
AHF: Array-Based Half-Facet Data Structure
for Mixed-Dimensional and Non-manifold
Meshes

Vladimir Dyedov1,�, Navamita Ray1, Daniel Einstein2,
Xiangmin Jiao1,��, and Timothy J. Tautges3

1 Dept. of Applied Math. & Statistics, Stony Brook University, Stony Brook, NY 11744
jiao@ams.sunysb.edu

2 Biological Sciences Division, Pacific Northwest National Laboratory,
Richland, WA 99352

3 Math. & Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

Summary. We present an Array-based Half-Facet mesh data structure, or AHF,
for efficient mesh query and modification operations. The AHF extends the com-
pact array-based half-edge and half-face data structures (T.J. Alumbaugh and X.
Jiao, Compact array-based mesh data structures, IMR, 2005) to support mixed-
dimensional and non-manifold meshes. The design goals of our data structure in-
clude generality to support such meshes, efficiency of neighborhood queries and
mesh modification, compactness of memory footprint, and facilitation of interop-
erability of mesh-based application codes. To accomplish these goals, our data
structure uses sibling half-facets as a core abstraction, coupled with other explicit
and implicit representations of entities. A unique feature of our data structure is
a comprehensive implementation in MATLAB, which allows rapid prototyping,
debugging, testing, and deployment of meshing algorithms and other mesh-based
numerical methods. We have also developed C++ implementation built on top
of MOAB (T.J. Tautges, R. Meyers, and K. Merkley, MOAB: A Mesh-Oriented
Database, Sandia National Laboratories, 2004). We present some comparisons of
the memory requirements and computational costs, and also demonstrate its effec-
tiveness with a few sample applications.

Keywords: mesh generation, data structure, non-manifold, mixed-dimensional
meshes, sibling half-facets, MATLAB.

1 Introduction

Mesh data structures are an important technology underlying meshing algorithms
(such as mesh generation and modification) and mesh-based numerical methods

� Current address: CD-adapco, Austin, TX 78750.
�� Corresponding author.

J. Sarrate & M. Staten (eds.), Proceedings of the 22nd 445
International Meshing Roundtable,
DOI: 10.1007/978-3-319-02335-9_25, c© Springer International Publishing Switzerland 2013

446 V. Dyedov et al.

(such as finite element and finite volume methods). While mesh data structure has
been investigated and used since the inception of mesh generation and computa-
tional geometry [1, 2, 8, 10, 11, 13, 16, 17], the increasing complexities and the
ever-changing demands of the application codes often pose new requirements to
mesh data structures. Examples of such new demanding applications include cou-
pled multiphysics simulations and multi-component systems, which may pose di-
verse requirements within each code as well as requirements on interoperability
across different codes. Therefore, mesh data structure has continued to be an active
research topic in recent years.

In light of the new challenges of meshing applications, we summarize a few
requirements of mesh data structures, which will serve as our design goals:

Generality: Support mixed-dimensional, non-manifold (oriented or non-oriented)
meshes in 1-D, 2-D, and 3-D, and be easily generalizable to higher dimensions.

Efficiency: Support all local adjacency queries in constant time, assuming the va-
lence of each mesh entity is bounded by a small constant.

Simplicity: Be simple and intuitive, and be easy to implement.
Extensibility: Allow extensibility for performance and parallelization.
Interoperability: Facilitate interoperability with application codes, such as simu-

lation codes, multigrid solvers, etc.
Compactness of memory footprint: Require minimal storage in addition to ele-

ment connectivity.

In this paper, we strive to develop a mesh data structure that meets all the above
requirements. We refer to our data structure as the Array-based Half-Facet data
structure, or AHF. The AHF unifies the array-based half-edge and half-face data
structures for surface and volume meshes [1], and further generalizes them to sup-
port mixed-dimensional and non-manifold meshes by introducing the concept of
sibling half-facets. It can be used to perform efficient mesh queries and
modification.

The key contributions of this paper are twofold: First, we introduce a simple data
model for mixed-dimensional and non-manifold meshes. Our data model is easy
to implement and is efficient in both memory and computational cost. In addition,
some of its data fields can be created dynamically for fine-grain operations and be
removed afterwards. Second, as an array-based data structure, AHF facilitates better
interoperability across different application codes, different programming languages
(such as MATLAB, C/C++, FORTRAN, etc.), and different hardware platforms.
Our C++ implementation on top of MOAB [17] further improves its interoperabil-
ity through the iMesh interface (http://www.itaps.org/). In addition, our
data structure is unique in its comprehensive implementation in MATLAB, which
allows rapid prototyping and deployment of meshing algorithms and other mesh-
based numerical methods in a productive fashion.

The remainder of the paper is organized as follows. Section 2 reviews some back-
ground knowledge and related mesh data structures. Section 3 describes our data
model for non-manifold and mixed-dimensional meshes. Section 4 describes the

http://www.itaps.org/

AHF: Array-Based Half-Facet Data Structure 447

algorithms for the construction, query, mesh modification operations, as well as their
implementations in MATLAB. Section 5 describes the C++ implementation on top
of MOAB. Section 6 presents some comparisons of AHF against others in terms of
storage and computational cost. Section 7 concludes the paper with a discussion.

2 Background and Related Work

In this section, we review some terminology and other existing data structures,
which will establish the foundation of our proposed data structure.

2.1 Terminology

We develop data structures for representing discrete geometric and topological ob-
jects in 1-D, 2-D, or 3-D, arising from numerical computations in engineering and
scientific applications. These objects correspond to curves, surfaces, and volumes,
respectively, typically embedded in two- or three-dimensional Euclidean spaces.
Topologically, a d-dimensional object is a manifold with boundary if every point
in it has a neighborhood homeomorphic to either a d-dimensional ball or half-ball,
where the points whose neighborhood is homeomorphic to a half-ball are boundary
(or border) points. In practice, it is quite common to have topological objects that
are non-manifold, especially for curves and surfaces. These non-manifolds are typ-
ically composed of a union of a finite number of manifolds with boundaries, and
sometimes embedded in a higher-dimensional manifold structure. In 3-D space, a
surface is oriented if it is possible to make a consistent choice of surface normal
vector at every point; otherwise it is non-oriented.

