
An Adaptive Parametric Surface
Mesh Generation Method Guided
by Curvatures

Daniel M.B. de Siqueira1, Markos O. Freitas1,
Joaquim B. Cavalcante-Neto1, Creto A. Vidal1,
and Romildo J. da Silva2

1 Department of Computing, Federal University of Ceará
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Summary. This work presents an adaptive mesh generation strategy for
parametric surfaces. The proposed strategy is controlled by curvatures and
the error measured between the analytical and discrete curvatures guides the
adaptive process. The analytical curvature is a mathematical representation
that models the domain, whereas the discrete curvature is an approxima-
tion of that curvature and depends directly on the used mesh. The proposed
strategy presents the following aspects: it is able to refine and coarsen re-
gions of the mesh; it considers the local error measures to ensure good global
quality; it ensures good transition of the mesh and it deals with any type of
parametric surfaces since it works in the parametric space.
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1 Introduction

Surface meshing is a subject that has been studied for many years but it is
still a topic of great interest in many areas, such as engineering and computer
graphics. Two very important aspects to take into account for generating
surface meshes are the runtime and quality. The runtime depends on the
desired discretization, which is represented by the number of elements present
in different regions of the model. The quality of the mesh, on the other hand,
takes into account the quantity, distribution and shape of its elements [1, 2].

Adaptive meshing techniques are an interesting option to achieve quality
for a mesh. In surfaces, the adaptive meshes have a higher concentration of
elements in regions of greater curvature and a lower concentration of them
in regions of lower curvature. The mesh adaptation improves the size, orga-
nization and arrangement of elements.
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The techniques for adaptive meshes attempt to generate the mesh accord-
ing to some criterion adopted, modifying the mesh where necessary. Among
the most common changes there are: resizing, insertion and removal of ele-
ments. These changes are applied until a stopping criterion is reached. The
criteria adopted for the modification must not be computationally expensive.
In this work, an approach of low cost and good efficiency is adopted, which
is the use of geometric criteria, as in [3, 4, 5, 6, 7]. Here, the curvature is
considered as an important parameter in determining the density distribu-
tion of elements. The closer the discrete curvature measured in the mesh is
to the analytical curvature, the mesh will be more faithful to the geometric
characteristics of the surface.

Following this concept, this paper presents a strategy for generating adap-
tive meshes of parametric surfaces. It is a posteriori strategy, i.e., it starts
from the initial geometry, and from this geometry, the strategy constructs
a first approximation with a very coarse mesh. In each interaction, a new
mesh, closer to the mathematical definition of the surface, is generated. The
strategy presented seeks to ensure the following aspects: i) to be able to refine
and coarsen regions of the mesh, ii) to ensure a smooth transition between
regions of the mesh with higher and lower refinement, iii) to ensure compat-
ibility between different regions, iv) to consider the contribution of the local
error to measure the overall error in order to ensure a good quality for the
final mesh.

This paper is organized into 5 sections. Section 2 presents some related
work, and Section 3 presents an overview of the strategy. Section 4 shows some
results achieved by generating meshes using the strategy. The results show
its effectiveness and robustness in dealing with various levels of curvature.
Finally, in Sect. 5, the conclusions about the strategy are presented.

2 Related Work

Curvatures in mesh generation have been extensively used in many areas,
such as computer graphics and computer aided design. From a purely theo-
retical point of view, triangular meshes have no curvature, since all faces are
flat and the curvature is not properly defined. But, by taking into account
that a triangular mesh is an approximation of the solid surface, it is pos-
sible to estimate the curvatures by the geometric information in the mesh.
The Gaussian curvature is one of the most known methods to estimate the
curvature of a surface. Reference [7] presents some of the most widely used
algorithms for calculating the Gaussian and mean curvatures. In that work,
such algorithms are presented, analyzed and tested to determine what is the
best alternative for the calculation of curvatures. Through comparative tests,
the authors conclude that the best algorithms to calculate the Gaussian cur-
vature are those that employ the Gauss-Bonnet scheme. Reference [6] analyses
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the convergence of the scheme of Gauss-Bonnet, which was presented in [7].
The convergence of discretization scheme was considered in [4].

