
Multithread Lepp-Bisection Algorithm
for Tetrahedral Meshes

Pedro A. Rodriguez1 and Maria-Cecilia Rivara2

1 Department of Information Systems, University of Bio-Bio, Avda. Collao 1202,
Concepcion, Chile
prodrigu@ubiobio.cl

2 Department of Computer Science, University of Chile, Avda. Blanco Encalada
2120, Santiago, Chile
mcrivara@dcc.uchile.cl

Summary. We discuss a multithread Lepp-bisection algorithm for the refine-
ment of quality tetrahedral meshes over multicore architectures. We include
an empirical study that show that an efficient and robust serial implementa-
tion was obtained, and that an scalable and efficient multithread implemen-
tation was obtained. Furthermore, the algorithms tend to improve the refined
meshes.

1 Introduction

Longest edge refinement algorithms were designed to deal with the itera-
tive and local refinement of triangulations for finite element applications.
In 3-dimensions the algorithm locally refines a tetredra set Sref and some
neighboring tetraedra in each iteration. The new points introduced in the
mesh are midpoints of the longest edge of some tetrahedra of either of the
input mesh or of some refined nested meshes. All the tetrahedra are refined
by its longest-edge (bisection by the plane defined by the midpoint of the
longest edge and the two opposite vertices). In 2-dimensions the longest edge
bisection guarantees the construction of refined triangulations that maintain
the quality of the input mesh [18, 21, 3]. Even when the extension of this
property to 3-dimensions is an open problem yet, empirical evidence shows
that the 3D algorithm behaves analogously to the 2-dimensional algorithm
in practice.

Lepp-bisection algorithm is an efficient reformulation of the longest edge
algorithm with the following advantages: (a) only local refinement operations
are performed which always maintain a conforming mesh (the intersection of
pairs of adjacent tetrahedra is either a common vertex, or a common edge
or a common face); (b) the use of the Lepp concept allows to easily design
parallel algorithms.

J. Sarrate & M. Staten (eds.), Proceedings of the 22nd 525
International Meshing Roundtable,
DOI: 10.1007/978-3-319-02335-9_29, c© Springer International Publishing Switzerland 2013

526 P.A. Rodriguez and M.-C. Rivara

Distributed longest edge based algorithms for the parallel refinement of
triangulations have been discussed in the literature. In a review paper for
fluid dynamics applications, Williams [25] recommends the use of parallel
4-triangles longest edge algorithm for the refinement of huge triangulations;
Jones and Plassmann [13, 14, 15] discuss in detail a parallel 4-triangles re-
finement algorithm; Castaños and Savage [7, 8, 9] proposed a distributed
parallelization of the original longest edge algorithm in 3-dimensions; Rivara
et al [19] studied a Lepp-based algorithm for the uniform refinement of tetra-
hedral meshes. Balman in [4] proposed a Lepp-based algorithm that uses
a 8-tetrahedra longest edge algorithm [16] and an acyclical directed graph
(DAG) for storing the information of the Lepp submeshes.

Other distributed parallel algorithms have been also discussed in the liter-
ature: algorithms based on octrees techniques [23, 22]; and Delaunay methods
centered in the reuse of serial Delaunay codes, [1, 2, 11, 10].

In this paper we propose a multithread Lepp-bisection algorithm for the
parallel refinement of tetrahedral meshes. We discuss implementation issues,
and present an empirical study that shows that an efficient and scalable soft-
ware was obtained. These results generalize recent multithread Lepp-bisection
algorithms for two-dimensional triangulations [20].

2 Serial Lepp-Bisection Algorithms

2.1 Lepp and Terminal Edge Concepts

In two dimensions, Lepp(t), the longest edge propagating path of a triangle
t [18, 21], is a sequence of increasing triangles that allows to find a unique
local largest longest edge in the mesh (terminal edge) shared by two terminal
triangles (one triangle for a boundary terminal edge). For an illustration see
Fig. 1.