In our setting, a mesh is a simplicial complex representing discretely a geometric
or topological object. We say a mesh is 1-D, 2-D, or 3-D if the object that it repre-
sents is topologically 1-D, 2-D, or 3-D, respectively. We say a mesh is a manifold
or non-manifold if its geometric realization is a manifold or non-manifold, respec-
tively. A mesh is composed of 0-D, 1-D, 2-D, and 3-D entities, which we refer to as
vertices, edges, faces, and cells, respectively. Typically, a face is either a triangle or
quadrilateral, and a cell is a tetrahedron, prism, pyramid, or hexahedron, especially
for finite element methods, although general polygons and polyhedra are also often
used in finite volume meshes. We focus on finite-element meshes, and will briefly
describe the generalization to polyhedral meshes in Section 7.

In a d-dimensional mesh, we refer to the d-dimensional entities as elements, and
refer to the (d − 1)-dimensional sub-entities as its facets. More specifically, the
facets of a cell are its faces, the facets of a face are its edges, and a facet of an edge
are its vertices. Each facet has an orientation with respect to the containing ele-
ment. For example, each edge of a triangle has a direction, and all the edges form an
oriented loop. Thus it makes sense to call the facets as half-facets. Each facet may
have multiple incident elements, especially for non-manifold entities. We refer to all

448 V. Dyedov et al.

such half-facets as sibling half-facets. A half-facet without any sibling is a border
half-facet, and refer to vertices incident on a border half-facet as a border vertex. A
mesh is said to be conformal if the pairwise intersection of any two entities is either
another entity or is empty. In this paper, we consider only conformal meshes, which
may be manifold or non-manifold. In the case of surface meshes, the mesh may be
oriented or non-oriented.

In some engineering applications, especially in coupled or multi-component sys-
tems, the domain of interest may be composed of a union of topologically 1-D,
2-D, and 3-D objects, such as a mixture of cables, thin-shells, and solids. We refer
to such a domain and its mesh as mixed-dimensional.1 We refer to a subset of the
mesh corresponding to a 1-D, 2-D, and 3-D object in the domain as a sub-mesh.
It is common, although not required, for the sub-meshes to share some mesh enti-
ties, especially shared vertices. Our goal is to design data structures for consistent
representations for mixed-dimensional meshes with shared entities.

2.2 Half-Edge Data Structure

The half-edge data structure, a.k.a. the doubly-connected edge list (DCEL), is a
popular data structure for 2-D and surface meshes (see e.g. [5]), especially ori-
ented, manifold, polygonal surface meshes with or without boundary. The DCEL
uses edges as the core object. The edge within each face is called a directed edge
or half-edge. In an oriented manifold surface mesh, suppose the edges within each
face can be ordered in counter-clockwise order with respect to outward normal (or
upward normal for 2-D meshes). Each edge has two incident faces, and the two half-
edges have opposite orientations and hence are said to be opposite or twin of each
other. An edge on the boundary does not have a twin half-edge.

There are various implementations of DCEL. A typical implementation, such as
those in CGAL [10, 7],OpenMesh [3] and Surface_Mesh [15], stores the mappings
from each half-edge to its opposite half-edge, its previous and next half-edge within
its face, its vertices, its incident face, as well as the mapping from each vertex and
each face to an incident half-edge. More compact representations, such as [1], can
be obtained by storing only the mapping between opposite half-edge, optionally the
mapping from each vertex to an incident half-edge, along with the element con-
nectivity. The above implementations do not support non-manifold or non-oriented
meshes, which we overcome in the proposed data structure.

2.3 Half-Face Data Structure

A generalization of the concept of DCEL to volume meshes is the so-called the
half-face data structure [1, 13]. Within each cell, suppose the edges of each face
are oriented in counter-clockwise order with respect to the outward normal of the
cell. We refer to the oriented faces as half-faces. For typical meshes in engineering

1 These meshes are sometimes referred to as mixed or hybrid meshes, which we avoid here
since they may also refer to meshes with mixed-types of elements of the same dimension.

AHF: Array-Based Half-Facet Data Structure 449

applications, each face in the interior of a volume mesh has two corresponding half-
faces with opposite orientations, which are said to be opposite or twin of each other.

The data structure in [1] was designed for 3-manifold with boundary composed
of the standard elements. Although this is the typical case in applications, a vol-
ume mesh may also be non-manifold. For example, this can happen if the domain
contains two objects that intersect at a single vertex or along an edge. For gener-
ality, we consider volume meshes that may be manifold or non-manifold, and al-
low them to be oriented or non-oriented. OpenVolumeMesh [13] was developed for
general polytopal meshes, which may be non-manifold. However, the data model
in OpenVolumeMesh is quite complicated, because unlike the edges in a cell, the
faces within a cell do not have a natural topological order. A mesh data structure
for non-manifold meshes in arbitrary dimensions was proposed in [4]. This data
structure stores not only the adjacency information of the highest dimensional ele-
ments but also some adjacency information of intermediate elements, which incur
extra storage overhead. In addition, in its proposed form, it could not handle mixed-
dimensional meshes that contain submeshes of different dimensions. We seek a sim-
pler and a more unified data model.

2.4 Pointer-Based Versus Array-Based Implementations

A mesh data structure may be implemented using either pointers or arrays . The
pointer-based implementations are more common, since they are relatively easy to
manipulate. For example, the DCEL implementation in CGAL is pointer-based.
Other examples, which are not based on half-edges or half-faces, include FMDB
[16], MSTK [8], libMesh [11], etc. In such an implementation, the entities are rep-
resented as “objects” explicitly, and pointers (or handles) are used to refer to these
explicit objects.