In [3] it is presented an error metric in order to generate several different
mesh refinements to use in applications that involve levels of detail. This
metric uses the method of discrete curvature as a criterion for simplification.
The operators used follow the scheme of Gauss-Bonnet and can be used to
calculate the curvatures for both the vertices located within the mesh and
for those located on a border. Because of this feature, and for following the
scheme of Gauss-Bonnet, such operators have been chosen for the calculation
of discrete curvatures in the present work.

References [8, 9] present a technique for generating finite element meshes
using the curvature as a measure to determine the size of the elements and
guide the discretization. In [8] it is proposed a scheme for automatic gener-
ation of triangular meshes with arbitrary distribution of elements on curved
surfaces and without the use of a parametric space. The second work [9]
brings a similar approach, but proposes more control over the curvature.

Reference [10] presents a method for generating surface meshes using the
parametric space and Delaunay triangulation. An initial set of points may be
created in the parametric space, which can be random or entered manually.
While this set of points is not mandatory, the starting point may be the
parametric space square divided into two triangles, creating an initial very
coarse mesh. The mesh error is measured and if this error is less than a
certain precision ε and the number of triangles is less than a maximum, the
triangle of greatest error is split at the point of greatest error according to
the Delaunay criteria. The error of the mesh is the main point discussed
in the article and techniques for measuring error are presented: the angle
between the normal vectors of two adjacent triangles, an analytical error and
a geometric one. None of these measures takes into account the curvature
of the surface and is based on distances between a point on the surface and
its parametric representation. Such approaches may have problems as this
distance may not reflect the real geometry or indicate an error greater than
the actual.

There are other works in the literature that address the generation of
surface meshes, such as the ones presented in References [11] and [12], for ex-
ample. Reference [11] generates parametric surface meshes using a combined
advancing-front generalized Delaunay approach, whereas Reference [12] uses
an advancing-front approach for the generation of the surface meshes using
a Riemannian surface definition.

Reference [13] proposes an algorithm to obtain an optimal triangulated
mesh using edge swapping in a sequential manner in order to reduce a cost
function that measures the quality of the mesh. The cost function used by
the authors is developed to take into account the curvature of the surface.

Reference [14] describes an algorithm to generate triangulated meshes of
finite elements in arbitrary surfaces with high curvature. The mesh is gener-
ated in the parametric space and mapped to the 3D space. In this work, the
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curvature taken into account is not calculated, since its values are given as an
entry to the process. In another work by the same authors [15], an automatic
algorithm for unstructured mesh regeneration on arbitrarily shaped three-
dimensional surfaces is described. The algorithm works directly in Cartesian
coordinates, as opposed to generating the mesh in parametric space.

With the awareness that normal vectors and curvatures are fundamental to
the geometric modeling and computer-aided design, the work in [16] analyzed
the numerical properties of parameterization-based computation of first and
second-order differential quantities for continuous and discrete surfaces, and
also compared a number of different methods for surface meshes in terms of
accuracy, stability and efficiency.

As can be seen in [17], an upper bound of the discrepancy between the
pointwise curvature of a curve and the discrete curvature of its polygonal
approximation can be established. From an theoretical point of view, as the
definition of the discrete Gaussian curvature at a vertex of a mesh is very
analogous to the one for a polygonal line, the authors believe that is possible
to derive an upper bound of the error between the discrete curvature and the
Gaussian curvature of the surface.

The majority of these works and other works presented in the literature are
able to refine regions of the mesh. Regarding the ability to coarsen regions of
the mesh where there are more elements than necessary, which is sometimes
also desired, there are much less works on the literature that are able to
address this important aspect. They also do not ensure mesh compatibility
between regions since they do not refine the curves independently from the
domain. This can be very important in many applications and essential in
applications where compatible meshes are required. Finally, although many
of these works are in the parametric space, some of them do not allow the
mesh to be generated for different mathematical description of the patches
such as Hermite, Bézier and so on.

