSize(N) > 0 do
8: Node n← firstNode(N)
9: removeNode(n,N)
10: Real d← getDistance(n)
11: Real v ← h(xn)
12: Real r′ ← α · v
13: if r′ < r then
14: if d ≤ r′ then
15: r ← r′

16: updateAdjacentNodesDistance(n,r,N)
17: else if d ≤ r then

18: r ← r
r − d

r − r′
+ r′

d− r′

r − r′
19: end if
20: else if r′ ≥ r and d ≤ r then
21: updateAdjacentNodesDistance(n,r,N)
22: end if
23: end while
24: h∗(x0)← βr/α
25: end function

(ii) r′ < r and r′ < d ≤ r, Lines 17–18
In this case, the radius defined by the current node, r′, is also less than
the previous value, r. However, the node does not belong to Br′(x0)
although it belongs to Br(x0). We update the value of the radius, r,
according to Line 18. Since the node is outside of Br′(x0), we do not
need to update the distance of the adjacent nodes.

(iii) r′ < r and r < d.
In this case, no actions have to be taken because the node is outside of
the ball Br(x0).

(iv) r′ ≥ r and d ≤ r, Lines 20–21
The radius, r, is not updated, because r′ ≥ r. However, the node belongs
to Br(x0), since d ≤ r. For this reason, the distance of the adjacent
nodes has to be updated.

(v) r′ ≥ r and r < d.
In this case, no actions have to be taken, because the node is outside of
the ball Br(x0).

28 E. Ruiz-Gironés, X. Roca, and J. Sarrate

Algorithm 2. Update the distance of adjacent nodes

1: function updateAdjacentNodesDistance(Node n, Real r, NodeMinHeap N)
2: Real d← getDistance(n)
3: for all Edge e adjacent to n do
4: Real le ← length(e)
5: Node ne ← oppositeNode(e,n)
6: Real de ← getDistance(ne)
7: Real d′e ← d+ le
8: if (d′e < de) and (d′e < r) then
9: setDistance(ne ,d

′
e)

10: updateHeap(ne ,N) � Since the distance of the node has changed
11: end if
12: end for
13: end function

When the min-heap is empty, the process is finished and the value the
size-preserving size function is computed as h∗(x) = βr/α.

Given a node, n, Algorithm 2 updates the distance from its adjacent nodes
to the center of the ball Br(x0). Since this information is transmitted from
the nodes with smaller values to the nodes with larger values, the node that
holds the smaller value contains the correct value of the distance. Recall that
this node, n, is the first node of the min-heap. The new distance, d′e, of a
node, ne, adjacent to n through edge e is computed as:

d′e = min{de, d+ le},

where d and de are the current computed distance of node n and ne, respec-
tively, and le is the length of edge e. If the new distance, d′e is less than r, the
current radius of the ball, node ne is inserted in the min-heap with distance
d′e.

4 Smoothing Process

In order to improve the mesh quality, after generating the mesh, we have to
apply a smoothing technique. However, the smoothing technique has to be
aware of the prescribed size function to obtain a high-quality mesh that cor-
rectly reproduces the element size. To this end, we have applied the smooth-
ing technique presented in [13]. The main idea of the smoothing process is to
define a quality for each element that depends on the position of its nodes.
Then, a minimization process is performed in which the optimal position of
the nodes are computed. In [13], the authors propose an element quality that
is a combination of the shape quality [14] and the target size for each element.
The result is a quality function that improves the element quality and, at the
same time, the prescribed element size is preserved.

Combining Size-Preserving and Smoothing Procedures 29

Let S be the matrix that transform the ideal element, eI , to the physical
element, eP . Then, the element quality function is:

η(eP) = ηsh(eP)ηsi(eP), (7)

where ηsh(eP) and ηsi(eP) correspond to the shape quality and the size qual-
ity of element eP , respectively. These qualities are defined as

ηsh(eP) =
||S||2
2|σ| , ηsi(eP) =

1

μ(σ)
,

where ||S|| and σ are the Frobenius norm and the determinant of matrix S,
and μ(σ) is

e

2

(
σe−σ + σ−1e−σ−1

)
.