In contrast, in an array-based implementation, we do not represent the entities
in the mesh as objects. Instead, an attribute of all the entities of the same type are
stored in one or a few arrays, and the attributes for a single entity may be distributed
in different arrays. An entity may be referenced through an ID or “handle”, which
can be mapped easily to array indices. The half-edge and half-face data structures
in [1], MOAB [17], and OpenVolumeMesh [13] are array-based.

In our work, we choose to use array-based, pointer-free implementations for a
number of reasons. First, in an array-based implementation, we can treat interme-
diate dimensional entities (such as half-facets) as implicit entities, and reference
them without forming explicit objects. This can lead to significant savings in stor-
age, especially on computers with 64-bit pointers. Second, using arrays can also
lead to faster memory access and hence better efficiency. In addition, array-based
implementations also offer better interoperability across application codes, different
programming languages, and different hardware platforms (such as between GPUs
and CPUs).

450 V. Dyedov et al.

3 Data Model for Non-manifold and Mixed-Dimensional
Meshes

The basic half-edge and half-face data structures are simple, but they were restricted
to oriented, manifold meshes (with or without boundary) in 2-D and 3-D, respec-
tively. In this section, we present a simple and unified generalization to mixed-
dimensional meshes, which may be non-manifold and/or non-oriented.

3.1 Unification of Half-Edges and Half-Faces

We unify the data models of half-edge and half-face data structures. In this unified
data model, the key abstractions for a d-dimensional mesh are:

vertices: 0-dimensional entities (a.k.a. nodes);
elements: d-dimensional entities (faces and cells in 2-D and 3-D, respectively);
half-facets: (d−1)-dimensional sub-entities of a d-dimensional entity (half-edges

and half-faces of a 2-D and 3-D element).

In this data model, we assume that the element has a standard numbering convention
for its vertices and its facets. For standard elements, we follow the convention of the
CGNS (CFD General Notation System) [12, 18], as illustrated in Fig. 1. We do not

1 2

3

1

2

3

4

1

3

2

4

1

2

3

3

1

2

3

4

1

2 4

1

2
3

4

1 2

4

5

3

5

1 2

3

4

5

1 2

3

4 5

6

1

2

3

4

6

1

23

4

5

67

8

5

Fig. 1 CGNS numbering conventions for 2-D and 3-D elements. Underscored numbers cor-
respond to local edge IDs, and circled ones correspond to local face IDs.

require explicit representation of intermediate dimensional entities between 1 and
d − 1. Instead, we treat the half-facet as an implicit entity, and refer to a half-facet
using the element ID and its local ID within the element. We refer to this data model
as the half-facet data structure.

The above unified model is not limited to d = 2 and 3. In fact, it can be applied
to any d, as long as the numbering convention is predefined for the vertices and
its facets. In particular, for d = 1, we refer to this representation for curves as the
half-vertex data structure, which is a specialization of the half-facet data structure
to curves. For d ≥ 2, it provides a compact representation, since the intermediate
dimensional entities are not stored but referenced implicitly instead. In addition, this
data model can also be used for meshes with high-order elements (such as six-node
triangles or 10-node tetrahedra), where the mid-edge, mid-face or mid-cell nodes do
not affect the definition and identification of the half-facets.

AHF: Array-Based Half-Facet Data Structure 451

We store the data structure similar to that in [1]. The element connectivity is
stored in arrays in a manner similar to a typical finite element code. The mappings
between sibling half-facets are stored in a 2-D array or in separate arrays, one per
unique element type. Let |E| and f denote the number of elements and the maxi-
mum number of facets in an element, respectively. We denote each half-facet by a
two tuple 〈eid, lfid〉, where eid denotes the element ID, which starts from 1, and
lf id denotes the local facet ID, which starts from 0. For typical meshes, the two
tuple can be encoded into a single 32-bit unsigned integer, by using first d bits to
storing the local facet ID of a d-dimensional element, and using the remaining bits
to storing the element ID. This allows up to about 500 million elements for volume
meshes. For very large meshes, we assign a 32-bit unsigned integer to the element
ID and an unsigned 8-bit integer to the local ID, and store them in separate arrays.
This allows up to 4 billion elements with minimal extra storage overhead. Depend-
ing on whether the half-facet IDs are encoded in a single integer or in two integers,
we can store the mappings in either a single array or two arrays, respectively, where
each array is of size |E|×f . In addition, the vertex to half-facet mapping is stored in
a single 1-D array. For most meshes, we need to store only one incident half-facet.
Some complications may arise for non-manifold vertices, which we address next.

3.2 Generalization to Non-manifold Meshes

In a non-manifold mesh, there can be more than two elements abutting the same
facet, unlike a manifold mesh where there can be only up to two. We still refer to
an oriented facet within an element as a half-facet, but it no longer has a “twin”
or “opposite” half-facet in general. We refer to the half-facets corresponding to the
same facet as sibling half-facets. The orientations of two sibling half-facets are not
required to be opposite to each other, and therefore this generalization also allows
representing non-oriented meshes, such as the Möbius strip.

An important issue is the storage for mapping between the sibling half-facets.
Instead of doubly-connected linked list for twin half-facets, we use a cyclic linked
list, which allows us to preserve the storage structure and also to traverse all the
elements incident on a half-facet. Figure 2 shows an example of a non-manifold
edge (edge joining vertex 2 and 3) present in the given triangulated mesh, as well as
the the element connectivity, sibling half-edge map and vertex to half-edge maps.
Note that we do not necessarily need to sort the half-facets in any particular order. In
fact, an ordering may not be well-defined in some cases. However, the data structure
does not exclude the user from ordering the half-facets.