3 Adaptive Strategy

The adaptive strategy assumes that the surface to be meshed is composed
of parametric patches, each of them bounded by parametric curves. In order
to validate the strategy, in this work, Coons patches are used as the type
of parametric surfaces to be meshed. Although this kind of patch is gener-
ally bounded by four parametric curves, the method can handle any kind of
parametric patch, since what is relevant is the parametric coordinates. The
strategy consists of two phases per iteration: first, given the geometric models
of the patches and curves, as well as the initial mesh for the current iteration,
the mesh quality measure based on error of curvature is computed; second,
the mesh is modified by adding more elements in certain regions, and remov-
ing elements from other ones. The iterative process stops when a predefined
global quality criterion is achieved. In phase 2, the curves are rediscretized
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first and, only then, the patches are rediscretized. The strategy is discussed
in details in the following.

3.1 Initial Model

The mathematical description of the patches together with the description of
their boundary curves define the geometry, which is used in all steps of the
adaptive strategy. The geometry description and an initial mesh compose the
initial model that is used to start the adaptive process.

The geometric description is based on curves and patches: the descriptions
of the curves come first, followed by the patches descriptions. In other words,
two adjacent patches have at least one curve in common. This approach
ensures the compatibility between two adjacent patches. The model depicted
in Fig. 1 (a) describes a patch Pk and its curves Ci. This model is purely
didactic and is used throughout this work to illustrate the adaptive strategy.

�� �� ��

Fig. 1 Patch definition

The initial meshes of all patches compose the initial mesh of the model.
It is a first approximation of the desired mesh and must be conformal. If no
initial mesh is provided, it can be generated by the following way: if Pk is
a patch and Ci represents its boundary curves, the generation of an initial
Pk’s mesh, Mk, starts with the discretization of Ci into segments. Thus,
Mk is generated considering these segments, where the two end vertices of
the segment form an edge, ensuring the compatibility of meshes at common
borders of neighboring patches. The number of elements forming Mk depends
on the discretization of Pk’s boundary curves. In Fig. 1 (b), the discretization
of the boundary curves in three segments each determines the discretization
of the patch into nine regions, each one generating four triangular elements.
The subdivisions of curves and patches are performed in parametric space
and mapped into the three-dimensional space. It is important to mention,
however, that this mesh is generated if no initial mesh is given, which is used
instead. This makes the process completely generic for any given initial mesh.
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3.2 Mesh Quality

The quality of every mesh generated during the adaptive process must be
evaluated, according to an error criterion. Herein, a geometric criterion is
adopted. It computes, at every mesh vertex, the error between the surface’s
curvatures evaluated both analytically and approximately. If the overall er-
ror distribution approaches zero in the average sense, the mesh quality is
considered good, and the adaptation process stops. The local error indicates
whether the mesh should be refined or coarsened at a particular region.

The analytic curvatures adopted to compute the error measures are the
mean curvature H = kmin+kmax

2 and the Gaussian curvature K = kmin ×
kmax, where kmin and kmax are the principal curvatures. The computation
of H and K for a bi-parametric surface Q(u,v) can be found in [18] and
elsewhere.

The discrete curvatures, unlike the computations of the analytical curva-
tures, which use the mathematical formulation of the patch, are evaluated
based on the local information about the mesh. That is, the discrete curva-
tures are computed at a given mesh vertex and are based on the adjacent
triangles’ configurations. The discrete Gaussian and mean curvatures used
in this work are computed with the discrete curvature operators presented
in [3]. The discrete Gaussian curvature K for an inner vertex (Fig. 2a) is

expressed as K = 2π−∑
φi

1
3A

, where A is a sum of each triangles area, and φi

denotes the angle at a vertex, both in three-dimensional space.
For a boundary vertex (Fig. 2b), the Gaussian curvature is defined by

K = π−∑
φi

1
3A

, where A again represents the sum of each triangle’s area and

φi the angle at a vertex, both in three-dimensional space again.

