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Summary. In this paper, we present a novel algorithm for constructing a
volumetric T-spline from B-reps inspired by Constructive Solid Geometry
(CSG) Boolean operations. By solving a harmonic field with proper boundary
conditions, the input surface is automatically decomposed into regions that
are classified into two groups represented, topologically, by either a cube
or a torus. We perform two Boolean operations (union and difference) with
the primitives and convert them into polycubes through parametric mapping.
With these polycubes, octree subdivision is carried out to obtain a volumetric
T-mesh, and sharp features detected from the input model are also preserved.
An optimization is then performed to improve the quality of the volumetric
T-spline. Finally we extract trivariate Bézier elements from the volumetric
T-spline, and use them directly in isogeometric analysis.

Keywords: volumetric T-spline, Boolean operations, polycubes, parametric
mapping, sharp feature, isogeometric analysis.

1 Introduction

Isogeometric analysis [7, 14] bridges Computer Aided Design (CAD) and Fi-
nite Element Analysis (FEA) by using the same basis functions for geometric
modeling and numerical simulation. For many important application areas, it
has been demonstrated that isogeometric analysis, using smooth basis func-
tions, is more accurate and robust than traditional FEA which uses C0 basis
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(d) (e) (f)

(g) (h) (i)

Fig. 1 CAD Assembly. (a) One temperature field to split the top torus region; (b)
splitting result; (c) Boolean operations; (d) parametric mapping result (the torus
primitive is used for the top component, and the difference operation is used to
create four holes in the bottom base component); (e) solid T-spline; (f) solid T-
spline with T-mesh; (g) solid T-spline with Bézier representation; (h) some elements
are removed to show the interior of (g); and (i) isogeometric analysis result.

functions [8, 5, 34]. Additionally, the exact CAD geometry is embedded in
the analysis at the coarsest level of discretization. In many cases, a trivari-
ate (solid) description of an object is required for analysis. Unfortunately,
current CAD representations of solid objects are composed of a collection of
surfaces, see Fig. 1. To employ the isogeometric paradigm for solids, a trivari-
ate parameterization of the interior of the solid must be generated. This is
an important and challenging problem in isogeometric analysis [22].

Several papers have studied isogeometric analysis using solid NURBS (Non-
uniform Rational B-spline) construction [14, 34, 4, 32]. However, NURBS have
some drawbacks that limit their use for isogeometric analysis. For example,
NURBS [20] does not support local refinement. In addition, gaps often hap-
pen between two neighboring NURBS surface patches. To overcome these lim-
itations, Sederberg invented T-splines [25], which support local refinement
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naturally by introducing T-junctions [24]. T-splines were introduced into iso-
geometric analysis in [6, 4]. The initial research on T-splines-based isogeomet-
ric analysis was limited to surface models. Reference [23] introduced a data
structure for isogeometric analysis using T-splines. Conversion of unstructured
meshes to T-splines has also been studied [30, 31]. A generalized algorithmwas
also developed to extract Bézier elements from volumetric T-splines, connect-
ing the spline modeling with analysis data structure.

As for the construction of volumetric T-spline, different approaches have
been developed. A method based on Periodic Global Parameterization was
proposed to convert triangular meshes to T-splines [17]. Other research fo-
cuses on parametric mapping of an input tetrahedral meshes to construct
solid T-splines [9]. A harmonic mapping method has been proposed for de-
veloping a 3D solid sphere from a 2-manifold for use in computer graphics
and medical imaging [11]. In [27], a parametric mapping between a polycube
and a surface geometry was presented to construct trivariate T-splines from
input triangular meshes. Mapping, subdivision and pillowing techniques have
been used to generate good quality T-splines for genus-zero [35] and arbitrary
genus objects [29]. Li et al. [16] proposed a generalized polycube method using
T shape templates to handle high-genus models and extraordinary nodes.

Despite these advances, it remains a challenging problem to automati-
cally create a volumetric T-spline for models with complicated geometry and
topology. How to automatically and robustly split complex geometry into
different components and transfer the input geometric information to the
desired volumetric models are still open problems.