In a d-dimensional non-manifold mesh, when d > 1, there may exist a vertex
whose neighborhood is not a d-dimensional ball or half-ball, but instead the union
of two or more d-dimensional ball or half-balls that intersect at an entity of lower
than (d−1) dimension (such as at the vertex in a surface mesh, or at a vertex or edge
in a volume mesh). We refer to such a vertex as a non-manifold vertex. Some minor
modification to the data structure is necessary in this setting. In particular, at a non-
manifold vertex, we need to store a 1-to-n mapping instead of a 1-to-1 mapping to

452 V. Dyedov et al.

�
�

�

�

�

�

�

�

�

�
element connectivity
element vertices

1 1 2 3
2 2 4 3
3 2 5 3
4 2 3 6

sibling half-edges
element sibhes

1 nil 〈2, 2〉 nil
2 nil nil 〈3, 2〉
3 nil nil 〈4, 0〉
4 〈1, 1〉 nil nil

vertex to half-edges
vertices v2he

1 〈1, 0〉
2 〈3, 0〉
3 〈4, 1〉
4 〈2, 1〉
5 〈3, 1〉
6 〈4, 2〉

Fig. 2 Example of a non-manifold mesh, along with its element connectivity, sibling half-
edges, and mapping from each vertex to an incident half-edge

its incident half-facets. Note that this also covers the case where there exist an edge
in a volume mesh whose neighborhood is the union of two or more d-dimensional
ball or half-balls that intersect only at the vertex.

3.3 Generalization to Mixed-Dimensional Meshes

The concept of sibling half-facets unifies the half-vertex, half-edge, and half-face
data structures for 1-D, 2-D, and 3-D meshes, which may be manifold or non-
manifold with boundary. In a mixed-dimensional mesh, the sub-meshes of different
dimensions can share entities. In particular, it is most common for the meshes to
share vertices. However, these entities may have different representations.

This unification allows an easy extension to support mixed-dimensional meshes,
which may be composed of sub-meshes of 1-D, 2-D, and 3-D. Figure 3 shows a
diagram of a typical half-facet data structure, where the half-vertices and half-edges
are only required for explicit edges and faces in the mesh, respectively. We refer to
this data structure for mixed-dimensional meshes as Array-based Half-Facet data
structure, or AHF. This data structure is very simple and modular, as the individual
sub-meshes of different dimensions are self-contained, and they can be maintained
separately. They also allow us to traverse between multiple dimensions efficiently.
The interactions of the different dimensions are all performed through the shared
vertices.

AHF: Array-Based Half-Facet Data Structure 453

Cells Exp-Faces

Exp-Edges Vertices

faces

v2hf

edges

cells

v2hv

v2he

sibhf sibhe

sibhv

Fig. 3 Typical AHF for mixed-dimensional meshes is composed half-vertex (black, for ex-
plicit edges only), half-edge (blue, for explicit faces only), and half-face (red) data structures.

4 Construction, Query, and Modification of AHF

In this section, we describe some detailed algorithms for the construction of AHF, as
well as some query and modification operations. Since AHF is array-based, these al-
gorithms can be implemented in any programming languages, including MATLAB,
C/C++, FORTRAN, etc. We will also describe our implementation in MATLAB.

4.1 Construction of AHF

In the half-facet data structure, there are two components: sibhfs (sibling half-facets
) and v2hf (vertex to half-facet). The former is central to AHF, as nearly all adja-
cency queries require it. These sibling half-facets should map to each other and form
a cycle. The latter array, v2hf, is optional for many operations, it can be created only
when needed.

In general, we construct the AHF in two steps, which construct these two map-
pings, respectively. In a mixed-dimensional mesh, the AHF for the submesh of each
each is constructed independently of each other. In the following, we describe the
two steps in a manner independently of the dimension of the mesh.

Identification of Sibling Half-Facets

During the first step, we determine the sibling half-facets and construct a cyclic
mapping between them. The key components of this step are two intermediate
mappings:

v2hfs: a mapping from each vertex to its incident half-facets in which the vertex
has largest ID;

v2adj: a mapping from each vertex to its adjacent vertices in each of the above
incident half-facets.

Algorithm 1 outlines the procedure for the first stage, which is applicable to half-
facets in arbitrary dimensions, and it is particularly efficient in 1 to 3 dimensions.

454 V. Dyedov et al.

Algorithm 1. Determination of sibling half-facets.

Input: elems: element connectivity
Output: sibhfs: cyclic mappings of sibling half-facets
1: for each elements e in elems do
2: for each facet f in e do
3: v ← vertex with largest ID within f ;
4: us← set of adjacent vertices of v in f ;
5: Append f into v2hfs(v), and append us into v2adj(v,f);
6: end for
7: end for
8: for each elements e in elems do
9: for each facet f in e do

10: if sibhfs(f) is not set then
11: v ← vertex with largest ID within f , and us = v2adj(v,f);
12: Find half-facets in v2hfs(v) s.t. v2adj(v,·)=us;
13: Form a cyclic mapping for these half-facets in sibhfs;
14: end if
15: end for
16: end for

The computational cost of Algorithm 1 is linear, assuming that the number of
facets incident on a vertex is bounded by a small constant, say c. To analyze the
storage requirement, let |H | denote the number of half-facets in the mesh. The out-
put requires approximately |H | integers. The algorithm requires two intermediate
maps v2hf and v2adj, which require c|H | integers total. This intermediate storage
requirement can be further reduced by equally distributing the vertices into b buck-
ets and process each bucket in a separate pass, which then would require only |H |/b
integers.

Construction of Incident Half-Facet of Vertex

During the second step, we construct a mapping from each vertex to an incident
half-facet. This is done by utilizing the sibling half-facets obtained from the first
step, as outlined in Algorithm 2.