In 3-dimensions Lepp(t) corresponds to a multidirectional searching pro-
cess [19] that allows to find a set of terminal edges according to the following
definitions:

Definition 1. E is a terminal edge in a tetrahedral mesh τ if E is the longest
edge of every tetrahedron that shares E. In addition we call terminal star
TS(E) the set of tetrahedra that shares a terminal edge E.

Definition 2. For any tetrahedron t0 in τ , the Lepp(t0) is recursively defined
as follows:

(a) Lepp(t0) includes every tetrahedron t that shares the longest edge of t0
with t, and such that longest edge of t is greater than longest edge of t0.

(b) For any tetrahedron ti in Lepp(t0), this Lepp(t0) also contains every
tetrahedron t that shares the longest edge of ti and where longest edge
of t is greater than longest edge of ti.

Multithread Lepp-Bisection Algorithm for Tetrahedral Meshes 527

Note that Lepp(t0) is a 3D submesh which has a finite and variable number
of associated terminal-edges and terminal stars.

2.2 Serial Algorithm

For each tetrahedron t to be refined, the serial Lepp-bisection algorithm finds
Lepp(t) and an associated set W of terminal edges. Then for each terminal
edge E in W , the longest edge bisection of every tetrahedron of the termi-
nal star ST (E) is performed, which corresponds to a very local refinement
operation that maintains a conforming mesh (where the intersection of pair
of adjacent tetrahedra is either a common vertex, or a common edge, or
a common face). This process is repeated until the target tetrahedron t is
refined.

The algorithm can be schematically described as follows.

Algorithm 1. SerialLeppBisectionAlgorithm(τ , S)

Input: τ mesh of tetrahedra; S set of tetrahedra to be refined.
Output: refined mesh τf .
while S �= φ do

For each tetrahedron t0 ∈ S.
while t0 remains in the mesh do

Compute Lepp(t0) and set of terminal edges W
for each terminal edge L in W do

Perform longest edge bisection of each tetrahedron that belongs to the
terminal star TS(L).

end for
end while

end while

3 Multithread 3D Lepp-Bisection Algorithm

3.1 Syncronization Issues

We consider a shared memory multicore computer having p physical cores.
To perform the refinement task, each core Pi(i = 1, ..p) is in charge of the
parallel processing of an individual tetrahedron t in S and its associated
changing Lepp sequence until the tetrahedron t is refined in the mesh. Once
the refinement of t is performed, Pi will pick up another tetrahedron of S to
continue the refinement task.

To succesfully perform the parallel work, we need to deal with the following
synchronization issues [20]: (a) To avoid processing collisions associated to the
parallel processing of tetrahedra whose 3D Lepp submeshes overlap; (b)To
avoid data structure unconsistencies due to the parallel refinement of adjacent
terminal stars that belong to adjacent (non-overlapping) Lepp submeshes.

528 P.A. Rodriguez and M.-C. Rivara

Figure 1 illustrates the case of overlaping Lepp submeshes for triangles t0
and t∗0 in 2-dimensions, where Lepp(t0) ∩ Lepp(t∗) = {t2, t3, t4, t5}. If two
different cores simultaneously process these triangles, to avoid a processing
collision, the first core that reaches t2 will capture it (marking t2 as busy),
and will continue processing its asigned Lepp, while the other processor must
stop its work.

Figure 2 illustrates the case where two processors intend to simultaneously
refine two adjacent terminal stars in 2-dimensions. This can not be allowed
since the parallel updating of the data structure can introduce erroneous
neighboring information.

0

t1
t2

t3 t4

t5

t0
1t’

2t’
3t’

0Lepp(t)
t*0

Lepp(t*)

A

B

Fig. 1 Lepp(t0) = {t0, t1, t2, t3, t4, t5} and Lepp(t∗0) = {t∗, t′1, t′2, t′3, t2, t3, t4, t5},
AB is a terminal edge (local largest edge in the mesh)

In practice the algorithm will proceed as follows:

1. To avoid Lepp processing collision, for each tetrahedra t0 being processed,
the tetrahedron t0 and each tetrahedron in the of Lepp submesh are
marked as occupied. None of these tetrahedra can be accessed by other
thread until these are refined. In exchange, the new refined tetraedra are
marked as non-occupied.