CSG Boolean operations are commonly used in design [1, 3, 26]. Inspired
by this, in this paper we present a novel algorithm to construct trivariate solid
T-spline models using two Boolean operations: union and difference. In our
algorithm, we compute a harmonic field together with the boundary infor-
mation to split the domain, and use primitives (cube and torus) and Boolean
operations to generate polycubes1. Parametric mapping is then employed to
transfer the input information to the volumetric T-spline. The four main
contributions that this paper makes to the problem of volumetric T-splines
parametrization are: (1) a harmonic field with proper boundary conditions is
computed to automatically split the input geometry into different hexahedral
components; (2) two Boolean operations (especially the difference operation)
are developed to construct polycubes conveniently and flexibly; (3) a novel
torus primitive is introduced to deal with torus-like objects or holes, yielding
few number of extraordinary nodes and high quality elements; and (4) sharp
features are preserved and mesh quality is improved.

Although the proposed algorithm is automatic and robust for a large class
of complex models, it also has limitations. For example, it cannot handle
some special objects such as a tetrahedron or a cone, and it cannot preserve

1 Conventionally, a polycube is comprised of cubes of equal sizes with two neighbor-
ing cubes sharing a complete face [2]. In this paper, the “cubes” can be arbitrary
hexahedra of different sizes.
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the input surface parameterization. In addition, to obtain a proper domain
decomposition result, sometimes we have to try different boundary conditions
several times in calculating the harmonic field.

The remainder of this paper is organized as follows. The main steps of
the algorithm (illustrated in Fig. 1) are overviewed in Section 2. Section 3
discusses extracting boundary information. Section 4 talks about different
primitives and Boolean operations among them. Section 5 explains T-spline
construction. Section 6 shows some results, and Section 7 draws conclusions
and points out the future work.

2 Algorithm Overview

Polycube-based methods for volume parametrization [29, 28, 15] perform do-
main decomposition by splitting the model into hexahedral regions that map
to cubes. However, sometimes the models are so complicated that it is diffi-
cult to split the domain automatically. Inspired by CSG Boolean operations
[1], here we propose to use Boolean operations to build the polycubes. As
shown in Fig. 2, there are three main stages to construct a trivariate solid
T-spline from the given CAD model: curve extraction, domain decomposition
and Boolean operations, and volumetric T-spline construction.

Fig. 2 Three stages of volumetric T-spline construction using Boolean operations
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The first stage initializes all the necessary boundary information for the
following stages. We first classify the curve information from the CAD model
into two groups, and then use the commercial software ABAQUS to generate
the surface mesh.

Based on the curve information and surface mesh, we perform domain
decomposition and Boolean operations to generate polycubes. A harmonic
field with proper boundary conditions is computed to automatically split the
surface model into different components, topologically equivalent to either a
cube or a torus. As shown in Fig. 1, each torus is composed topologically of
four cubes. All cubes generated by the domain decomposition are then union
together and holes (represented topologically as cubes) are subtracted (see
Fig. 1(d)). We will refer to the resulting configuration as a polycube, realizing
that we take some liberties in using the term in this way. The CAD surface
is then mapped to the polycube surface.

The volumetric T-spline is obtained by performing an octree subdivision
on the polycube. Here we use a separate octree for each cube and force two
neighboring cubes to have the same parameterization at the shared boundary.
All the detected sharp feature information is preserved in this step. Pillowing,
smoothing and optimization are then used to improve the quality of the T-
mesh. To obtain a gap-free T-mesh, we apply templates [30, 31] to each
irregular node in the T-mesh. Finally, volumetric T-spline is generated and
Bézier elements are extracted for isogeometric analysis.

3 Curve Extraction

Most CAD models contain sharp edges or features. It is best if these features
map to edges of the polycube (although we do not require that each edge of
the polycube maps to a feature in the CAD model). We need to identify which
of these curves are best represented as polycube edges during the Boolean
difference stage of the algorithm. The edges which are used to represent the
polycube edges are feature curves and the remaining edges we call difference
curves. For example in Fig. 3, the model is the subtraction of a cylinder from
a cube. The blue lines are the feature curves of the model, and the red lines
are the difference curves.

Curve Classification: We classify the input boundary information into
three groups: corners, curves, and patches. All the surface models are formed
by these three groups. Curves are the parametric boundary lines on the
surface. In Fig 3, there are 14 curves: C1 ∼ C14 (blue and red lines), which
are the edges of the cube and the cylinder. Corners are the intersection
points of the curves, which are also the corners of the cubes (the eight blue
dots V1 ∼ V8). Several curves connecting consecutively form the boundary
of a surface patch. In Fig. 3, there are 7 patches: six cube faces and one
circumferential surface of the cylinder (the gray and red surfaces, S1 ∼ S7).
In this model, curves C1 ∼ C12 are feature curves. Curves C13 ∼ C14 are
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Fig. 3 Classification of curve information. Blue line: feature curves; and red lines:
difference curves.

difference curves. These curves contain the input sharp feature information
and will be used to split one model into different components. The criteria
to classify the curves into different groups is whether the feature curves can
be easily used in the following parametric mapping.