When determining the incident half-facets, we give higher-priorities to border
half-facets, so that from its output v2hf, we can determine whether a vertex v is a
border vertex by simply checking whether v2hf(v) is a border half-facet. In addition,
a minor variant of Algorithm 2 can be used to construct a bitmap of vertices to
determine whether all the vertices are border vertices without forming v2hf. These
functions can be useful, for example when extracting the boundary of a mesh or
when imposing boundary conditions in numerical computations. The computational
cost of Algorithm 2 is also linear in the number of vertices plus the number of half-
facets. It does not require any intermediate storage. In addition, the AHF can be
used to extract the internal boundaries between different materials in a mesh.

AHF: Array-Based Half-Facet Data Structure 455

Algorithm 2. Construction of mapping from vertex to an incident half-facet.

Input: elems: element connectivity
sibhfs: cyclic mappings of sibling half-facets

Output: v2hf: vertex to an incident half-facet
1: for each elements e in elems do
2: for each vertex v of e do
3: if v2hf(v)==0 then
4: v2hf(v)← a facet incident on v in e
5: end if
6: end for

{Give border facets higher priorities}
7: for each facet f in e do
8: if sibhfs(e,f)==0 then
9: for each vertex of f do

10: Set v2hf(v) to 〈e, f〉;
11: end for
12: end if
13: end for
14: end for

4.2 Algorithms of Adjacency Queries

We consider two classes of queries, which are representative:

1. Given an explicit d-dimensional entity, obtain neighbor d-dimensional entities
that share a (d− 1)-dimensional sub-entity with it.

2. Given an explicit d-dimensional entity, obtain the (d+1)-dimensional entities in-
cident on it.

We consider these operations for mixed-dimensional meshes with 1-D, 2-D, and
3-D explicit entities, and resulting in six operations total:

1a. for each edge, obtain vertex-connected neighbor edges;
1b. for each face, obtain edge-connected neighbor faces;
1c. for each cell, obtain face-connected neighbor cells;
2a. for each vertex, obtain incident edges;
2b. for each edge, obtain incident faces;
2c. for each face, obtain incident cells;

Figure 4 shows two examples of these operations, where the left figure panel shows
the set of neighbor edges (in red) of a given (blue) edge, and the right panel shows
the neighborhood faces (in red) of a given (blue) triangle.

We describe the procedures in a dimension-independent fashion. In the first class
of operations, given a d-dimensional entity, we simply need to loop through its (d-
1)-dimensional facets, for each of its facets obtain the sibling half-facets. Then by
decoding the ID of the sibling half-facets, we obtain the neighbor d-dimensional en-
tities. The algorithm takes time proportional to the output size, which is a constant.

456 V. Dyedov et al.

Fig. 4 Example adjacency queries for non-manifold meshes. Left panel shows neighbor edges
(red) of a given blue edge. Right panel shows the neighbor faces of a given blue triangle.

The second class of operations are across the sub-meshes of different dimensions.
The algorithm proceeds in two steps: 1) given an explicit d-dimensional entity, find
a corresponding half-facet h in the (d+1)-dimensional sub-mesh through the shared
vertices; 2) find the sibling half-facets of this half-facet h, and decode the half-facet
IDs to obtain all the adjacent (d+1)-dimensional entities. In terms of computational
cost, the first step takes time proportional to the number of incident entities of a
vertex, and the second step takes time proportional to the size of the output. Both
steps in general require constant time.

4.3 Mesh Modification Operations

Mesh-modification can be implemented relatively easily in AHF. For mixed dimen-
sional meshes, the AHF is particularly attractive, because the adaptivity for different
dimensions can be done nearly independently, and they only need to be synchro-
nized at the shared vertices. This leads to very modular adaptivity strategies.

Within each dimension, the AHF can be modified either locally or globally. The
local modification is performed through the mesh-modification primitives, such as
edge flipping, edge splitting, and edge collapse, especially for triangular and tetra-
hedral meshes. As an example, Figure 5 illustrates the standard flipping operations
for tetrahedra between a current n-complex of elements and a resulting m-complex,
where the complex is the neighborhood of elements considered. We consider the
standard operations, where the n-m combinations are 3-2, 2-3, 4-4 and 2-2. For the
4-4 and 2-2 flipping operations, both the numbers of vertices and of elements remain
the same, and therefore the operation involves only updating the elems (element
connectivity), sibhfs (sibling half-faces), and v2hf (vertex-to-half-face) mappings
locally within the complex. For 3-2 flipping, and similarly for edge collapse, the
number of elements decreases. This may result in a hole in the arrays elems and
sibhfs. We fill the hole by swapping the element with the highest ID into the hole
and updating the half-facets in sibhfs and v2hf, so that the element IDs remain con-
secutive. For 2-3 flipping, and similarly for edge splitting, the number of elements
increases. This may require reallocating and copying the arrays. To avoid exces-
sive memory copying, we expand the array by a small percentage (e.g. by 20%)
each reallocation, so that the amortized cost for the local modifications is constant,

AHF: Array-Based Half-Facet Data Structure 457

2-3 flip

3-2 flip

4-4 flip

4-4 flip

2-2 flip

A B

C

Fig. 5 Standard edge-flipping operations on a tetrahedral mesh. The 2-3 and 3-2 flips (A)
increase or decrease the number of tetrahedra, respectively. In a manifold mesh, the 4-4 flip
(B) can be applied in the interior. The 2-2 flip (C) is defined only on the boundary surface, or
a tetrahedral mesh with prismatic boundary layers [6].

assuming the number of flipping and splitting operations are proportional to the size
of the mesh. As an example, Figure 6 shows a tetrahedral mesh for a heart model,
which was first generated by using TetGen [14], followed by applying flipping and
smoothing implemented using AHF. The figure also shows the quality measures in
terms of the orthogonality, skewness and uniformity [9], which are important mea-
sures for finite volume methods.

