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Summary. Computational design and analysis has become a fundamental
part of industry and academia for use in research, development, and manufac-
turing. In general, the accuracy of a computational analysis depends heavily
on the fidelity of the computational representation of a real-world object or
phenomenon. Most mesh generation strategies focus on element quality–with
the justification being that downstream applications require high quality ge-
ometries in order to achieve a desired level of accuracy. However, element
quality should be secondary to accurately representing the underlying physi-
cal object or phenomenon. This work seeks to improve the process of creating
a computational model of an object of interest by accelerating the process
of mesh generation by reducing the need for (often) manual intervention.
This acceleration will be accomplished by automatically generating optimal
discretizations of curves by minimizing the arc-length deficit. We propose a
method for generating optimal discretizations through local optimization of
the arc length. Our results demonstrate the robustness and accuracy of our
optimal discretization technique. We also discuss how to incorporate our edge
grid generator into existing mesh generation software.
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1 Introduction

Computational design and analysis has become a fundamental part of indus-
try and academia for use in research, development, and manufacturing. In gen-
eral, the accuracy of a computational analysis depends heavily on the fidelity
of the computational representation of a real-world object or phenomenon.
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However, the task of creating high fidelity models of an actual geometry can be
time-consuming–sometimes consuming up to seventy-five percent of the time
required to produce a solution [1]. This work seeks to improve the process of
creating a computationalmodel of an object of interest by accelerating the pro-
cess of mesh generation. In general, a valid volume grid (three-dimensional)
is bounded by surface grids (two-dimensional); surface grids are bounded by
edge grids (one-dimensional). At the start of the grid generation hierarchy are
point spacing values at the end points of analytical or parametric curves which
bound the edge grids. Once the bounding surface grid is generated, volume
grid generation is, in most cases, a highly automated process. The same gener-
alization can be made for surface grids and edge grids. Algorithms that use
automated point creation/insertion for mesh generation of one-, two-, and
three-dimensional geometries are ubiquitous [2, 3, 4]. The work here seeks to
build on [5] by formalizing the problem description, developing error bounds,
and improving the robustness and accuracy of the previously developed
algorithms and concepts.

The computation involved with edge grid generation is trivial when
compared to volume grid generation – even with high-order NURBS curves.
However, the point spacing values at the end points of curves have to be set
manually in order to satisfy a desired length scale. This manual process is
time consuming. If geometry repair (gluing, trimming, etc) is not considered,
the amount of user input required to generate a volume grid can be concen-
trated on the lowest levels of the grid generation hierarchy – i.e., edge grid
generation. In addition, if the edge grids are not generated appropriately then
the errors present there, such as overly dense or sparse spacing, will be prop-
agated up the grid generation hierarchy and be present in each subsequent
higher-dimensional entity.

The proposed algorithm is a general-use method that can be applied to any
“digital curve” regardless of its representation. This is due to every step being
developed without the use of derivatives. Most other methods operate on a
specific type of curve, such as NURBS or B-splines, and use the specific infor-
mation available for the type of curve in use. NURBS curves are the de-facto
standard in CAD; however, in other fields, such as pattern-recognition, other
types of digital curves, such as parametric, are more common [6]. T-splines
are also becoming more popular in isogeometric analysis, for example [7].

The justification for the development of these methods lies in the need
for an automated way of setting point spacing values on curves. Therefore,
a general algorithm that does not require derivative information to generate
a suitable edge grid has been developed. A result of not using derivatives is
that each step in the algorithm is robust to large changes in derivatives or
curves that are not “well behaved”, e.g., they were highly oscillatory. This
process can only be automated if some way of judging “how well” an edge grid
represents a curve is present. To this end, a method of generating edge grids
through constrained optimization is detailed below. Further discussion of ele-
ment quality, robustness, and a framework for implementing the information
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associated with an optimal edge grid into an existing grid generator is also
presented. Generating edge grids in a more automated fashion accelerates the
process of surface grid generation—and ultimately volume grid generation.
Using our algorithm, or another automated method for setting point spacings
does not change the number of steps required for grid generation. However,
it does reduce the number of manual steps involved in starting the process.