The discrete mean curvature is given by H = Σm(ei)
1
3A

, where ei represents

an edge of a vertex and m(ei) is a function of an edge ei that returns the
angle γ between two adjacent surface normal vectors, if the faces are convex
(Fig. 2c), −γ, if the faces are concave, or 0, if the faces are planar.

Fig. 2 (a) The Gaussian curvature of an inner vertex. (b) The Gaussian curvature
of a boundary vertex. (c) The angle γ for the mean curvature.

3.3 Error Estimation

The adaptive process consists of curves and patches rediscretization. This is
performed based on the error estimation of the discrete curvature relative
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to the analytical curvature evaluated at the vertices. If the computed error
indicates a high discrepancy between these curvatures, it suggests that the
mesh must be locally refined or coarsened, based on a size parameter h.

Table 1 illustrates the possible scenarios and the determination of the new
size parameter. ka and kd represent the analytic and discrete curvatures. The
Gaussian curvature is the measure used to perform the error estimation, but
when the Gaussian curvature is zero, the mean curvature is used instead.

In the first scenario, ka is approximately equal to kd. If these values are
not close to zero (ka � 0), the mesh captures well the local curvature of the
surface and no refinement is necessary (hnew = hold). However, if the mean
curvatures ka is close to zero (ka → 0), the surface is locally planar and a
coarsening of the mesh may be possible (hnew = hold ∗ f, f > 1).

Table 1 Error and estimation of element sizes

ka ≈ kd ka → 0 hnew = hold ∗ f coarsening

( ka
kd
→ 1) ka � 0 hnew = hold stop

ka � kd ka → 0 hnew = hold/f refinement
ka � 0 hnew = hold/f refinement

ka � kd ka → 0 hnew = hold/f refinement
ka � 0 hnew = hold/f refinement

In the other scenarios, the discrepancy between ka and kd is large. Then,
when the mean curvature ka is close to zero (ka → 0), the mesh is too coarse
to capture the local flatness of the surface and should be refined. When ka
is not close to zero (ka � 0), the mesh is again too coarse to capture the
correct curvature and should be refined.

The factor f used for rediscretization is important to the rate of error
decay. Which value of f to use is empirical at the moment and deserves more
study in the future. In this work, a factor of 4 was used in the examples. This
value experimentally showed good results. However, what is more important
is that the error diminishes for many ranges of f.

Although the rediscretization is based on local errors from the curvatures,
it is necessary a global measure to guide the whole iterative process. When
a global quality measure is reached, the process stops. This measure implies
the use of a global error estimate, ηglobal, which, in this work, is evaluated as

ηglobal =

∑Nv

j=1 ηj

Nv
, (1)

where Nv is the number of vertices of the whole mesh and ηj is the abso-
lute value of the relative discrepancy between the analytical and the discrete

curvatures at vertex j, computed as ηj =
|ka−kd|

ka
.

The mesh has good quality when ηglobal < ε. What value of ε is considered
reasonable is a matter of judgment. Therefore, in this work, no suggestion is
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made about what value of ε to use. It is simply shown that the errors decrease
when the mesh is improved, indicating the efficiency of the iterative process.

3.4 Curve Adaptation

The first step of the presented strategy requires that the boundary curves of
every patch be rediscretized prior to, and independent of, the rediscretization
of the domain. It turns out that this is one of the main advantages of the
strategy, since it leads to a more regular discretization of the patches’ bound-
aries, consistent with the geometric characteristics of the surface near these
curves. This is also important to ensure the mesh compatibility between two
adjacent patches. The new discretization of the complete set of boundary
curves defines the basis for the rediscretization of the domain, generating a
new mesh for the model.