4.4 Implementations in MATLAB

Since our data structure is array-based and pointer-free, we can implement it conve-
niently in MATLAB. The MATLAB provides a user-friendly programming environ-
ment, so that our MATLAB implementation allows rapid prototyping and testing of
sophisticated meshing algorithms and mesh-based numerical methods. In our MAT-
LAB implementation, we support two ways to store the half-facet. The first way is to
encode the two-tuple ID in a single integer, where d bits are reserved the local facet
ID for a d-dimensional mesh. In the second way, we store the element ID and local
facet ID into a 32-bit integer array and an 8-bit integer array, respectively, and they
pack these two arrays into a single MATLAB struct. For a mixed dimensional mesh,
the complete mesh is packed into a single struct composed of the arrays of differ-
ent dimensions. Both of our implementations are compatible with MATLAB Coder,
which allows generation of efficient and portable ANSI C code from our MATLAB
implementation. The generated C code can be used as stand-alone libraries, or be
compiled into MEX functions and be called in MATLAB or GNU Octave.

458 V. Dyedov et al.

0

50000

100000

150000

200000

250000

300000

350000

0_10

10_20

20_30

30_40

40_50

50_60

60_70

70_80

80_90

N
u

m
b

e
r

o
f

fa
ce

s

0

50000

100000

150000

200000

250000

300000

350000

0.0
_0.1

0.1
_0.2

0.2
_0.3

0.3
_0.4

0.4
_0.5

0.5
_0.6

0.6
_0.7

0.7
_0.8

0.8
_0.9

0.9
_1.0

1.0
_1.5

0

50000

100000

150000

200000

250000

300000

350000

400000

0.4
5_0.5

0.4
0_0.4

0.3
5_0.4

0.3
0_0.3

0.2
5_0.3

0.2
0_0.2

0.1
5_0.2

0.1
0_0.1

0.0
5_0.1

0.0
_0.0

5

Orthogonality

Skewness

Uniformity

Before mesh modification

After mesh modification

Fig. 6 An example tetrahedral mesh of a heart model optimized using mesh flipping and
smoothing implemented using AHF. The histograms show the quality measures in terms of
orthogonality, skewness and uniformity of the mesh before (gray) and after (black) optimiza-
tion, where smaller values correspond to better qualities.

5 Integration of AHF into MOAB

The Mesh Oriented datABase (MOAB [17]) is a mesh data representation designed
to support a range of mesh related operations, such as memory efficient mesh repre-
sentation, mesh querying and representation of application specific data. The inter-
nal storage of MOAB is array-based and supports querying of adjacent entities by
target dimension.

The non-vertex entity-to-entity adjacencies are created and stored only upon ap-
plication request. Since most of the applications do require some kind of auxiliary
entity adjacency information, MOAB may require significant storage in such situa-
tions . This imposes extra storage requirements on the application. The AHF comes
handy precisely in such situations. It adds the flexibility of intermediate entity ad-
jacency querying without explicitly storing them. In addition, MOAB does not sup-
port implicit entities, and does not store the neighboring information of entities of
the same dimension. Therefore, it is desirable to incorporate AHF into MOAB. We
refer to this implementation as MOAB_AHF, which can be created dynamically for
some queries and be deallocated afterwards.

There are some important differences between a standalone AHF implementa-
tion and MOAB_AHF. In terms of storage, MOAB uses “tags” to store application
specific data defined on mesh entities or entity sets. In MOAB_AHF, we store sibhfs
and v2hf as tags, instead of standalone arrays. In addition, since MOAB references
elements and other entities through handles, we store the sibhfs as two tags: one for
the handles to the elements, and the other for local facet IDs. Another difference is
that MOAB uses a different numbering convention of the local facet IDs than that

AHF: Array-Based Half-Facet Data Structure 459

of CGNS. To be self-consistent, we use the MOAB’s own numbering convention
in MOAB_AHF. Finally, in MOAB_AHF, we construct the sibhfs without forming
the v2hfs and v2adj in Algorithm 1, and instead using MOAB’s built-in function
“get_adjacency” to identify the elements adjacent to an entity.

6 Experimental Comparisons

In this section, we present some experimental studies of AHF, MOAB and
MOAB_AHF in terms of storage requirements and computational cost.

6.1 Cost in Construction of Data Structure

We first compare the computational times in constructing the data structures. For
AHF, we used the C code generated from our MATLAB implementation with MAT-
LAB Coder 2.4 released with MATLAB R2013a. We compiled AHF, MOAB, and
MOAB_AHF using gcc 4.4.3 with optimization enabled. All the tests were per-
formed on a Linux computer with a 3.16GHz Intel Core 2 Duo processor and 4GB
of RAM.

We use a set of six meshes, which are all mixed-dimensional tetrahedral meshes,
containing explicit triangles and edges, courtesy of CST Computer Simulation Tech-
nology AG. Table 1 shows the sizes of these meshes as well as the run times taken
by the standalone AHF and MOAB_AHF for constructing the mesh data structure.
The overall cost is approximately linear in the number of vertices for both AHF
and MOAB_AHF. However, our current implementation of MOAB_AHF takes
about 6–7 times longer than AHF, because Algorithm 1 builds the intermediate ar-
rays for v2hes and v2adjs, which are more efficient than using MOAB’s built-in
function “get_adjacency” to identify sibling half-facets. The cost of constructing
MOAB_AHF can be optimized by using Algorithm 1.

Table 1 Times taken to construct data structures by standalone AHF and MOAB_AHF

mesh #verts #edges #tris #tets AHF MOAB_AHF

1 345 121 378 1357 0.002231 0.00969
2 447 137 678 1503 0.002376 0.01433
3 1443 225 1824 6794 0.008991 0.04659
4 1724 2081 3688 8177 0.01218 0.05989
5 2151 282 2556 9746 0.0126219 0.06112
6 119960 27215 42476 711014 0.935569 4.31953

6.2 Storage Costs

We compare the storage requirements of AHF and MOAB. Let C, Fexp, Eexp and
V represent the set of cells, explicit faces, explicit edges and vertices of the given

460 V. Dyedov et al.

mesh, and let | · | denote the number of items in a set. AHF stores three maps, which
require the following number of entities:

element connectivity: nc = 2 |Eexp|+ vf |Fexp|+ vc |C|
sibling half-facet map: ns = 2 |Eexp|+ sf |Fexp|+ fc |C|
vertex to half-facet map: nv = 3 |V |
where vf , vc , sf and fc are the numbers of vertices per face, vertices per cell, edges
(sides) per face, and faces per cell, respectively.