2. When a thread p that processes a target tetrahedron t1 reaches an occupied
tetrahedron in the Lepp-submesh of t1, the following tasks are performed:
(a) the thread p is freed; (b) the tetrahedra of the partially computed
Lepp, are unmarked; and (c) the tetrahedra t1 is again added to Sref .

3. To assure data structure consistency we only perform refinement of a ter-
minal star when the involved neighbors are non-marked tetrahedra.

4. If a set of terminal tetraedra (that form a terminal star) has marked neigh-
bors, the associated thread is freed, which proceeds to look for another
tetrahedron to be refined.

Multithread Lepp-Bisection Algorithm for Tetrahedral Meshes 529

3.2 Randomization and Prefetching Techniques

To develop an efficient and robust algorithm for multicore architectures we
also need use the following techniques:

Randomization. To reduce the cases of Lepp collisions a randomization
strategy is used to process the target tetrahedra.

�

�

�

�

Fig. 2 Adjacent terminal triangles (of terminal edges AB and CD). The parallel
refinement of both pair of terminal triangles is prohibited.

Prefetching Technique. In order to develop a non-architecture depen-
dant algorithm, the following prefetching strategy is used to refine the ter-
minal stars: Before starting the refinement process, each thread computes
a complete terminal star which together with its immediate neighbors are
firstly stored in a fast cache memory. The refinement of the terminal star is
performed over this cache memory.

The multithread algorithm is schematically described in Algorithms 2
and 3.

3.3 Performance Measures for Parallel Algorithms

The performance of a parallel algorithm is usually measured by using the
speedup and the efficiency measures. The speedup S is defined as S = Ts/Tp,
where Ts is the time taken by the sequencial algorithm to solve the problem,
while Tp is the time spent by the parallel algorithm by using p processors
to solve the same problem. The efficiency E is defined as E = S/p, where S
is the speedup with p processors and p is the number of processors used to
solve the associated problem.

530 P.A. Rodriguez and M.-C. Rivara

Algorithm 2. Multithread3DLeppBisection(τ , S)

Input: τ conforming tetrahedral mesh; S set of tetrahedra to be refined.
Output: a refined and conforming tetrahedralization τf
while S �= φ (perform multithread processing) do

for each free core p do
Set stop-variable equal to false.
Core p randomly selects t in S.
while t remains in mesh and Stop-variable is false do

LeppComputation(t, Lepp, W, Isuccess1).
if Isuccess1 is true then

RefineTerminalStars(t, W, Isuccess2).
else

Set stop-variable equal to true.
end if

end while
if Isuccess2 is false then

Set stop-variable equal to true
end if
Free processor p.

end for
end while

Algorithm 3. RefineTerminalStars(t, W, Isuccess2)

Set Isuccess2 equal to true
for each terminal edge E in W do

Compute terminal star TS
if there exists a neighbor tetrahedron of TS marked as occupied then

Set Isuccess2 equal to false
return

else
Store the tetrahedra of TS and immediate neighbors in fast cache memory
Perform refinement of TS in cache memory

end if
end for

The ideal speedup is equal to p, while the ideal efficiency is equal to 1.
Note however that in practice it is common that a parallel implementation
does not achieve linear speedup (S = p) since the parallel implementation
usually requires of some kind of overhead for the management of the parallel
issues [17, 12].

Note also that the scalability of the parallel code can be observed by study-
ing how the speedup changes as more cores are available. For an application
that scales well, the speedup should increase at (or close to) the same rate as
the amount of cores increases. That is if you double the number of cores, the
speedup should also double [6]. Thus for an ideal and scalable parallel algo-
rithm, the graph of the speedup versus the number of processors corresponds to

Multithread Lepp-Bisection Algorithm for Tetrahedral Meshes 531

Algorithm 4. LeppComputation(t, Lepp, W, Isuccess1)

Input: tetrahedron t.
Output: Lepp submesh associated to t, W set of terminal edges.
Set Isuccess1 equal to true.
Add t to Lepp.
for each t∗ recursively found in Lepp(t) do

if t∗ is marked as occupied then
Isuccess1 is set to false.
return

else
Mark t as occupied.
Add t to Lepp.

end if
Find set of terminal edges W.

end for

a 45 degrees straight line (this behavior is called linear), while a good and scal-
able behavior corresponds to an approximate straight line with angle lightly
less than 45◦.