The boundary curves’ rediscretization procedure is an one-dimensional ver-
sion of the procedure based on a quaternary tree (quadtree) used to refine the
domain [19]. It employs a recursive spatial enumeration technique, associated
with a binary tree data structure, and adopts a criterion of curvature error
to refine or coarsen a curve discretization, taking into account the curvature
characteristics of its adjacent surfaces. Thus, at a given vertex of a curve’s
approximation polygon, discrete and analytic curvatures are computed. The
discrete curvature considers all the triangles adjacent to the vertex that lie
on the neighboring surfaces. The analytic curvature, on the other hand, con-
siders the maximum of the curvatures computed for the surfaces sharing the
curve. A curvature error measure guides the determination of new size of
mesh triangles adjacent to that vertex.

The rediscretization of each curve is divided into three phases, as described
in the following for a generic curve Ci.

Binary Tree Initialization

The first phase consists of initializing the binary tree that will guide the curve
rediscretization. This tree is initialized with the minimum and maximum
parametric coordinates (0, 1) of the non-discretized curve. This is done to
allow a generic refinement procedure for any type of curve. The depth of the
tree is initialized as zero, since the tree has only one level at this point.

Binary Tree Rediscretization

Each curve keeps the set of old adjacent vertices, which is set up when the
initial mesh is generated and is updated after a new mesh is determined at
each step. A curve also holds the set of new vertices that are generated during
the current phase. Hence, these two sets have to co-exist until a new mesh is
committed. These sets are sorted based on the parameterization of the curve.
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The binary tree rediscretization of a curve (Algorithm 1) starts by travers-
ing its sorted set of vertices from the old discretization. The process begins
from the minimum and maximum parametric coordinates (0, 1). Every two
consecutive vertices represent a segment of the curve. Each leaf of the tree
stores the minimum and maximum parametric coordinates of the segment
represented by that leaf. Both hpar and the vertex on the center of a curve’s
segment have to be considered in the parametric space because the curve is
treated in this space.

Algorithm 1: Construction of the binary tree.

1 Initialize the binary tree with the root node empty ;
2 Assign min, max parametric coordinates (0,1) to the root ;
3 Compute the length of the curve, Lcurve;
4 for each segment defined by the old set of curve’s vertices, Sk, k ← 1 to nseg

do
5 Compute the segment’s length in 3D space, Lsegk ;
6 hold ← Lsegk ;
7 Compute the segment’s center in 3D space, Csegk ;
8 Compute ka at Csegk ;
9 Compute kd as average of the kd’s at the endpoints,

kd = 1
2
.(k−1kd +k1 Kd);

10 Compute hnew according to the Table 1;
// hpar ∈ [0, 1]

11 Compute hpar = hnew
Lcurve

;

12 Determine the parameter uk corresponding to Csegk ;
13 Determine in which cell of the tree uk is located ;
14 while size of the cell > hpar do
15 Subdivide the cell in two children;
16 Increment the depth of the tree;
17 Determine in which cell of the tree uk is located ;

After the curve segments’ traversal, the resulting binary tree reflects the
refinement according to the error in the curvatures computed at the vertices
of the polygon approximation of curve Ci. Each leaf of the tree will generate
a new segment of the curve’s approximation polygonal line. These segments
will be the sides of elements adjacent to the curve when the domain is redis-
cretized. Figure 3 illustrates an example of refinement of a curve Ci and its
corresponding binary tree.

Update of the Discretization of the Curve Based
on the Binary Tree

When the binary tree of curve Ci is finally redefined, the new discretization
is included in the curve (Algorithm 2) and at the end of this process, the new
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Fig. 3 (a) Refinement of a curve Ci and (b) its corresponding tree

Algorithm 2: Curve discretization.