2 Related Work

In general, grid generation is a name for any process that creates a grid. For
example, the advancing-front algorithm advances boundaries into space to
generate a grid [8]. Other methods generate grids from iterative refinement
or enrichment from initial, coarse configurations [9, 10]. Usually the bench-
mark for separating the two methods, generation and refinement, are the
prioritization of grid quality and grid accuracy (both of these issues will be
addressed later). From a standard text [11]: One dimensional grids, or edge
grids,

“...are created using a one-dimensional version of the standard grid gener-
ation procedure. This ensures that point distribution and growth rates are
fully compatible for optimal final grid quality. For each edge or segment the
point spacing is specified at both ends... Edge grid generation is then used to
produce the point distribution...”

Traditionally, edge grid generation processes produce good quality grids from
the combination of geometric growth rates and smoothing. However, the pro-
cess requires input: point spacing values. If the point spacing values are not
appropriate, then the geometry can be under and/or over sampled for the
intended use. That fact is not an indictment of the grid generation process,
but instead implies that the final grid is heavily dependent on the inputs. In
addition, if some way of controlling the point spacing in the middle of a curve
is not present, then more points could be wasted/omitted in an attempt to
accurately represent geometry.

Instead of setting appropriate point spacing values and using common
grid generation techniques, other efforts have gone into creating a locally or
globally “optimal” edge grid. Many names have been assigned to this par-
ticular task, but the underlying goal is very similar – represent a curve as
accurately as possible – whatever that means for each application. For exam-
ple, [12] first linearized the interface between curves in order to simplify the
process of generating edge grids and surface grids on topologically adjacent
patches. Other “geometry aware” or “curvature based” approaches have been
developed. One such application is for discretizing curves for use in level set
methods [13]. Others include energy minimization [14], curvature minimiza-
tion [15], and angle minimization [16]. Most need, or are designed to include,
the topologically adjacent geometry [17, 18, 19], or only can be applied to a
certain class of curves [20].
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3 Discretization Error

The accuracy, or discretization error, of a piecewise, linear representation
(discretization) of an analytical curve (curve) in R3 can be defined in many
ways depending on the intended application. The error associated with the
discretization is discussed in terms of the “deviation” from the curve – most
often quantified by calculating or approximating the distance from the curve
for each linear segment in the discretization, or the area of the ruled surface
between a curve-piece and the segment representing that part of the curve.
Another way of quantifying the error associated with a discretization would
be to consider how well it approximates the arc length of the curve it rep-
resents. In general the arc length is not known a priori, but depending on
the underlying representation it can be calculated exactly (parametric or an-
alytical) or can be estimated (Bezier). One of the goals of this method was
to be “general” in that it should be independent of the underlying geometric
representation. Therefore, a method that requires the arc length of the un-
derlying geometry violates the aforementioned concept of “generality” and
restricts the applications for which the proposed method could be applied.
Some other way of determining/generating an edge grid based on arc length
is needed. This process will be detailed later.

Arc-length convergence of a discretization is a sufficient condition for
other schemes of edge grid generation/refinement. That is: if the difference
between the arc length of the curve and the sum of the segments in the
discretization approaches zero then that is sufficient to conclude that the
distance between the discretization and the curve is also approaching zero,
also the angles between segments approaches 180 degrees. However, the con-
verse of that statement is not true. The pathological case of a highly oscil-
latory, low amplitude curve approximated by two straight lines (sine-wave
approximated by straight lines) shows that a discretization of a curve can
have a small “deviation” or angles between segments but be a poor estimate
for arc length. Another pathological case is a “nonconvex” curve where the
parameterization goes well “outside” of the segment.