The ηsh function presents asymptotes when σ = 0. For this reason, in
reference [15] modifies this size function in the following way:

η∗sh(eP) =
||S||2
2|h(σ|) , h(σ) =

1

2
(σ +

√
σ2 + 4δ2)

where δ is a small parameter.
Using the element quality function (7), a continuous minimization problem

is stated, and the optimum position of the nodes is computed. For more details
on minimizing function (7), see reference [13].

5 Examples

This section presents two examples in order to illustrate the behavior of
the size-preserving size function and compare it with the gradient-limiting
method. The size-preserving size function has been successfully implemented
in the ez4u meshing environment [16, 17, 18]. The first example shows the
advantages of using the size-preserving size function in an adaptive pro-
cess. The second example shows the mesh generated for a complex 2D size
function defined using an MRI image. All the meshes have been generated
using the quadrilateral algorithm presented in [5]. The smoothing process
detailed in [13] has been applied in order to improve the quality of the mesh
while preserving the prescribed size of the elements. In both examples we have
used the shape quality to measure the quality of the mesh. Finally, we have
used comparable parameters for the gradient-limiting and size-preserving ap-
proaches in order to better compare the resulting meshes. That is, we use
ε = 1/α.

30 E. Ruiz-Gironés, X. Roca, and J. Sarrate

Algorithm 3. Adaptive process

Ensure: MeshM
1: function AdaptiveProcess

2: MeshM← createUniformMesh

3: BackgroundMesh bm← estimateNewElementSize(M,sizeFunction)
4: processBackgroundMesh(bm) � grad-lim, size-pres.
5: Boolean converged← checkConvergence(M,bm)
6: while not converged do
7: M← createNewMesh(M,bm)
8: BackgroundMesh bm← estimateNewElementSize(M,sizeFunction)
9: processBackgroundMesh(bm) � grad-lim, size-pres.
10: Boolean converged← checkConvergence(M,bm)
11: end while
12: end function

5.1 Accelerating a Two Dimensional Adaptive Process

The objective of this example is to show that the proposed size-preserving
approach can decrease the number of iterations to converge an adaptive pro-
cess. To this end, we present two different executions of the adaptive process
presented in Algorithm 3. We define, for all the executions of the adaptive
process, the same analytical element size function:

h = min
{
0.25, |d− 0.2575|+ 0.25 · 10−3

}
,

where d =
√
(x− 0.5)2 + (y − 0.5)2, and the spatial domain is defined as the

[0, 1]× [0, 1] square.
First, we create a uniform mesh composed of 80 elements per side. From

the analytical size function, we will compute a background mesh for each
iteration of the adaptive process. The new background mesh is constructed
from the mesh of the previous iteration. When the new background mesh is
obtained, we generate the next mesh. This process is iterated until the mesh
reproduces the analytical size function with a relative error below 0.1. That
is, we accept all the elements whose size is, at most, 10% above the prescribed
size of the analytical size function.

In the first execution, we process the size field using a gradient-limiting
technique with parameter ε = 0.5. That is, the maximum gradient in the
processed size function is 0.5. The process is not able to converge using 50
iterations. Figure 4(a) presents the generated mesh at the last iteration, while
Figure 4(b) shows a detailed view. Figure 4(c) and 4(d) show the evolution of
the ratio R(e) computed against the background mesh of the current iteration
and the analytic function, respectively. Note that the ratio R(e) computed
against the background mesh is always above 1.28 and, for this reason, the
background mesh is not correctly captured. Thus, the adaptive process is not
able to generate a mesh that correctly preserves the analytic size function.