1 Compute the 3D coordinates associated with u = 0 ;
2 Include these coordinates in the curve’s structure;
3 for each leaf of the binary tree do
4 Obtain the max parametric coordinate;
5 Compute the corresponding 3D coordinates;
6 Include these coordinates in the curve’s structure;

curve discretization is obtained, in a sorted way. The new set of vertices is
kept and the old set of vertices from the previous step is released.

3.5 Mesh Adaptation

After the discretization of the boundary curves, the next phase of the adaptive
process generates a new mesh on the domain, using a procedure based on
quadtree. However, in this work the quadtree is not responsible for the mesh
generation in the whole domain. A strip close to the patch’s boundary is left
out to be discretized by an advancing-front technique. The procedure ensures
that the mesh on the interior of a patch agrees with the discretization of its
boundary curves. This is important because meshes on adjacent patches can
be combined. It should be observed that, since the configuration of each
curve will not change at this phase, the mesh generation of the patches can
be implemented in parallel, although this was not done in this work.

The mesh generation by the quadtree procedure is based on [19], while
the elements generated on the strip close to the boundary is generated by
an advancing front technique, combined with a Delaunay criterion. The ad-
vancing front technique was modified in the present work to account for the
quadtree information, in order to speed up the process by avoiding that an
element is generated by a vertex far from its base edge. Figure 4 illustrates
the boundary discretization for a given patch Pk. Since the procedure is based
on a quadtree on a two-dimensional parametric space, it is necessary to map
each vertex on the three-dimensional space to the parametric space of each
patch. Moreover, at the end of the mesh generation, it is necessary to map
the vertices of the elements generated in the parametric space back to the
three-dimensional space.
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Fig. 4 Patch’s curves discretization

The generation of each patch’s new mesh occurs in three phases: the gener-
ation in the interior by a quadtree procedure; the generation in the transition
zone by an advancing front approach and the smoothing of the generated
mesh, as described in the following for a generic patch Pk.

Meshing in the Interior of the Domain by a Quadtree Procedure

Each patch Pk keeps the set of old adjacent elements, which is set up when
the initial mesh is generated and is updated after a new mesh is determined
at each step. A patch also holds the set of new elements that are generated
during the current phase. Hence, these two sets have to co-exist until a new
mesh is committed.

The quadtree procedure not only ensures that the interior density of the
cells is sensitive to the boundary discretization but also guarantees a good
transition between regions with different degrees of refinement. The procedure
consists of the following steps: 1) Construction of the initial quadtree, 2)
Adjustments due to errors of curvature for the elements, 3) Transformation
of the tree into a restricted quadtree, 4) Elimination of cells close to the
boundary, and 5) Generation of elements in the interior cells by patterns.

The initial quadtree is constructed taking into account the discretization
of the patch’s boundary curves obtained in the previous phase of the process
(Fig. 4 shows the patch Pk in both 3D and parametric spaces). The construc-
tion process is performed in the parametric space according to the algorithm
described in Algorithm 3. Figure 5 shows the initial quadtree associated with
the boundary curve partition of Fig. 4.

Fig. 5 Quadtrees: initial, adjusted by errors and restricted
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The initial quadtree is then modified according to both the characteristics
of the domain’s mesh and the curvature errors at the mesh vertices. This is
done by the procedure shown in Algorithm 4. In the evaluation of hold, the
area is computed in the 3D space. This helps to avoid distortions between the
parametric and Cartesian spaces, which can occur since a square bounding
box [(0,0) to (1,1)] is used. At the end of this step, the old set of elements is
released. Figure 5 shows the adjusted quadtree after taking into account the
error of curvatures in the domain’s mesh.

Algorithm 3: Construction of the initial quadtree from boundary
discretization.

1 Initialize the tree structure with the root node empty ;
2 for each boundary curve, Ci, i← 1 to 4 do
3 Compute the length of the curve Ci in 3D space, Li;
4 for each curve’s segment, Sj , j ← 1 to nseg do
5 Compute the size of Sj in 3D, Lsegj ;
6 Compute the segment’s center in 3D space, Csegj ;
7 Find the parametric coordinates of Csegj , (uj , vj);
8 Determine in which cell (uj , vj) is located ;

9 while size of the cell >
Lsegj

Li
do

10 Subdivide the cell into four children;
11 Determine in which cell (uj , vj) is located ;

Algorithm 4: Adjustments due to curvature.