4 Discrete Curvature Approximation

The concept of “deviation” as defined above is relatively straightforward and
intuitive. However, another related way of describing “how well” a discretiza-
tion represents a curve is the degree to which the discrete representation ap-
proximates curvature – where curvature is defined as the amount of “bend”
in a curve or surface, or “how much” a curve or surface “differs” from a
straight line or plane (words in quotes are subject to gradation). First, how-
ever, curvature must be defined in such a way that a discrete approximation
is meaningful and appropriate. In relevant literature, there are many ways
to estimate curvature [21]. Some of it bears repeating, because it is germane
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to what is being discussed here: Consider the following planar curve, C, at
point P. At a given point P there exists an osculating circle, O, of radius r
such that the circle has the same tangent as the curve C as well as the same
radius of curvature [22].

Fig. 1 Osculating Circle of a Planar Curve

Just as the tangent line is the line best approximating a curve at a point,
the osculating circle is the best circle that approximates the curve a point.
Ignoring degenerate curves such as straight lines, the osculating circle of a
given curve at a given point is unique [22]. The radius, r, of the osculating
circle at a given point on a curve is equal to the radius of curvature, R, which
is the reciprocal of curvature, κ–sometimes called the “first curvature” [23].
For a two-dimensional curve of the form y = f(x), the curvature equation is:

R =
1

κ
, where κ =

d2y
dx2

[1 + dy
dx

2
]
3
2

.

This quantity, κ, necessarily includes the calculation of derivatives which,
depending on the representation of the underlying geometrical description,
could be relatively costly. Therefore, this is avoided by defining this radius
of curvature on a segment or at a point in the discretization without the use
of derivatives. This is discussed in the following paragraphs.

A value of curvature can be calculated for each edge in the discretization
by considering the corresponding osculating circle on a given edge. The oscu-
lating circle here (circle, Figure 1) can be approximated by considering the
circumscribed circle (circumcircle) [24] defined by the two end points of the
edge, P0 and P1, and a point, P, between them in the curve parameterization
(Figure 2) – the radius of the circumcircle will be referred to as the discrete
radius of curvature.

Consider a circular segment, which represents the curve s. The correspond-
ing chord, which represents a segment in the discretization–a, and saggitta–
which represents the “deviation” of the segment away from the curve h is
shown in Figure 3.
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Fig. 2 Osculating Circle of Discrete Edge Grid

Fig. 3 Circular Segment and Related Geometry [25]

Theorem 1. As the length of a approaches the length of s, the length of h
goes to zero, therefore the radius of the circle, R, goes to infinity.

Proof. First,

a = 2 ∗ √R2 − r2 = 2 ∗√(h ∗ (2 ∗R − h). (1)

Upon rearranging, we obtain

R =
( a
2 )

2∗ 1
h+h

2 = a2+4∗h2

8∗h = a2

8∗h + h
2 .

(2)

Finally,

limh→0(
a2

(8∗h) +
h
2 ) = ∞. (3)

Given the aforementioned proof, if the discrete curvature radius is divided
by the length of the corresponding segment on the curve, then its value
approaches zero. This is a scale-independent measure that converges to a
computer representable number as the discretization approaches the length
of the curve. The parameter is known as the curvature ratio. It is an intuitive
measure that relates “how far” the curve deviates from the segment that
is representing it as the ratio of those lengths. Consider a point on a curve
between two endpoints of a segment of a discretization, as seen in Figure 4.
The length of the segment, Li, is the distance from P0 to P1. The perpendic-
ular distance between the point on the curve between the end points and the
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segment is Lc. The three points define a curvature ratio through the ratio of
Lc to Li.

Fig. 4 The definition of curvature ratio : Lc
Li

[26]

As shown in [5], deviation-based methods are intuitive and straightforward
to implement. However, drawbacks include the fundamental lack of consis-
tently being able to indicate discretization accuracy for curves that are not
“well-behaved” between discrete segments.