Combining Size-Preserving and Smoothing Procedures 31

(a) (b)

(c) (d)

Fig. 4 Adaptive process, not converged in 50 iterations, using the gradient-limiting
technique: (a) mesh at the last iteration; (b) detail of the mesh; (c) evolution of
the ratio R(e) against the current background mesh, and (d) evolution of the ratio
R(e) against the analytical function

In the second execution, we process the background mesh using the pro-
posed size-preserving technique, α = 2. In this case, the whole process has
been converged using only four iterations. Figure 5(a) and Figure 5(b) show
the mesh for the last iteration and a detailed view, respectively. Note that
at each iteration, the background mesh is correctly captured, see Figure 5(c)
and, for this reason, the process is able to generate a mesh that correctly
preserves the analytical size function, see Figure 5(d).

Table 1 presents the statistics for the meshes of the adaptive process at
the last iteration. The mesh generated using the size-preserving technique
contains more elements than the mesh generated using the gradient-limiting
method, since the size-preserving size function is smaller or equal than the
gradient-limiting function. The percentage of correct faces using the gradient-
limiting function is around 80%, while the percentage of correct faces us-
ing the proposed size-preserving approach is more than 99%. Note that the

32 E. Ruiz-Gironés, X. Roca, and J. Sarrate

(a) (b)

(c) (d)

Fig. 5 Adaptive process, converged in 4 iterations, using the size-preserving tech-
nique: (a) mesh at the last iteration; (b) detail of the mesh; (c) evolution of the
ratio R(e) against the current background mesh, and (d) evolution of the ratio R(e)
against the analytical function

Table 1 Statistics for the meshes of the adaptive process at the last iteration

method gradient-limiting size-preserving

total faces 64845 111092
correct faces 51506 110847

correct faces (%) 79.42% 99.77%
max R(e) 1.268 1.046
min quality 0.333 0.356
max quality 0.999 0.999
mean quality 0.843 0.895

quality deviation 0.121 0.107

element quality of both meshes are similar, although the mesh obtained using
the size-preserving approach presents better results. The minimum quality is
higher using the size-preserving method and the maximum quality is equal

Combining Size-Preserving and Smoothing Procedures 33

in both cases. The mean quality is higher and the deviation is smaller when
the size-preserving method is used. That is, the smoothing process is able
to maintain both the element quality and the element size only when the
size-preserving method is used. In the case of the gradient-limiting method,
the smoother process obtains a high-quality mesh, but the mesh does not
reproduce the size function.

5.2 Preserving a Complex Size Function in
Quadrilateral Mesh Generation

In this example, we present a quadrilateral mesh generated using a size field
derived from a MRI image, courtesy of the Cardiac Atlas website and the
Auckland MRI research group [19], see Figure 6(a). The size field is defined
in terms of the mean curvature of the MRI field, in order to generate more
elements where the variation of the gradient of the MRI field is higher, see
Figure 6(b). With this background mesh, we have generated two meshes.
In each mesh, we have computed the interpolation error of the initial MRI
field on the corresponding mesh, and the ratio R(e) for the elements. The
first mesh is obtained with the gradient-limiting technique, ε = 0.5. Figure
7(a) shows the interpolation error of the MRI field on the mesh, and Figure
7(b) presents the ratio R(e) for the elements. Note that there are elements
that are more than 90% bigger than the requested size. The second mesh is
obtained using the size-preserving approach, α = 2. In this case, the results
present a reduced interpolation error (Figure 8(a)), and ratio R(e) (Figure
8(b)). The gradient-limiting technique takes 2.11 seconds to compute the new
size function, while the size-preserving method takes 6.67 seconds. Although
the size-preserving method is slower than the gradient-limiting technique, it
is important to point out that the size-preserving method provides a mesh
that correctly preserves the element size.