4 Empirical Testing

The empirical testing was perfomed by using a 8 physical cores computer (two
Quad Core processors, Intel Xeon E5550 of 64 bits, and 23.5GB of memory).
To empirically evaluate the algorithm behavior, we have used two kind of
initial meshes: (a) meshes of convex polyhedra defined by the convex hull of
sets of randomly generated points in the interior of a 3-dimensional box; (b)
meshes of 3D solid objects. The initial meshes were obtained by using CGAL
Delaunay software [5] [24].

For the test problems we have used two iterative refinement strategies:
(1) iterative refinement of sets of the largest tetrahedra in the current mesh;

and (2) iterative refinement of sets of randomly selected tetrahedra in the
mesh. To perform the random selection, to every initial and new tetrahedron,
a value between 0 to 1 is randomly assigned.

4.1 Empirical Study on the Efficiency and Scalability
of the Serial Algorithm

To study the efficiency and scalability of the serial implementation we have
used initial meshes of the convex hull of sets of random points (random
data generated inside a 3D box as shown in Figure 3), and two complex
solid objects (shaft geometry of Figure 4, elephant geometry of Figure 5).

532 P.A. Rodriguez and M.-C. Rivara

Fig. 3 Input and refined mesh of convex geometry for TP1, TP2 and TP3 testing
problems

Fig. 4 Input and refined mesh for shaft geometry

Table 1 Test problems

TP1: Convex polyhedron (0.5 millions), refinement of largest tetrahedra
TP2: Convex polyhedron (0.5 millions), refinement of random tetrahedra
TP3: Big convex polyhedron (13.3 millions), refinement of largest tetrahedra
TP4: Shaft geometry (2654), refinement of largest tetrahedra
TP5: Shaft geometry (2654), refinement of random tetrahedra
TP6: Elephant geometry; refinement of largest tetrahedra

The triangulations were obtained with Delaunay CGAL software. Table 1
summarizes the test problems considered in this paper.

Table 2 and Table 3 present refinement statistics of the serial Lepp-
bisection algorithm for the same initial mesh (around 500,000 tetrahedra)
of the convex polyhedron and two refinement strategies until obtaining
11,282,761 and 10,203,417 of tetrahedra, respectively.

Multithread Lepp-Bisection Algorithm for Tetrahedral Meshes 533

Fig. 5 Elephant. Initial and final refined meshes. Here the tetrahedra that intersect
the sphere were iteratively refined until a given tetrahedron-size was achieved.

Table 2 TP1 Convex Polyhedron. Random data (75,000 points randomly gener-
ated); refinement of 200000 largest tetrahedra by iteration until longest edge ≤ δ;
δ = 100

It. Mesh Size � Added Total Average Time (ms)
� Tetrahedra Tetrahedra time (ms) by Tetrahedron

0 503972
1 1360438 856466 73591 0.085924018
2 2405694 1045256 89550 0.0856727921
3 3506501 1100807 94374 0.0857316496
4 4557270 1050769 90083 0.0857305459
5 5561370 1004100 86031 0.0856797132
6 6539275 977905 80739 0.0825632347
7 7473237 933962 71411 0.0764602843
8 8291995 818758 62491 0.0763241397
9 9057137 765142 58372 0.0762891071
10 9721170 664033 50638 0.0762582582
11 10267847 546677 41542 0.075990027
12 10826347 558500 42080 0.0753446732
13 11194281 367934 27580 0.0749590959
14 11278476 84195 6229 0.0739830156
15 11282736 4260 302 0.0708920188
16 11282761 25 2 0.08

Table 2 summarizes 16 iterations for the serial algorithm. In every itera-
tion, the 200,000 largest tetrahedra with largest edge greater than a δ value
(if this is possible) are refined. The table includes the following information:
number of the iteration, mesh size (number of tetrahedra) of the current
mesh, number of tetrahedra added by refinement process, total processing