5 Refinement via Arc-Length Deficit

Mentioned above, a way of determining “how well” a discretization approxi-
mates a curve is to consider the difference between arc lengths. This is another
way to determine “how well” a discretization captures curvature. Locally,
it is important for each segment in the discretization to represent the local
geometry present in the curve. If a segment is to be subdivided in order to
improve the discretization, then it should be subdivided effectively/efficient
locally. Also, if the purpose of the refinement process is to minimize the actual
arc length minus the discrete arc length, then an optimization problem can
be formed where an objective function is minimized as the combined length
of the segments in the discretization approaches that of the curve.

Let C(u) be a parameterized curve, and D be a discretization of the curve
comprised of nt points, Pi : i ∈ {1, ..., nt}, and segments, Sj : j ∈ {1, ..., (nt−
1)}. Segment Sj is defined by two successive parametrization values, uj and
uj+1. If L(S) is a function that calculates the length of a segment in (x, y)
space then the optimization problem can be stated as:

minimize
ui

O = −∑ nt−1
j=1 Lj

subject to u1 = a
u1 < u2,
u2 < u3,

...
unt−1 < unt ,

unt = b.
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The resulting optimization problem is a mixed integer linear programming
problem if both the parameterization values and number of interior points on
the curve are unknown. Mixed integer linear programming problems can be
solved by a variety of standard techniques (e.g., [27], [28], or [29]). However,
such problems are, in general, NP-hard. Although the analysis and compu-
tation are straightforward for a fixed number of interior points, one would
need to specify a priori this number, which is impractical.

Instead, in order to derive a practical algorithm that controls the number
of interior points in the discretization, we add user-defined bounds on the
distance between points in the discretization. This turns the optimization
problem into a linear programming problem. To this end, let e and m repre-
sent user-defined lower and upper bounds on the distance between points in
the discretization, respectively. The bounds are easily worked into the set of
constraints, where Pi represents a point in non-parametrized, (x, y)-space as
follows:

P1 = α,
e ≤ L1 ≤ m
e ≤ L2 ≤ m

e ≤ ... ≤ m
e ≤ Lnt−1 ≤ m
Pnt = β.

The definition of lower and upper bounds for the distance between points
implicitly defines an upper and lower bound for the number of interior points.
The implicit definition would be in the form of an over-constrained problem
where solutions did not exist for too many or too few points. For instance, too
many points could not satisfy the minimum-distance set of constraints, and
too few points could not satisfy the maximum-distance set of constraints.
However, explicitly determining these bounds for nt would prove difficult.
For example, it could involve repeatedly sampling the curve to determine
the maximum number of e-length segments and the minimum number of m-
length segments. This would be possible but is inefficient. Another option is to
estimate the number of points needed [20]. However, if nt is to be estimated,
then the discretization is not guaranteed to be globally optimal. Therefore, a
global optimization problem, while possible, is not very practical in this case.
One of the aims of this work is to accelerate the generation of suitable grids
for simulation; moving the bottleneck for grid generation to the lowest level
in the grid generation hierarchy just increases the amount of time required
to generate a grid. The above method does, however, represent a solution to
the problem of generating automated, optimal edge grids.

Others have attempted dynamic programming methods for generating “op-
timal” discretizations for digital curves [30]. However, in general this should
prove no more effective than any of the approaches mentioned above. It is
true that the problem of generating a discretization to accurately represent



Automated Edge Grid Generation Based on Arc-Length Optimization 393

a curve exhibits optimal substructure, which is defined where “...an optimal
solution can be constructed efficiently from optimal solutions to its subprob-
lems” [31]. However, the number of distinct subproblems available that rep-
resent an optimal solution at a defined error bound can be infinite. Therefore,
instead of trying to find an optimal number of nodes required for an optimal
discretization (which seems very inefficient), the proposed algorithm will use
a divide-and-conquer (recursive) approach to generating an ideal discretiza-
tion relative to a given tolerance. The combination of the optimized segments
represents an optimal discretization for the entire curve.