Note that for the half-facet ID 〈eid, lfid〉, we can encode it in a 32-bit integer or
store eid and lfid in a 32-bit and a 8-bit integer, respectively. The storage required
by the former in bytes is

SAHF1 = 4(nc+ns+nv) = 16 |Eexp|+4(vf+sf) |Fexp|+4(vc+fc)|C|+12|V |,

whereas the latter requires

SAHF2 = 4nc + 5ns + 5nv,

which is about 12% larger than SAHF1. If the element connectivity is required, the
extra storage required by AHF is only about 60% of these.

The storage requirement of MOAB is higher than AHF, as it stores both the con-
nectivity and upward adjacencies. The upward adjacencies are created and stored the
first time a query requiring the adjacency is performed. MOAB_AHF may reduce
the storage requirement.

To put this into perspective, we also compare its storage against OpenVol-
umeMesh [13]. In OpenVolumeMesh, all the top-down and bottom-up incidence
relations are stored explicitly using integer handles. Let E and F denote the set of
all edges and faces (including the implicit edges and faces) of the given mesh. The
number of required handles to encode top-down and bottom-up incidences are

nOVM = fc |C|+ (vf + 2) |F |+ (sf + 2) |E|+ se |V | ,

where vf , vc , sc and fc are the average numbers of vertices per face, vertices per
cell, edges (sides) per cells, and faces per cell, respectively. Assuming each integer
handle is 32-bit, then the storage will be about SOVM = 4nOVM. Table 2 shows the
storage requirements for the last three meshes in Table 1. As it can be seen from the
table, AHF requires about half the amount storage required by OpenVolumeMesh

Table 2 Storage requirements in kilobytes of AHF, MOAB, and OpenVolumeMesh for three
largest meshes in Table 1

mesh
AHF

MOAB MOAB_AHF OpenVolumeMesh
integer struct

4 435.094 486.955 1039.31 897.78 897.176
5 444.496 496.907 1041.69 904.60 1055.26
6 27857.3 31163.7 64514.35 56889.90 71074.8

AHF: Array-Based Half-Facet Data Structure 461

and MOAB. MOAB_AHF has reduced the storage of MOAB slightly, but further
reduction is still possible.

6.3 Computational Costs of Adjacency Queries

In this subsection, we report the times for the six queries described in Section 4.2.
We report the performance results of AHF, MOAB, and MOAB_AHF. We omit
OpenVolumeMesh, as it could not load the mixed-dimensional meshes. These

1 2 3 4 5 6
10

−8

10
−7

10
−6

10
−5

Meshes

A
ve

ra
ge

 q
ue

ry
 ti

m
es

MOAB
MOAB_AHF
AHF

(a) Vertex to incident edges

1 2 3 4 5 6
10

−8

10
−7

10
−6

10
−5

Meshes

A
ve

ra
ge

 q
ue

ry
 ti

m
es

(b) Edge to neighbor edges

1 2 3 4 5 6
10

−7

10
−6

10
−5

Meshes

A
ve

ra
ge

 q
ue

ry
 ti

m
es

MOAB
MOAB_AHF
AHF

(c) Edge to incident faces

1 2 3 4 5 6
10

−8

10
−7

10
−6

10
−5

Meshes

A
ve

ra
ge

 q
ue

ry
 ti

m
es

(d) Face to neighbor faces

1 2 3 4 5 6
10

−7

10
−6

10
−5

Meshes

A
ve

ra
ge

 q
ue

ry
 ti

m
es

MOAB
MOAB_AHF
AHF

(e) Face to incident cells

1 2 3 4 5 6
10

−8

10
−7

10
−6

10
−5

Meshes

A
ve

ra
ge

 q
ue

ry
 ti

m
es

(f) Cell to neighbor cells

Fig. 7 Average times (in seconds and logarithmic scale) to perform queries in 1-D (a, b), 2-D
(c, d) and 3-D (e, f)

462 V. Dyedov et al.

queries are performed over explicit entities, and they return explicit entities only.
Figure 7 shows the average time taken to perform the incident and neighborhood
queries for 1-D, 2-D, and 3-D entities, respectively. The average time is measured
by the total elapsed time of the algorithm for all the entities divided by the num-
ber of the entities. The results confirm that all the mesh query operations take
approximately constant time, regardless of mesh sizes. We observe that AHF and
MOAB_AHF have comparable performance, whereas MOAB_AHF significantly
outperformed MOAB in nearly all cases (except for the case of Figure 7(c)). This
result indicates that the AHF data model can significantly improve the MOAB data
model for adjacency queries. Further code optimization of MOAB_AHF can lead to
even better performance.

7 Conclusion and Discussions

In this paper, we presented a simple but general array-based half-facet mesh data
structure, called AHF, for efficient queries and modification of mixed-dimensional
and potentially non-manifold meshes. AHF unifies and extends the compact array-
based half-edge and half-face data structures [1]. We described our implementation
in MATLAB, which allows rapid prototyping, testing, and deployment of meshing
algorithms and mesh-based numerical methods, as well as an implementation in
C++, called MOAB_AHF, built on top of MOAB. We demonstrated that AHF is
efficient in terms of both storage and computational cost. Our preliminary results
show that the MOAB_AHF can significantly improve the efficiency of adjacency
queries in MOAB while reducing its storage requirements. We plan to release
MOAB_AHF as an open-source add-on to MOAB after further improvements and
optimization.