534 P.A. Rodriguez and M.-C. Rivara

Table 3 TP2 Convex Polyhedron. Random data (75,000 points randomly gener-
ated); refinement of 100000 randomly selected tetrahedra by iteration

It. Mesh Size � Added Total Average Time (ms)
� Tetrahedra Tetrahedra time (ms) by Tetrahedron

0 503972
1 1670808 1166836 80831 0.0692736597
2 3161759 1490951 102685 0.0688721494
3 5121789 1960030 135210 0.068983638
4 7443137 2321348 160592 0.0691804934
5 10203417 2760280 191696 0.069448027

Table 4 TP3 Mesh statistics. Convex polyhedron of randomly generated points;
refinement of 50000 randomly selected tetrahedra by iteration until longest edge ≤
δ; δ = 11

It. Mesh Size � Added Total Average Time (ms)
� Tetrahedra Tetrahedra time (ms) by Tetrahedron

0 13504909
1 14043040 538131 45662 0.0848529447
2 14341936 298896 24418 0.0816939671
3 14644899 302963 24588 0.0811584253
4 14966833 321934 25943 0.0805848404
5 15288352 321519 25849 0.0803964929
6 15592634 304282 24474 0.0804319677
7 15847491 254857 20464 0.0802960091
8 16056472 208981 16755 0.0801747527
9 16247115 190643 15280 0.0801498088
10 16427632 180517 14448 0.0800367832
11 16617437 189805 15165 0.0798977898
12 16777497 160060 12844 0.0802449082
13 16902314 124817 9985 0.0799971158
14 16982671 80357 6437 0.0801050313
15 17002240 19569 1525 0.0779293781
16 17002295 55 4 0.0727272727

time in miliseconds, average time (ms) by each tetrahedron added to the
mesh. Note that an efficient serial implementation was obtained where the
processing time for each new tetrahedron added to the mesh remains constant
(0.070 - 0.085 ms) independently of the mesh size.

Table 3 summarizes 5 iterations of the serial algorithm over the same initial
mesh of around 500,000 tetrahedra used for Table 2. Here 100,000 randomly
selected tetrahedra are refined by iteration. Note that the average time by
each added tetrahedron is again constant and independent of the mesh size.

Table 4 summarizes refinement statistics for the behavior of the serial
algorithm for the test problem TP3 that considers a huge initial mesh of

Multithread Lepp-Bisection Algorithm for Tetrahedral Meshes 535

Table 5 TP4 3D solid object. Shaft geometry; refinement of 50000 largest tetra-
hedra by iteration (if possible) until longest edge ≤ δ; δ = 3

It. Mesh Size � Added Total Average Time (ms)
� Tetrahedra Tetrahedra time (ms) by Tetrahedron

0 2654
1 9412 6758 465 0.0688073394
2 29749 20337 1376 0.0676599302
3 89760 60011 4129 0.0688040526
4 224786 135026 9370 0.0693940426
5 369415 144629 10083 0.0697163086
6 428445 59030 4165 0.0705573437
7 436536 8091 566 0.0699542702
8 436920 384 26 0.0677083333
9 436926 6 1 0.1666666667

Table 6 TP5 Mesh statistics. Shaft. Refinement of 1000 randomly selected tetra-
hedra by iteration

It. Mesh Size � Added Total Average Time (ms)
� Tetrahedra Tetrahedra time (ms) by Tetrahedron

0 2654
1 9640 6986 589 0.0843114801
2 21781 12141 1010 0.0831891936
3 37299 15518 1293 0.0833225931
4 54681 17382 1451 0.0834771603
5 74756 20075 1679 0.0836363636
6 95896 21140 1771 0.0837748344
7 117930 22034 1851 0.0840065354
8 139845 21915 1836 0.0837782341
9 161989 22144 1861 0.0840408237
10 183883 21894 1841 0.0840869645

13,504,909 tetrahedra and produces a final mesh of 17 millions of tetrahedra.
This testing case, which uses a 87.7% of the primary memory, shows analogous
behavior to the previous cases.