Table 2 summarizes the statistics for the meshes generated with the dif-
ferent size functions. The behavior of the size functions is similar to the
ones reported in the previous example. The gradient-limiting technique, al-
though fast is not able to reproduce the initial size function, obtaining a
maximum ratio R(e) around 1.90 and only 81% of correct faces. The mesh
obtained with the size-preserving approach presents a maximum ratio equal
to 1.08. That means that there are elements that are only 8% bigger than
the prescribed size. In addition, the percentage of correct faces is around 98%
percent. The mesh quality using the gradient-limiting technique is lower than
the mesh quality using the size-preserving method. The minimum quality is
lower when using the gradient-limiting method, and the maximum quality is
the same for both meshes. The mean quality is higher in the mesh generated
using the size-preserving method, and deviation is smaller. Only the mesh
generated using the size-preserving method contains high-quality elements
that correctly reproduce the initial size function.

34 E. Ruiz-Gironés, X. Roca, and J. Sarrate

(a) (b)

Fig. 6 (a) MRI field defined on a square and (b) its associated size function

(a) (b)

Fig. 7 Mesh generated using the gradient-limiting technique: (a) interpolation
error and (b) ratio R(e) of the elements

Table 2 Statistics for the meshes generated for MRI field

method gradient-limiting size-preserving

total faces 64918 192121
correct faces 53804 191734

correct faces (%) 81.33% 99.79%
max R(e) 1.92 1.11
min quality 0.05 0.35
max quality 0.99 0.99
mean quality 0.78 0.90

quality deviation 0.14 0.09
time (s) 1.05 6.67

Combining Size-Preserving and Smoothing Procedures 35

(a) (b)

Fig. 8 Mesh generated using the size-preserving technique: (a) interpolation error
and (b) ratio R(e) of the elements

6 Conclusions

In this paper, we have presented a novel quantitative criterion to asses when
an element correctly reproduces a prescribed size function. Using this cri-
terion, we deduce the novel size-preserving method to compute a new size
function by solving an implicit, non-linear equation. The new size function
ensures high quality elements that correctly reproduce the prescribed size
function.

The size-preserving method computes the new size function by solving a
non-linear equation. The proposed algorithm modifies the size function at
each node of a background mesh ensuring that an element can be held in
that area and, at the same time, limiting the maximum gradient of the new
size function. We have shown that to generate a mesh that preserves the
original size function, it is recommended to use β ≤ 1 and α ≥ β.

We have proposed to apply a smoothing technique that takes into account
both the element quality and the prescribed size in order to obtain a high-
quality mesh that correctly reproduces the size function. We have shown
that the smoother is able to obtain a high-quality mesh that reproduces the
prescribed size function only when the size-preserving method is applied.
When a gradient-limiting method is used, the smoother is not able to obtain
a mesh that correctly preserves the initial size function.

Two applications of the size-preserving size function have been proposed.
The first one is the generation of quadrilateral meshes. When using classical
gradient-limiting techniques, the generated mesh does not fully reproduce the
initial size function. For this reason, refining algorithms have to be applied,
which can potentially reduce the quality of the mesh. Using the proposed
size-preserving technique, the generated mesh already preserves the initial
size function and, for this reason, high-quality elements are generated. The

36 E. Ruiz-Gironés, X. Roca, and J. Sarrate

second application is that the size-preserving size function can potentially
reduce the number of iterations to converge an adaptive process, since at
each iteration, the prescribed size function is correctly captured.

The current algorithm can be improved in several aspects. For instance,
we are using an edge-based solver to compute the size-preserving function.
However, we can use a Hamilton-Jacobi solver in order to obtain more ac-
curate solutions. In addition, we can improve the speed of computing the
size-preserving size function. Since the value of each node is computed in-
dependently, we can parallelize the code. Note that the size-preserving size-
function has been derived for any dimension. In the near future, we would
consider to analyze its application to unstructured hexahedral meshing. Fi-
nally, we can generalize the ideas of this paper to work with anisotropic size
fields.