Sharp Feature Detection: There are two types of sharp features in the
designed models: sharp curves and sharp corners. Sharp curves are those
curves across which the surface continuity is C0, and the sharp corners are
the intersection points of the sharp curves. For example in Fig. 3, all the 12
edges of the cube (C1 ∼ C12) and the top and bottom outlines of the cylinder
(C13 ∼ C14) are sharp curves, and the 8 corners of the cube (V1 ∼ V8) are
sharp corners.

4 Domain Decomposition and Boolean Operations

To perform Boolean operations, we first split the model into different hexa-
hedral components, and then use primitives to represent them.

4.1 Domain Decomposition

For simple CAD models, we can directly use the feature curves to generate
the polycube edges, and use the difference curves to define virtual compo-
nents. Here a virtual component is a component which does not exist in the
real model, but it can be deduced from the design process and boundary
information. These virtual components are the result of CSG difference oper-
ation in design. For example in Fig. 3, the feature and difference curves can
split the model into one cube and one virtual cylinder.
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Different from pants decomposition of surfaces [13], which relies more on
the topology of the models, we use harmonic fields to split a complex geometry
into coherent regions [35, 29]. Temperature distribution is an example of a
harmonic field. The idea is to assign high and low temperature values to two
different points on the model, and the harmonic field computed with those two
boundary conditions will express the steady-state temperature distribution
across the model. For example in Fig. 4, we use the following five steps to
split the torus model into four hexahedral components:

1. First we find out the geometrically highest/lowest points, and assign them
the max and min temperature respectively;

2. A harmonic field is calculated on the surface mesh, see Fig. 4(a);
3. We find out the critical points in the field, which are Min, Max, and two

saddle points (C1, C2). They form two cross sections;
4. We assign min temperature to one cross section, and max temperature to

the other one. The harmonic field is recalculated using the new boundary
conditions and the temperature distribution is shown in Fig. 4(b); and

5. Four equally-spaced points are selected on each cross section curve (black
curves) in Fig. 4(b), which will be set as the cube corners. Then we trace
the gradient lines and finally split them into four parts to obtain all the
red curves in Fig. 4(c).

Discussion: By using a harmonic field with proper boundary conditions,
we can in many cases automatically split a complex geometry into multiple
hexahedral components. Finding a proper boundary condition often requires
user interactions. Sometimes we may need to compute the harmonic field
several times before we can obtain an optimal domain decomposition result.

(a) (b) (c)

Fig. 4 Splitting one torus model into four cubes. (a) Set the top and bottom points
with max and min temperature respectively, calculate the harmonic temperature
field, and find out critical points (extreme and saddle points); (b) recalculate the
harmonic field by setting the whole cross section to be max/min temperature; and
(c) split the model with isoparametric and gradient lines.
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4.2 Two Primitives

Primitives are basic objects in design and geometrical modeling. Typical
primitives in CSG include cuboids, cylinders, prisms, pyramids, spheres and
cones. In our algorithm, we only use two primitives: the cube and the torus.
Furthermore, unlike conventional CSG, our primitives are used in a topologi-
cal sense, so, for example, the edges of our cubes need not have equal length.
Fig. 5 shows how to map these two primitives from the physical space to the
parametric space. It is easy to map one of our cubes to a unit cube. For a
torus, we use four consecutive unit cubes to represent it, with the left face of
the first cube connecting to the right face of the last cube.

(a) (b)

Fig. 5 Two primitives from the physical space to the parametric space. (a) Cube;
and (b) torus.

4.3 Two Boolean Operations

There are two basic Boolean operations in our polycube generation: union
and difference. We develop templates to handle the Boolean operations
among the primitives: union of two cubes, difference of two cubes, union
of a cube and a torus, difference of a cube and a torus. Since two cubes
may have different sizes and relative position, we have multiple cases for the
union and difference operations between them, see Fig. 6(a-b). As for the
operations between a cube and a torus, we will select one representative cube
out of the four cubes of the torus (the red cube in Fig. 6(c, d)), and then
use it to perform all the Boolean operations with other cubes. Of the two
Boolean operations, difference is a special one in our polycube generation.
Based on difference curves, we build virtual components. As shown in Fig. 7,
after finding out the boundary of the cylinder in the input model, we fill the
holes on the surface mesh by adding new triangles. Then a virtual cylinder
is reconstructed and we carry out all the following work using the new mesh.
After building T-meshes, elements inside the filled holes will be deleted by
using the difference operation.