Tables 5 and 6 summarize results for the shaft geometry of Figure 4, while
Table 7 shows results for the elephant geometry.

Tables 8 and 9, and Figure 6 present results on the scalability of the
multithread algorithm for five (TP1, TP2, TP3, TP4 and TP6) of the six
testing problems of Table 1 (refined final meshes from 0.44 to 17.0 millions of
tetrahedra). It is worth noting that an efficient and scalable implementation
was obtained, whose behavior is independent of the size of the final refined
mesh.

It is worth noting that for the all these testing problems the number of Lepp
collisions remains rather low (6 to 10% of the computed Lepps). This can be

536 P.A. Rodriguez and M.-C. Rivara

Table 7 TP6 Mesh statistics. Elephant geometry. Refinement of 1000 randomly
selected tetrahedra by iteration until longest edge ≤ δ; δ = 0.02

It. Mesh Size � Added Total Average Time (ms)
� Tetrahedra Tetrahedra time (ms) by Tetrahedron

0 1905
1 7905 6000 477 0.0795
2 16560 8655 673 0.0777585211
3 25707 9147 710 0.0776210779
4 36792 11085 866 0.0781235904
5 49912 13120 1028 0.0783536585
6 62655 12743 997 0.0782390332
7 76789 14134 1111 0.0786047828
8 90704 13915 1090 0.0783327345
9 103982 13278 1043 0.0785509866
10 116952 12970 1019 0.0785659214

Table 8 Execution Time (ms)

Execution Time (ms)

1P 2P 4P 8P

TP1: Convex polyhedron (LE ≥ δ) 748312 410372 201852 105161
TP2: Convex polyhedron (Random) 671014 350453 180832 92519
TP3: Big convex polyhedron (LE ≥ δ) 283841 156620 83256 41136
TP5: Shaft 34117 17315 8908 4700
TP6: Elephant 25192 13442 7111 3748

Table 9 Perfomance measures: speedup and efficiency

Speed-Up Efficiency

1P 2P 4P 8P 1P 2P 4P 8P

TP1: 3-dim convex hull (LE ≥ δ) 1 1.82 3.71 7.12 1.0 0.91 0.93 0.89
TP2: 3-dim convex hull (Random) 1 1.91 3.71 7.25 1.0 0.96 0.93 0.91
TP3: 3-dim convex hull (LE ≥ δ) 1 1.81 3.41 6.90 1.0 0.91 0.85 0.86
TP5: Shaft 1 1.97 3.83 7.23 1.0 0.99 0.96 0.91
TP6: Elephant 1 1.97 3.83 7.23 1.0 0.94 0.89 0.84

due to the fact that a small percentage of tetrahedra is refined by iteration.
Additional empirical work is needed to get more precise conclusions on this
matter.

4.2 Empirical Study on the Quality of Refined 3D
Triangulations for Initial Quality Meshes

Figures 7, 8, 9 10, 11 present results on the quality of the refined meshes for
five testing problems: for a convex geometry by refining the largest tetrahedra

Multithread Lepp-Bisection Algorithm for Tetrahedral Meshes 537

� � � � � � � 	

�

�

�

	

�����

������������������������������� !����������

�������������������������������

"� �#������������������������������ !����������

������ ��������������������� !����������

$������� ��������������������� !����������

%���

&��'�����#��!

�
�

�
�
�

Fig. 6 Speedup for TP1, TP2, TP3, TP5 and TP6 testing problems

������� ���������� ���������� ���������	 �����	���
 �����
���� ���������� ��������� ��������� ����������

����

�����

�����

�����

	����

����������������������

��� ��������!"��#��

$�#�#���%��& '#����%��&

 ��������!"��#��

�
�
��
�
�
��
�
�
��
��
��
��
�
&
�
(
��

Fig. 7 TP1: Three-dimensional convex hull. Refinement of largest tetrahedra.
Quality distribution for initial and final meshes.