1 Atotal ← 0;
2 for each element of the old set, Ek, k ← 1 to nel do
3 Atotal = Atotal +AEk ;

4 for each element of the old set, Ek, k ← 1 to nel do
5 Compute hnew according to Algorithm 5;
6 Compute the center of Ek in 3D space, CEk ;
7 Find parametric coordinates of CEk , (uk, vk);
8 Determine in which cell (uk, vk) is located ;
9 while size of the cell > hnew do

10 Subdivide the cell into four children;
11 Determine in which cell (uk, vk) is located ;

Transforming the quadtree obtained in the previous step into a restricted
quadtree is required because interior elements are created in interior cells of
the quadtree by patterns. Moreover, only one level of difference between ad-
jacent cells ensures a good mesh transition. Figure 5 illustrates the restricted
quadtree. The marked cell, for instance, had to be divided.
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Algorithm 5: Computing hnew for an element.

1 holdk =
√

AEk
Atotal

;

2 hnew ← 0;
3 for each vertex of Ek, nj , j ← 1 to 3 do
4 Compute ka and kd at vertex nj ;
5 Compute hnewj as as in Table 1;
6 hnew = hnew + hnewj ;

7 hnew = hnew
3

;

The next step is the triangulation of the cells. However, due to the bound-
ary curves’ discretization, not only the patterns cannot be applied but also
distorted elements may be generated. In order to avoid this problem, a tran-
sition zone is created by the union of all cells which have contact with the
boundary (Fig. 6). The cells that are not part of the transition zone will
be meshed with the same patterns presented in [19] (Fig. 6). The cells that
are in the transition zone are not used for meshing this region. Instead, an
advancing front based on a Delaunay triangulation is used.

Fig. 6 The transition zone

The cell elimination process results in a quadtree composed of two types
of cells: transition and interior cells. If the cell touches the boundary, it is a
transition cell; otherwise, it is an interior cell. The leaves of the tree that are
interior cells represent the sub-regions that will be meshed with the patterns.
The use of patterns facilitates the generation of the interior mesh, accelerating
the process. The subdivision made according to the curvature concentrates
more elements, generated by patterns, in the most curved areas, mitigating
the effect of distortion caused by the parameterization.

Meshing the Transition Zone by Advancing Front Procedure

The transition zone is meshed by an advancing front procedure that uses a
Delaunay criterion. The advancing front was adapted to search only points
in the adjacency of the chosen active edge, avoiding the unnecessary work of
searching points occluded by the inner cells. This is the last phase of mesh
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generation for patch Pk, and is performed as described in the Algorithm 6.
In the example presented in this work, Fig. 7 illustrates the mesh after the
advancing front in the parametric space, and this mesh is used to generate
a corresponding mesh in the 3D space. Usually, the quality of the mesh is
already good, but there are some distortions that can be fixed.

Algorithm 6: Advancing front.

1 Initialize the active edge list with boundary curves’ segments;
2 while the active edge list is not empty do

// for a new triangle’s base

3 choose an edge;
4 for each chosen edge do
5 Build a list of inner cells that are adjacent to the cells that contain the

initial and final vertex of the chosen base edge;
6 if there are no such inner cells then
7 Build a list of cells that are in the 8-adjacency of the cells that

contain the initial and final vertex of the chosen base edge;

8 Find the best vertex from an adjacent cell list using a Delaunay criterion;
9 Build the triangle;

10 Update the active edge list ;

Fig. 7 Final mesh generated in parametric space

Finally, after the whole new mesh is completed in the parametric space, the
3D mesh is generated by mapping the parametric coordinates to the surface.
Figure 8 shows the final mesh in 3D space.