Discussion: The torus primitive and the difference operation are two new
features in our polycube generation, which provide more convenience and
flexibility in handling designed CAD models. The resulting T-splines will
have better surface continuity and high quality elements.
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(a) (b)

(c) (d)

Fig. 6 Boolean operations of cubes and torus with different sizes and relative
position. (a) Four cases for the union operation of two cubes; (b) four cases for the
difference operation of two cubes; (c) the union operation of a cube and a torus;
and (d) the difference operation of a cube and a torus.

Fig. 7 Steps to perform the difference operation. Holes are filled to create a virtual
component (virtual cylinder).
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There is a special situation we should discuss here. Let us take a cube
and subtract a cylinder from it (Fig. 3). Topologically, it can be represented
either as cube-minus-cylinder using the difference operation, or as a torus.
Our algorithm can represent the object in either way. If the inner and outer
boundaries of the object have no sharp corner, then we consider it more like
a torus or hollow cylinder and choose the torus primitive. Otherwise, if sharp
corner happens in the inner and/or outer boundaries, we choose to use the
difference operation to handle it.

5 Volumetric T-spline Construction

To construct volumetric T-splines, we first need to generate the T-spline con-
trol mesh, or T-mesh. There are five main steps in this stage: adaptive octree
subdivision and mapping, sharp feature preservation, pillowing and quality
improvement, handling irregular nodes, trivariate T-spline construction and
Bézier extraction.

5.1 Adaptive Octree Subdivision and Mapping

An initial T-mesh is generated by applying an adaptive octree subdivision
to the polycubes and mapping to the boundary. For each cube, we create
one hexahedral root element, and then we subdivide one element into eight
smaller ones recursively to obtain the T-mesh after mapping. For each bound-
ary element, we check the local distance from the T-mesh boundary to the
input boundary, and subdivide the element if the distance is greater than
a given threshold ε. Each obtained T-mesh node has both parametric and
physical coordinates. The parametric coordinates represent its position in the
polycubes. For each boundary node, the physical coordinates are its corre-
sponding position on the boundary. The physical coordinates of each interior
node are calculated by a linear interpolation. T-junctions are introduced if
two neighboring elements have different subdivision levels.

5.2 Sharp Feature Preservation and Quality
Improvement

Sharp Feature Preservation: To preserve the detected sharp features, we
duplicate their corresponding parametric lines in the polycubes [30]. It aims
to decrease the local boundary surface continuity across the sharp curves
to C0 by repeating knots. As shown in Fig. 8, a sharp curve (blue curve)
is shared by two neighboring surface patches. We duplicate the sharp curve
on each patch (green curves), and connect corresponding points using edges
with zero parametric length (red short edges). Then the spline surface is C0-
continuous across the sharp curves. In Fig. 8(a-b), a sharp corner is shared
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(a) (b) (c)

Fig. 8 Preserving sharp corner and sharp curve. (a) Sharp corner (red corner)
and sharp curves (blue curves) before preservation; (b) preserving sharp features
by duplicating sharp curves (green curves) and inserting zero-length edges (red
edges); and (c) Bézier element representation of the model.

(a) (b) (c) (d)

Fig. 9 Pillowing along the circumferential direction of a cylinder. (a-b) A solid
cylinder before (a) and after (b) pillowing; (c-d) a cube with a cylindrical hole
before (c) and after (d) pillowing.

by three sharp curves. By duplicating each sharp curve on its neighboring
surface patches, the sharp corner is also preserved.

Quality Improvement: To improve the initial T-mesh quality, we adopt
pillowing, smoothing and optimization techniques. Pillowing is a sheet inser-
tion technique that inserts one layer around the boundary [19, 21, 33], which
guarantees each element has at most one face lying on the boundary and
also improve the surface continuity across the polycube edges from C0 to C2.
The sharp feature information on the input surface can also be transferred to
the new surface. When the corner of one cube lies on a smooth sharp curve,
the parametric mapping method may generate poor quality elements around
that. Fig 9(a) shows the T-mesh of a solid cylinder model. On its top face
the four cube corners of the polycube have bad quality (green elements). To
deal with this situation, we insert one new layer around the circumferential
direction, see the magenta layer in Fig 9(b). After smoothing, the mesh qual-
ity is improved significantly. This method can also be applied to the surface
of virtual cylinders, see Fig. 9(c-d).
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After pillowing, smoothing and optimization [35] are used to improve the
T-mesh quality. There are four types of nodes in the T-mesh: sharp corners,
sharp curve nodes, surface nodes and interior nodes. In smoothing, they are
relocated in different ways. Sharp corners are fixed; sharp curve nodes move
along the curve direction; surface nodes move on the surface; and interior
nodes move towards its mass center. In optimization, each node is moved
toward an optimal position that maximizes the worst Jacobian. The Jacobian
is defined based on trilinear basis functions of T-mesh elements. For a T-mesh
element, the Jacobian is defined as