This would generate an optimal solution using two segments to repre-
sent the entire curve – which can be stated another way as maximizing the
perimeter of the triangle formed by the existing segment and the two new
segments. The above optimization problem could then be applied recursively
to each new segment with nt = 3. This process breaks the task of optimizing
a discretization for an entire curve into optimizing a simple discretization for
smaller section of the curve with the following algorithm. The optimization
algorithm described above with nt = 3 for a given segment is:

Algorithm 1. Optimization Algorithm with nt = 3
1: nt = 3
2: ui : i ∈ {1, 2, 3}
3: u1 and u3 define the segment S1,3

4: procedure Local Optimization(S1,3)
5: L(S1,3) = length of segment
6: Place interior point u2 to maximize L(S1,2) + L(S2,3) within tolerance
7: end procedure

Algorithm 2. Optimization Algorithm for Discretization

D(Sj) : j ∈ 1
push S1 into list � list is queue if breadth-first, stack if depth-first
while list is not empty do

pop Sj from list
if Si is optimal then

do nothing
else

optimize Sj with Algorithm 1
push Si,i+ 1

2
into list

push Si+ 1
2
,i+1 into list

end if
end while

Algorithm 2, often referred to as adaptive refinement or enrichment (see
above), would be applied for each segment in the discretization. Also, since
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the discretization of the curve exhibits optimal substructure, the starting
point to the optimization algorithm and the method of refinement or enrich-
ment are irrelevant to the extent to which they prevent an optimal solution
from being generated. However, they obviously contribute to the efficiency of
the algorithm.

Now to define the optimization part of the above algorithm: Divide and
conquer can be considered to be based on multi-branched recursion. The ob-
jects to be constructed at the end of the recursion are the smallest set of
segments that approximates the arc length of the curve to a defined preci-
sion. This is not quantifiable without a priori knowledge of the arc length
of the curve. As discussed above, calculating the length of a curve for this
application is impractical. So how can the “goodness” of a discretization be
measured? At each step, the discretization will be refined on each segment
by locally optimizing an objective function analogous to the one developed
above. In order to minimize each segment’s objective function, arc-length
deficit (ALD), then a point P has to be placed on the curve on the seg-
ment such that the new sum of the arc lengths is changed maximally. Since
this entire project is to be done without calculating derivatives (see reasons
above), the optimization scheme chosen here is not given access to deriva-
tive information either. Since the objective function is a non-negative planar
curve, (O : C → ALD), any line search method of optimization could be
used. However, the method cannot have any requirements on differentiability
due to the possibility that the derivative of O could be discontinuous.

The golden section search method is implemented here, since, unlike the bi-
section method, it meets all of the above criteria and has the possibility to con-
verge superlinearly [32]. Alternatively, a pattern search [33], simplex [34, 35],
or interior point [36] method could be used. If the length of each segment lo-
cally approaches the portion of the curve it represents (i.e., the local objective
function is minimized), then the global length of the discretization approaches
the global length of the curve (a restatement of the property of optimal sub-
structure). Also, since the optimization algorithm for each segment is only con-
cerned about the portion of the curve it represents, then this method exhibits
scale-independence, which was one of our requirements.

Recursive algorithms require stopping criteria. In this case the stopping
criteria should not permit the method to infinitely subdivide the curve. For
instance, the aforementioned minimum and maximum segment lengths can be
used (and were implemented here). Even though using a minimum edge length
would prevent the infinite subdivision of the curve, another criteria is needed
such that the minimum segment length is not needed to satisfy the criteria.
This stopping criterion could be in the form of a delta-segment length. That
is, if the new segments’ combined length is below a defined fraction larger
than the existing segment then it should not be subdivided. This is a “pure-
greedy” method of subdivision, in that it does not consider the rest of the
“solution” when deciding to stop. One problem with this set of stopping
criterion is immediately apparent: the “large” segments could potentially not
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be subdivided because locally it is not justified–even if the subdivision of the
large segment would cause a global change in the length of the curve that is
significant. This value, global delta-segment, would have to be smaller than
the one used locally for each segment; otherwise, it would have no effect.
Therefore, an additional criterion is needed to determine if a segment should
be subdivided: if the total change in length of the discretization would be
changed by a defined fraction then it should be subdivided. The addition
of this last subdivision criterion makes the method “less-greedy”. This set,
minimum segment length, maximum segment length, local delta-segment,
and global delta-segment define a robust, minimum set of criterion needed
for generating an optimum solution to the problem of representing a curve
via arc-length deficit.