Besides its generality and efficiency, AHF has a number of other advantages. In
particular, due to its array-based nature, AHF is well suited for parallel computations
and is easier to port onto GPUs. In addition, it facilitates easier interoperability with
application codes. We plan to explore these issues in our future research.

In its current form, AHF also has some limitations. First, we did not consider
polyhedral meshes. However, AHF can be easily extended to support polyhedral
meshes by treating them as face-based non-manifold meshes. This is because the
faces are composed of polygons, which have a natural numbering convention of
their edges. This approach is consistent with the applications of polyhedral meshes,
which are typically finite volume methods that require computing the fluxes on the
faces. Secondly, we considered only conformal meshes. We plan to explore the ex-
tension of AHF to non-conformal meshes in our future work.

Acknowledgements. This work was funded in part under the auspices of the Nuclear En-
ergy Advanced Modeling and Simulation (NEAMS) program of the Office of Nuclear En-
ergy, and the Scientific Discovery through Advanced Computing (SciDAC) program funded
by the Office of Science, Advanced Scientific Computing Research, both for the U.S. De-
partment of Energy, under Contract DE-AC02-06CH11357, through a subcontract to Stony

AHF: Array-Based Half-Facet Data Structure 463

Brook University from Argonne National Laboratory. We acknowledge CST Computer
Simulation Technology AG for their generous gift to Stony Brook University and thank Drs.
Oleg Skipa and Manuel Baptista of CST AG for providing the meshes used in our experi-
mental tests. Daniel Einstein’s contribution was supported by Award Number R01HL073598
from the National Heart, Lung, and Blood Institute

References

1. Alumbaugh, T., Jiao, X.: Compact array-based mesh data structures. In: Proceedings of
14th International Meshing Roundtable, pp. 485–504 (2005)

2. Beall, M.W., Shephard, M.S.: A general topology-based mesh data structure. Int. J. Nu-
mer. Meth. Engrg. 40, 1573–1596 (1997)

3. Bischoff, B.S., Botsch, M., Steinberg, S., Bischoff, S., Kobbelt, L., Aachen, R.: Open-
Mesh – a generic and efficient polygon mesh data structure. In: OpenSG Symposium
(2002)

4. Canino, D., Floriani, L.D., Weiss, K.: An adjacency-based representation for non-
manifold simplicial shapes in arbitrary dimensions. In: Computer & Graphics Proc. of
SMI Conf., vol. 35, pp. 747–753 (2011)

5. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry:
Algorithms and Applications, 3rd edn. Springer (2008)

6. Dyedov, V., Einstein, D.R., Jiao, X., Kuprat, A.P., Carson, J.P., del Pin, F.: Variational
generation of prismatic boundary-layer meshes for biomedical computing. International
Journal for Numerical Methods in Engineering 79, 907–945 (2009)

7. Fabri, A., Giezeman, G.-J., Kettner, L., Schirra, S., Schönherr, S.: On the design of
CGAL, a computational geometry algorithms library. Softw. – Pract. Exp. 30, 1167–
1202 (2000); Special Issue on Discrete Algorithm Engineering

8. Garimella, R.V.: MSTK – a flexible infrastructure library for developing mesh based
applications. In: Proceedings of 13th International Meshing Roundtable, pp. 213–220
(2004)

9. Juretic, F., Gossman, A.D.: Error analysis of the finite volume method with respect to
mesh type. Numerical Heat Transfer, Part B 57, 414–439 (2010)

10. Kettner, L.: Using generic programming for designing a data structure for polyhedral
surfaces. Comput. Geom. Theo. Appl. 13, 65–90 (1999)

11. Kirk, B.S., Peterson, J.W., Stogner, R.H., Carey, G.F.: libMesh: A c++ library for parallel
adaptive mesh refinement/coarsening simulations. Engineering with Computers 22, 237–
254 (2006)

12. Kremer, M., Bommes, D., Kobbelt, L.: OpenVolumeMesh – A versatile index-based data
structure for 3D polytopal complexes. In: Jiao, X., Weill, J.-C. (eds.) Proceedings of
the 21st International Meshing Roundtable, vol. 123, pp. 531–548. Springer, Heidelberg
(2013)

13. Poirier, D., Allmaras, S.R., McCarthy, D.R., Smith, M.F., Enomoto, F.Y.: The CGNS
system, AIAA Paper 98-3007 (1998)

14. Seol, E.S.: FMDB: Flexible Distributed Mesh Database for Parallel Automated Adaptive
Analysis. Ph. D. thesis, Rensselaer Polytechnic Institute (2005)

15. Si, H.: TetGen, a quality tetrahedral mesh generator and three-dimensional Delaunay
triangulator v1.4 (2006)

464 V. Dyedov et al.

16. Sieger, D., Botsch, M.: Design, implementation, and evaluation of the surface_mesh
data structure. In: Quadros, W.R. (ed.) Proceedings of the 20th International Meshing
Roundtable, vol. 90, pp. 533–550. Springer, Heidelberg (2011)

17. Tautges, T., Meyers, R., Merkley, K.: MOAB: A mesh-oriented database. Technical re-
port, Sandia National Laboratories (2004)

18. The CGNS Steering Sub-committee. The CFD General Notation System Standard Inter-
face Data Structures. AIAA (2002)

	Introduction
	Background and Related Work
	Terminology
	Half-Edge Data Structure
	Half-Face Data Structure
	Pointer-Based Versus Array-Based Implementations

	Data Model for Non-manifold and Mixed-Dimensional Meshes
	Unification of Half-Edges and Half-Faces
	Generalization to Non-manifold Meshes
	Generalization to Mixed-Dimensional Meshes

	Construction, Query, and Modification of AHF
	Construction of AHF
	Algorithms of Adjacency Queries
	Mesh Modification Operations
	Implementations in MATLAB

	Integration of AHF into MOAB
	Experimental Comparisons
	Cost in Construction of Data Structure
	Storage Costs
	Computational Costs of Adjacency Queries

	Conclusion and Discussions
	References