J = det(JM ) =
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where Ni is a trilinear shape function. The scaled Jacobian is

Js =
J

‖ JM (·, 0) ‖ ‖ JM (·, 1) ‖ ‖ JM (·, 2) ‖ , (2)

where JM (·, 0), JM (·, 1) and JM (·, 2) represent the first, second and last col-
umn of the Jacobian matrix, JM , respectively. To get better optimization
results, we further improve our optimization method in two ways: (1) op-
timize the Jacobian value defined based on Bézier basis functions; and (2)
optimize the step size when moving the control nodes. Due to the enhanced
robustness of high order basis functions, distorted T-meshes may still be used
in isogeometric analysis [18], and the scaled Jacobian value is one quantitative
standard to evaluate the quality of T-splines. The Jacobian is evaluated at
the Gaussian integration points and the corner points of one element. In step
size optimization, the objective function is f(δ) = min(1 − J ′

s(δ)), where J ′
s

is the new Jacobian value with respect to updated coordinates, and δ is the
optimized step size. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
[12] is used to perform the optimization.

5.3 Irregular Nodes and Volumetric T-spline
Construction

Extraordinary nodes or partial extraordinary nodes [35] are two types of
irregular nodes in T-spline construction. These irregular nodes will reduce
the continuity in its neighborhood and increase the degrees of freedom during
analysis. Different templates have been developed to handle the irregular
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nodes. The basic idea is to insert zero parametric length edges around the
irregular nodes to make sure the extracted knot interval is correct. In referring
knot vectors, knot values are repeated whenever an irregular node is met. The
detailed templates and knot insertion algorithm are explained in [30, 31].

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 10 Torus model. (a) Splitting result; (b) Boolean operation and parametric
mapping result; (c) T-mesh; (d) solid T-spline; (e) solid T-spline with T-mesh; (f)
solid T-spline with Bézier representation; (g) some elements are removed to show
the interior of (f); and (h) isogeometric analysis result.

The rational solid T-spline is defined in [31]. Its basis function has the
property of partition of unity by definition, which makes it suitable for anal-
ysis. With the valid T-mesh, referred local knot vectors and the definition of
rational basis function, we can construct desired volumetric T-splines. Since
the volumetric T-spline is defined on local knot vectors, we extract Bézier rep-
resentation of solid T-spline for isogeometric analysis. Transformation matrix
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from T-spline basis functions to Bézier basis functions is calculated by the
Oslo knot insertion algorithm [10]. With the extracted Bézier elements, we
can perform isogeometric analysis on the volumetric T-spline models.

6 Results and Isogeometric Analysis

We have applied the construction algorithm to several models on a 2.93GHz
Intel Xeon CPU with 16GB RAM. Table 1 provides the statistics of four
models: torus (Fig. 10), eight (Figs. 11-12), rod (Fig. 13), and CAD assembly
(Fig. 1). We use the scaled Jacobian with Bézier basis function to evaluate
the quality of the trivariate T-splines. The number of irregular nodes on the
surface and in the interior are also counted. We can see that our algorithm
is fast and it produces high quality volumetric T-splines for isogeometric
analysis.

(c)

(a) (d) (b)

Fig. 11 Distribution of irregular nodes on the T-spline surface of eight model. (a)
Polycube method in [29] with details in (c); and (b) Boolean operation method
with details in (d).