6 Error Bounds

Since the optimization function for each curve is not given access to deriva-
tive information, it is conceivable that it would not find the optimal value
and instead converge to a local minimum. However, the problem of escap-
ing local minima is common to all optimization problems. The addition of
the conditional that states: “refine a segment if the refinement changes the
length of the entire discretization by more than an epsilon” was deliberately
included to lessen the chance that a segment would not be refined when it
was prudent to do so. If the method succeeds in finding the global minimum
for each segment, then the error bound will be on the order of the segment
length. However, when the method fails to do so, or chooses a local minimum
instead, there is no formal way to express the error as a function of arc-length-
deficit–since there is no information about what the global minimum might
be (without explicitly calculating the length of the curve/segment). There-
fore, the error can only be quantified for when the method has succeeded in
finding the minimum for each segment.

Arc-length deficit is a single-valued function on the curve. The obvious
problem with this single-valued function is that the actual arc length of the
curve is never known and can therefore not be compared to the arc length of
the segments. How then can error be quantified? The error bounds could be
detailed for unimodal pieces of the curve–those where the ALD function has
one peak. However, for segments that do not have a unimodal distribution
of the ALD function on the local curve segment, the error estimation is not
straightforward. In fact, it is no longer possible to determine what the bound
for the arc-length deficit error is. However, we can state some observations
about the geometry related to these configurations:

Assume that the optimization function on a general segment found the
global minimum, i.e., maximized the change in edge length for the new com-
bined segments, for the segment and corresponding curve piece.With the given
geometry, an ellipsoid can be formed with the endpoints of the segment, F1 and
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F2, as the foci and the semi-major and semi-minor axes are defined implicitly
by the new segments connecting the new point with the endpoints of the cur-
rent segment, r1 and r2. “An ellipse is a curve that is the locus of all points in
the plane the sum of whose distances r1 and r2 from two fixed points F1 and
F2 (the foci) separated by a distance of 2c is a given positive constant 2a” [37].

Theorem 2. With the above assumption and definition, the entirety of the
curve represented by the segment must lie within the prolate spheroid formed
by the geometry below in Figure 5.

Fig. 5 Ellipse Geometry [25]

Proof. If the perimeter is maximized keeping 2c a constant, (r1 + r2) is max-
imized because 2c is a constant. Maximizing (r1 + r2) maximizes a from the
following relation with 2c being constant: r1 + r2 = 2a. Combining the fol-
lowing relation, b2 = a2 + c2, with the area of the ellipse, A = π ∗ a ∗ b, yields
A = π2 ∗a2(a2− c2). If c is a constant and a is maximized, then the maximal
area is obtained from maximal (r1 + r2). Which means the curve must be
inside of the spheroid defined by the ellipse. If the curve is not inside the
spheroid then there is a point on the curve such that (r1 + r2) is larger and
therefore the area is larger and therefore the volume is larger which means
that (r1 + r2) was not maximized.

Observe that there was no mention of the length of the curve inside of the
spheroid, or the ruled area that the segment and curve could define. This is
because there is no way this information can be known (without explicitly
calculating the length of the curve/segment). It is unfortunate that there
is no way to quantify the discretization error of a curve except in terms of
volume of the spheroids defined by each segment. This is nonintuitive, but
no more specificity is possible. The volumes would also be scale-dependent
and offer no insight into how well the discretization approximates the
curve – without some context.
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7 Growth Ratio

Our goal was to develop an automated edge grid generator that accurately
represents the underlying geometry. For this expressed purpose of represent-
ing the curve to a desired tolerance, the grid quality is not a concern. However,
for most applications, the grid quality directly affects downstream analyses.