References

1. Peraire, J., Vahdati, M., Morgan, K., Zienkiewick, O.C.: Adaptive remeshing
for compressible flow computations. Journal of Computational Physics 72, 449–
466 (1987)

2. Löhner, R.: Adaptive remeshing for transient problems. Computer Methods in
Applied Mechanics and Engineering 75, 195–214 (1989)

3. Rypl, D.: Sequential and Parallel Generation of Unstructured 3D Meshes. PhD
thesis, CTU in Prague (1998)

4. Blacker, T.D., Stephenson, M.B.: Paving: A new approach to automated quadri-
lateral mesh generation. International Journal for Numerical Methods in Engi-
neering 32(4), 811–847 (1991)

5. Sarrate, J., Huerta, A.: Efficient unstructured quadrilateral mesh generation.
International Journal for Numerical Methods in Engineering 49, 1327–1350
(2000)

6. Quadros, W.R., Shimada, K., Owen, S.J.: Skeleton-based computational
method for the generation of a 3d finite element mesh sizing function. En-
gineering with Computers 20(3), 249–264 (2004)

7. Quadros, W.R., Vyas, V., Brewer, M., Owen, S.J., Shimada, K.: A compu-
tational framework for automating generation of sizing function in assembly
meshing via disconnected skeletons. Engineering with Computers 26(3), 231–
247 (2010)

8. Zhu, J., Blacker, T.D., Smith, R.: Background overlay grid size functions. In:
Proceedings of the 11th International Meshing Roundtable, pp. 65–74 (2002)

9. Yerry, M.: Modified quad-tree approach to finite element mesh generation.
IEEE Computer Graphics & Applications 3(1), 39–46 (1983)

10. Borouchaki, H., Hecht, F., Frey, P.J.: Mesh gradation control. International
Journal for Numerical Methods in Engineering 43(6), 1143–1165 (1998)

11. Frey, P.J., Marechal, L.: Fast adaptive quadtree mesh generation. In: Proceed-
ings of the 7th International Meshing Roundtable (1998)

12. Persson, P.O.: Mesh Size Functions for Implicit Geometries and PDE-Based
Gradient Limiting. Engineering with Computers 22(2), 95–109 (2006)

Combining Size-Preserving and Smoothing Procedures 37

13. Gargallo-Peiró, A., Roca, X., Sarrate, J.: A surface mesh smoothing and untan-
gling method independent of the cad parameterization. Submitted to Computer
Methods in Applied Mechanics and Engineering

14. Patrick, M.K.: Algebraic mesh quality metrics. SIAM Journal on Scientific
Computing 23(1), 193–218 (2001)

15. Escobar, J.M., Rodrıguez, E., Montenegro, R., Montero, G., González-Yuste,
J.M.: Simultaneous untangling and smoothing of tetrahedral meshes. Computer
Methods in Applied Mechanics and Engineering 192(25), 2775–2787 (2003)

16. Roca, X., Sarrate, J., Ruiz-Gironés, E.: A graphical modeling and mesh gener-
ation environment for simulations based on boundary representation data. In:
Congresso de Métodos Numéricos em Engenharia (2007)

17. Roca, X.: Paving the path towards automatic hexahedral mesh generation. PhD
thesis, Universitat Politècnica de Catalunya (2009)

18. Roca, X., Ruiz-Gironés, E., Sarrate, J.: ez4u. mesh generation environment
(2010), http://www-lacan.upc.edu/ez4u.htm

19. Cardiac Atlas website (2013), http://atlas.scmr.org/

http://www-lacan.upc.edu/ez4u.htm
http://atlas.scmr.org/

	Introduction
	Size-Preserving Size Function
	Motivation
	Size-Preserving Size Function

	Size-Preserving Size Function Generation
	Smoothing Process
	Examples
	Accelerating a Two Dimensional Adaptive Process
	Preserving a Complex Size Function in Quadrilateral Mesh Generation

	Conclusions
	References