Table 1 Statistics of all the tested models

Model T-mesh Irregular nodes Bézier Jacobian Time
nodes (surface, interior) elements (worst, best) (s)

Torus 5,920 (0, 128) 3,072 (0.42, 1.00) 11.8
Eight 8,323 (8, 196) 4,096 (0.31, 1.00) 15.5
Rod 27,198 (24, 448) 27,296 (0.34, 1.00) 99.1

Assembly 29,684 (48, 692) 11,776 (0.32, 1.00) 87.2
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(a) (b) (c)

(d)

(e) (f) (g) (h)

Fig. 12 Eight model. (a) One temperature field to split the two torus regions; (b)
splitting result; (c) Boolean operations; (d) parametric mapping result; (e) solid T-
spline; (f) solid T-spline with Bézier representation; (g) some elements are removed
to show the interior of (f); and (h) isogeometric analysis result.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 13 Rod model. (a) One temperature field to split the bottom torus region;
(b) splitting result;(c) Boolean operations; (d) parametric mapping result (the torus
primitive is used in the bottom component, and the difference operation is used to
create the small hole in the top component); (e) solid T-spline; (f) solid T-spline
with T-mesh; (g) solid T-spline with Bézier representation; (h) some elements are
removed to show the interior of (g); and (i) isogeometric analysis result.
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Fig. 10 shows the result of our torus primitive. It has no irregular nodes on
the surface, and the generated elements have high quality with the minimum
Jacobian of 0.42. For the eight model in Figs. 11-12, we compute the harmonic
field twice to obtain the desired domain decomposition result. Similar to Fig.
4, we first set the bottom and top points with the min and max temperature
respectively, compute the harmonic field and critical points to define three
cross sections. As shown in Fig. 12(a), we then set two cross sections with the
min temperature and the middle cross section with the max temperature, and
obtain a new harmonic field. By tracing its isoparametric lines and gradient
directions, we can split the two torus regions. For the middle regions, the
isoparametric and gradient lines cannot provide proper decomposition result,
so we use the shortest distance method to find the splitting curves. Finally we
obtain the splitting result as shown in Fig. 12(b). The parametric mapping
result, the Boolean operations and the constructed volumetric T-spline model
are shown in Fig. 12(c-g). We also compared our result with the result from
another polycube method [29]. Our method yields fewer number of irregular
nodes on the surface (8 vs 16) with a better min Jacobian (0.31 vs 0.10).
In the rod model (Fig. 13) and CAD assembly model (Fig. 1), we compute
the harmonic field to split the torus region. For the other regions, we trace
the shortest distance among the corners to split the model. Both the torus
primitive and the difference operation are used here in addition to the union
of cubes, yielding good surface continuity and high quality elements. We have
also developed a 3D isogeometric analysis solver for static mechanics analysis
[29]. For the torus, eight and CAD assembly model, we fix the bottom and
apply a displacement load on the top part. Differently for the rod model, we
fix one side of the torus shape region and apply load on the other side. The
analysis results are reasonable, which prove that our models are suitable for
analysis.

7 Conclusion and Future Work

We have presented a novel algorithm to use Boolean operations to gener-
ate trivariate volumetric T-splines from input CAD models. With proper
boundary conditions, a harmonic field is computed to split the input geom-
etry into hexahedral components. In addition to the cube, a new primitive
(torus) is introduced in the polycube construction. After that, we perform
the union and difference Boolean operations to convert the components into
primitives and then map them onto the polycube. Through octree subdivision
and mapping, we obtain the initial T-mesh. After making the T-mesh valid,
we construct solid T-spline and extract their Bezier representation. The pre-
sented algorithm is automatic for complex models with fewer extraordinary
nodes produced than other methods, but there are other models that it can-
not handle, such as a tetrahedron or a cone. In addition, the input surface
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parameterization cannot be preserved. As part of our future work, we would
like to investigate these limitations.
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17. Li, W., Ray, N., Lévy, B.: Automatic and interactive mesh to T-spline con-
version. In: Eurographics Symposium on Geometry Processing, pp. 191–200
(2006)

18. Lipton, S., Evans, J.A., Bazilevs, Y., Elguedj, T., Hughes, T.J.R.: Robustness of
isogeometric structural discretizations under severe mesh distortion. Computer
Methods in Applied Mechanics and Engineering 199(5-8), 357–373 (2010)

19. Mitchell, A., Tautges, T.J.: Pillowing doublets: refining a mesh to ensure that
faces share at most one edge. In: 4th International Meshing Roundtable, pp.
231–240 (1995)

20. Piegl, L.A., Tiller, W.: The NURBS Book (Monographs in Visual Communi-
cation), 2nd edn. Springer, New York (1997)

21. Qian, J., Zhang, Y., Wang, W., Lewis, A.C., Qidwai, M.A., Geltmacher, A.B.:
Quality improvement of non-manifold hexahedral meshes for critical feature
determination of microstructure materials. International Journal for Numerical
Methods in Engineering 82(11), 1406–1423 (2010)
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