Therefore, we explain how to modify our optimization problem in order to
yield an edge grid that both accurately represents the underlying geometry
and is of sufficient quality. Edge grid quality is typically defined in terms
of the growth ratio, i.e., the length of a segment divided by the length of
a topologically adjacent segment. If the growth ratio strongly deviates from
unity, the sizes of neighboring elements are not similar which leads to a
large disparity in the sizes of the surface and volume elements which are
generated. Such disparate length scales can cause problems for numerical
partial differential equation methods.

Traditionally edge grids are generated with an a priori defined growth
ratio along with other parameters that ensure that the grid has good quality.
Upper and lower bounds can be included for the grid quality (growth ratio)
as nonlinear constraints in the optimization problem. However, in this case,
the number of constraints grows very quickly, albeit linear in the number
of grid points. Alternatively, minimum and maximum growth rates could be
enforced by the optimization procedure by splitting an edge if the growth rate
is too large or small. A posteriori methods for quality control could include
some type of smoothing or optimization [38, 39, 40, 41].

One final method is to use the output from the edge grid generator, the
“optimal” grid, as input for a grid generator, which presumably has strict
quality control measures in place. This would be accomplished by using the
point spacing values present at the end points of the discretization at the end
points of the curve. The resulting edge grid from the grid generator could
then be analyzed for the purpose of determining how far it deviates from
“optimality” in the interior of the curve. If the deviation is too large, a point
spacing source could be inserted to adjust and control the point spacing as
desired during grid generation.

8 Experimental Results

Three curves were chosen to demonstrate the aspects of the developed meth-
ods. The first is a family of curves, Lissajous curves (Figure 6), which are
a combination of two perpendicular harmonic oscillations. This curve was
chosen due to the sharp changes in curvature and self-intersecting nature,
which are present in real-world applications. The second curve, a tricuspoid
(Figure 7) was chosen for the sharp, discontinuous features, which are also
present in real-world applications. In Figures 6 to 8 the curve is shown in red,
and the discretization is shown in black with vertices highlighted by circles
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indicating their position. Each curve was scaled so that the parametrization,
t, was normalized between zero and unity. In each case the curve was origi-
nally discretized using one segment corresponding to a vertex located at t = 0
and t = 1. Once the original discretization is created, the discretizations are
refined using Algorithm 2. Further results can be found in Table 1. In this
table, the true lengths of the curves can be found. The combined length of
the segments in each discretization are also given with the actual arc-length
deficit. As stated earlier the chief goal of the developed algorithms was to
accelerate the grid generation process. The presented results were generated
in no longer then 0.004 seconds for any curve or convergence criteria.

Fig. 6 Lissajous Curves: 10% deficit (left), 1% deficit (middle), 0.1% deficit (right);
x(t) = a ∗ sin(n ∗ t+ c), y(t) = b ∗ sin(t), a = b = c = 1, n = 3, 0 < t < 2π

For the Lissajous curve, the optimization can be seen to be effective and
efficient with regards to only generating vertices where the curvature is high
and not wasting vertices on the relatively “straight” portions of the curve.
In addition, the self-intersection present on this curve did not impede the
generation of an optimal edge grid.

Fig. 7 Tricuspoid Curve: 10% deficit (left), 1% deficit (middle), 0.1% deficit
(right); x(t) = a ∗ (2 ∗ cos(t) + cos(2 ∗ t)), y(t) = a ∗ (2 ∗ sin(t) − sin(2t)), a = 1,
0 < t < 2 ∗ π

For the Tricuspoid curve, the algorithm for optimal point placement can
be seen to be accurate with regards to placing a vertex at the discontinuities.
Placing a vertex at the discontinuity is efficient since no further nodes are
required to capture that feature of the curve. It can be seen that further
refinements are placed elsewhere in order to capture curvature.