Fig. 8 Final mesh generated in 3D space, after the smoothing
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4 Examples

In this section, a series of examples is shown. The patches are modeled as
bi-parametric surfaces resulting from blending of the boundary curves. Since
the strategy works directly with parametric surfaces, this approach gives
independence to the technique to work with any kind of parametric surface.
The stopping criterion used was the ηglobal (1). The ε used is 6%, but this
value is user dependent. The zooming on the examples show how the elements
are concentrated at regions where the curvatures are more accentuated.

The initial meshes were chosen as very coarse meshes. This choice was
made on purpose, since the goal is to show the effectiveness of the strategy.

4.1 Description of the Examples

The first example shows a Hermite surface for a saddle with high curvature
and non-planar border. Figure 9 shows the steps needed for the desired mesh
generation. In this case, the error drops from 96% to 2.9%.

The second example shows a Hermite surface with a lower corner (Fig.
10), whose error drops from 92.7% to 5.4%.

The tire example (Fig. 11) is modeled with two Hermite patches. The first
coarse mesh, which is more likely an octahedron than a tire, has 8 triangles
and an error of 71.7%. The final mesh has 2196 elements and an error of
2.9%.

The last example, the Utah teapot (Fig. 12), is modeled using 32 Bézier
patches. The first coarse mesh has 128 elements and an error of 58.2% and the
final mesh, generated in 3 steps, has an error of 2.8% with 25162 elements.

Fig. 9 The saddle’s mesh: the initial mesh (5 vertices and 4 elements), the 1st step
(65 vertices and 104 elements) and step 2 (1033 vertices and 1936 elements)

4.2 Analysis of the Examples

Table 2 shows, for the tire and the teapot models, that even with few steps,
where themesh is still coarse, the error drops drastically. This happens because
the proposed strategy increases the number of elements in the correct regions,
i.e., where there are great variations of curvatures. The process continues, but



440 D.M.B. de Siqueira et al.

Fig. 10 The three steps needed for the lower corner surface

Fig. 11 The tire mesh generation

Fig. 12 The three steps for the teapot mesh generation

tends to stabilize as the mesh represents the geometry more accurately. Table
3 shows the growth of the number of elements and the decay of the errors for
the initial and final meshes for most of the examples. It can be seen that the
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Table 2 Number of Elements x Error

Tire Teapot

Step Elements Error Elements Error

0 8 72% 128 58%
1 12 52% 836 30%
2 88 13% 4438 9%
3 440 6% 25162 3%
4 2196 3% - -

Table 3 Decay of the error in the examples

Example
Elements

Growth
Error

DecayInitial Final Initial Final
mesh mesh mesh mesh

Saddle 4 1936 484% 96% 2.9% 93.1%
Lower corner 4 3470 867.5% 92.7% 5.4% 87.3%
Tire 8 2196 274.5% 71.7% 2.9% 68.8%
Teapot 128 25162 196.6% 58.2% 2.8% 55.4%

strategy presents a good error decay, making the mesh to get rapidly closer to
the surface’s actual geometry.

5 Conclusions

This work presented an adaptive mesh generation strategy for parametric sur-
faces. It is a curvature-controlled strategy which is able to refine and coarsen
regions of the mesh and to ensure good mesh transition. It also ensures mesh
compatibility between regions since it rediscretizes the curves independently
of the domain. The strategy considers the contributions of local error mea-
sures to guarantee good global mesh quality and it works for any type of
parametric surface. The examples shown in this work demonstrated that the
adaptive strategy generates a good quality mesh even if the initial mesh is
very coarse.

Some points are still of interest to this research, such as adjusting the
method to consider anisotropic adaptivity and working on the implementa-
tion to handle different parameterizations, more general types of patches, and
more than four parametric curves, in order to handle, for example, trimmed
NURBS. Current efforts are being directed on a mathematical proof that the
discrete mesh converges to the continuous surface patch.
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