������� ���������� ���������� ���������	 �����	���
 �����
���� ���������� ��������� ��������� ����������

����

���

�����

�
���

�����

�
���

�����

�
���

�����������������������	
���������������

���������� ���������

������

�
�
��
�
�
��
�
�

Fig. 8 TP2: Three-dimensional convex hull. Random selection. Quality distribu-
tion for initial and refined mesh.

538 P.A. Rodriguez and M.-C. Rivara

������� ���������� ���������� ���������	 �����	���
 �����
���� ���������� ��������� ��������� ����������

����

�����

�����

�����

	����

���������������������	
�������������������

$����������� ����������

������

�
�
��

�
�
��

�
�

Fig. 9 TP6: Elephant. Random selection of tetrahedra. Quality distribution for
initial and final meshes.

������� ���������� ���������� ���������	 �����	���
 �����
���� ���������� ��������� ��������� ����������

����

�����

�����

�����

	����

���������������������	
�������������������

$����������� ����������

������

�
�
��

�
�
��

�
�

Fig. 10 TP6: Elephant. Random selection. Quality distribution for initial and final
meshes.

������� ���������� ���������� ���������	 �����	���
 �����
���� ���������� ��������� ��������� ����������

����

�����

�����

�����

	����

��������	
�	���	�����	�
��	�
��������	

��#�#���%	�� '#����%	��

���	�

�
	

�

	
�
��

	

Fig. 11 TP5: Shaft. Random selection. Percentage of quality by range: initial and
refined mesh.

(TP1 and TP3); for the same convex geometry with random selection of
the tetrahedra to be refined (TP2), for an elephant geometry with random
selection of the tetrahedra to be refined (TP6); for a shaft geometry with

Multithread Lepp-Bisection Algorithm for Tetrahedral Meshes 539

random selection of the tetrahedra to be refined (TP5). See Figures 3, 5 and
4 of section 4.1.

To measure the quality of a tetrahedron t, we used the function Q(t) = C
volume (t) / longest-edge3, where C is such that Q(t’) = 1 for the equilateral
tetrahedron t’. It is worth noting that for all these test problems (Figures 7,
8, 9 10, and 11) the Lepp-bisection algorithm tends to improve the quality
distribution of the mesh.

5 Conclusions

We have presented and discussed a multithread Lepp-bisection algorithm
for the refinement of tetrahedral meshes. We include empirical results that
show that an efficient and robust serial implementation was obtained, and
that an efficient and scalable multithread implementation was also obtained.

References

1. Antonopoulos, C., Blagojevic, F., Chernikov, A., Chrisochoides, N., Nikolopou-
los, D.: Algorithm, software, and hardware optimizations for delaunay mesh
generation on simultaneous multithreaded architectures. Journal on Parallel
and Distributed Computing 69(7) (2009)

2. Antonopoulos, C., Blagojevic, F., Chernikov, A., Chrisochoides, N., Nikolopou-
los, D.: A multigrain delaunay mesh generation method for multicore smt-based
architectures. Journal on Parallel and Distributed Computing 69(7) (2009)

3. Bedregal, C., Rivara, M.-C.: A study on size-optimal longest edge refinement
algorithms. In: Jiao, X., Weill, J.-C. (eds.) Proceedings of the 21st International
Meshing Roundtable, vol. 123, pp. 121–136. Springer, Heidelberg (2013)

4. Balman, M.: Tetrahedral mesh refinement in distributed environments. In:
ICPP Workshops, pp. 497–504. IEEE Computer Society (2006)

5. Boissonnat, J.-D., Devillers, O., Pion, S., Teillaud, M., Yvinec, M.: Trian-
gulations in CGAL. Computational Geometry 22, 5–19 (2002); Special issue
SoCG00

6. Breshears, C.: The Art of Concurrency: A Thread Monkey’s Guide to Writing
Parallel Applications. O’Reilly Media Inc. (2009)

7. Castaños, J., Savage, J.: Pared: A framework for the adaptive solution of pdes.
In: HPDC (1999)

8. Castaños, J., Savage, J.: Repartitioning unstructured adaptive meshes. In:
IPDPS, pp. 823–832. IEEE Computer Society (2000)