Automated Edge Grid Generation Based on Arc-Length Optimization 399

Fig. 8 Cocheloid Curve: 10% deficit (left), 1% deficit (middle), 0.1% deficit (right);
x(t) = 2 ∗ t+ 3 ∗ sin(7 ∗ t), y(t) = t+ 8 ∗ cos(3 ∗ t), 0 < t < 1

For the Cochleoid curve, an interesting feature stands out: when using 10%
as the ALD, a self-intersecting discretization was generated where the curve
does not exhibit self-intersection. This is due to the rapid change in curvature
near the center of the spirals. In general, this cannot be avoided since a priori
knowledge of where the curve is self-intersecting would be needed to refine
the discretization where appropriate. When refined the result is valid. The
results from using 1% and 0.1% ALD can be seen to accurate and increase
in resolution where the curve exhibits changes in curvature. On the outer
portions of the spiral, the discretization is less refined than near the center
of the spirals.

Table 1 and Table 2 summarize the results from discretizing the three
curves. Each row in Table 1 shows the results from a particular percentage
change in edge length that was used as the refinement constraint. In each row
the discretization length of each curve is shown along with the arc-length
deficit relative to the true length of the curve and number of segments in
parenthesis. Each result is less than the desired arc-length deficit for the entire
curve – except for 1% result for the Lissajous curve which is slightly higher.
Each row in Table 2 shows the number of segments corresponding to each
discretization and the number of function evaluations. Other test results run
by the authors showed similar results in accuracy and robustness. It should be
noted that no effort was made to prematurely optimize the number of function
evaluations, e.g., caching. Algorithmic optimization proved to not be needed
due to the extremely low computational cost of the existing implementation.

Table 1 Discretization length with respect to true curve length, arc-length deficit

Lissajous Tricuspoid Cochleoid

True Length 13.0653 16.0 2.94
10% deficit 12.7123 (2.7%) 15.5885 (2.5%) 2.7916 (5.07%)
1% deficit 12.884 (1.4%) 15.87 (0.78%) 2.916 (0.0842%)
0.1% deficit 13.04 (0.166%) 15.99 (0.058%) 2.939 (0.076%)
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Table 2 Number of segments in final discretization, function evaluations

Lissajous Tricuspoid Cochleoid

10% deficit 8, 1599 4, 615 11, 2337
1% deficit 21, 4797 7, 1353 27, 6273
0.1% deficit 121, 29397 25, 5781 86, 20787

9 Conclusions and Future Work

An algorithm for edge grid discretization through local optimization was de-
veloped. In an effort to accelerate the process of grid generation, minimal
user input is required for the developed method: a single parameter which is
used as a limit for local refinement. The results show that the generated edge
grid is optimal with respect to arc-length deficit. In addition, the process
was shown to be robust to discontinuities, abrupt changes in curvature, and
self-intersections. Results were shown here in two dimensions for ease of pre-
sentation. The developed algorithm is easily abstracted to three dimensional
curves through a change in the kernel for edge length calculation.

Future work will include a comparison to a global optimization problem
formulated with the presented constraints and an additional constraint of a
given number of edge grid points. Grid quality measures will also be included
in the optimization problem via a priori quality constraints.

More work will also be done to abstract the problem from strictly one-
dimensional simplices (edge grids) to two-dimensional simplices (triangles).
While it was straightforward to determine which part of a curve an edge grid
represents, it is non-trivial to determine which part of a surface a triangle rep-
resents. The development of a map between the planar elements representing
a surface and the underlying geometry would be one of the chief tasks moving
forward. Additionally, the edges, as well as the triangles, in the discretization
must considered when optimizing the surface grid.

Finally, we will apply our edge and surface grid generation routines on
problems stemming from real-world applications, including those from me-
chanical engineering and medicine. One challenge that will need to be faced
is the development of a surface grid generator which can develop an optimal
representation of a surface from noisy data, e.g., medical imaging. An engi-
neering application would be to accelerate the mesh generation process for
fluids simulations by automatically generating surface meshes that capture
local geometry.
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