9. Castaños, J., Savage, J.: Parallel refinement of unstructured meshes. Technical
report cs-99-10, Department of Computer Science, Brown University

10. Chernikov, A., Chrisochoides, N.: Algorithm 872: Parallel 2d constrained de-
launay mesh generation. ACM Transactions on Mathematical Software 34(1)
(2008)

11. Chernikov, A., Chrisochoides, N.: Generalized two-dimensional delaunay mesh
refinement. SIAM Journal on Scientific Computing 31, 3387–3403 (2009)

12. Grama, A., Karypis, G., Kumar, V., Gupta, A.: Introduction to Parallel Com-
puting, 2nd edn. Addison Wesley (2003)

540 P.A. Rodriguez and M.-C. Rivara

13. Jones, M., Plassmann, P.: Computational results for parallel unstructured mesh
computations. Computing Systems in Engineering 5(4-6), 297–309 (1994); 3rd
National Symposium on Large-Scale Structural Analysis for High-Performance
Computers and Workstations

14. Jones, M., Plassmann, P.: Adaptive refinement of unstructured finite-element
meshes. Finite Elem. Anal. Des. 25(1-2), 41–60 (1997)

15. Jones, M., Plassmann, P.: Parallel algorithms for the adaptive refinement and
partitioning of unstructured meshes. In: Proceedings of the Scalable High-
Performance Computing Conference, pp. 478–485. IEEE (1997)

16. Plaza, A., Rivara, M.C.: Mesh refinement based on the 8-tetrahedra longest-
edge partition. In: 12th International Meshing Roundtable, pp. 67–78 (2003)

17. Rauber, T., Rünger, G.: Parallel Programming for multicore and cluster sys-
tems. Springer (2010)

18. Rivara, M.C.: Lepp-bisection algorithms, applications and mathematical prop-
erties. Appl. Numer. Math. 59(9), 2218–2235 (2009)

19. Rivara, M.C., Calderon, C., Fedorov, A., Chrisochoides, N.: Parallel decoupled
terminal-edge bisection method for 3d mesh generation. Eng. Comput. 22(2),
111–119 (2006)

20. Rivara, M.C., Rodriguez, P., Montenegro, R., Jorquera, J.: Multithread par-
allelization of lepp-bisection algorithms. Appl. Numer. Math. 62(4), 473–488
(2012)

21. Rivara, M.C.: New longest-edge algorithms for the refinement and/or improve-
ment of unstructured triangulations. International Journal for Numerical Meth-
ods in Engineering 40(18), 3313–3324 (1997)

22. Shephard, M., Flaherty, J., Bottasso, C., de Cougny, H., Ozturan, C., Simone,
M.: Parallel automatic adaptive analysis. Parallel Comput. 23(9), 1327–1347
(1997)

23. Shephard, M.S., Guerinoni, F., Flaherty, J., Ludwig, R., Baehmann, P.: Finite
octree mesh generation for automated adaptive three-dimensional flow analy-
sis. In: Proc. 2nd Int. Conf. Numer. Grid Generation in Computational Fluid
Mechanics, pp. 709–718 (1988)

24. Teillaud, M.: Three dimensional triangulations in cgal. Abstracts 15th Eu-
ropean Workshop Computational Geometry, pp. 175–178. INRIA Sophia-
Antipolis (1999)

25. Williams, R.: Adaptive parallel meshes with complex geometry. In: Numerical
Grid Generation in Computational Fluid Dynamics and Related Fields, pp.
201–213. Elsevier Science Publishers (1991)

	Introduction
	Serial Lepp-Bisection Algorithms
	Lepp and Terminal Edge Concepts
	Serial Algorithm

	Multithread 3D Lepp-Bisection Algorithm
	Syncronization Issues
	Randomization and Prefetching Techniques
	Performance Measures for Parallel Algorithms

	Empirical Testing
	Empirical Study on the Efficiency and Scalability of the Serial Algorithm
	Empirical Study on the Quality of Refined 3D Triangulations for Initial Quality Meshes

	Conclusions
	References

