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Summary. Interpolation techniques are used to estimate function values
and their derivatives at those points for which a numerical solution of any
equation is not explicitly evaluated. In particular, the shape functions are
used to interpolate a solution (within an element) of a partial differential
equation obtained by the finite element method. Mesh generation and quality
improvement are often driven by the objective of minimizing the bounds on
the error of the interpolated solution. For linear elements, the error bounds
at a point have been derived as a composite function of the shape function
values at the point and its distance from the element’s nodes. We extend the
derivation to quadratic triangular elements and visualize the bounds for both
the function interpolant and the interpolant of its derivative. The maximum
error bound for a function interpolant within an element is computed using
the active set method for constrained optimization. For the interpolant of
the derivative, we visually observe that the evaluation of the bound at the
corner vertices is sufficient to find the maximum bound within an element. We
characterize the bounds and develop a mesh quality improvement algorithm
that optimizes the bounds through the movement (r-refinement) of both the
corner vertices and edge nodes in a high-order mesh.

1 Introduction

Interpolation techniques are used to estimate the solutions of partial differen-
tial equations (PDEs) at those points for which the equations have not been
explicitly solved. Mesh generation is partly driven by the estimation of the er-
rors for those interpolation techniques1. In the finite element method (FEM),
linear, quadratic, or higher-order basis expansions of the solution are used

1 The optimization of the discretization error and improvement of the conditioning
of the stiffness matrix are some of the other factors that play a vital role in mesh
generation.
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on an appropriate mesh, and a corresponding interpolation technique is used
to estimate the solution within an element. Thus, a characterization of error
bounds for all types of mesh elements is necessary to aid high-quality mesh
generation. In this paper, we derive and characterize the errors bounds as-
sociated with quadratic triangular straight-sided finite elements and provide
an algorithm to optimize the error bounds.

Numerous papers [1, 2, 3, 4] that discuss a priori and a posteriori error
bounds or their estimates have been published for linear elements. Notably,
Shewchuk [5] provided a comprehensive characterization of quality metrics
for linear elements. We discuss some of these prior results in Section 2. For
quadratic elements, however, only a limited understanding of the behavior [6]
of error bounds is known. In this paper, we extend the understanding of
the error bounds to include the analysis of interpolation error for quadratic
straight-sided triangular elements. We discuss the background concepts used
in this paper in Section 3 and derive the error bounds in Section 4.

We visualize the error bounds within a quadratic triangular element and also
the quality metrics obtained by normalizing of the error bounds with respect
to the area of the triangle. The visualizations help us develop an algorithm to
compute the error bounds and improve it through optimization-driven vertex
movement (r-refinement) techniques. We provide the visualizations in Section
5 and the details of the implementation of the mesh quality improvement al-
gorithm in Section 6.

We carry out some numerical experiments to determine the effects of the
optimization-driven vertex movement algorithm on the error bounds. We
discuss the results of the experiments in Section 7. Finally, we conclude the
paper with possible future work in Section 8.

2 Related Work

The estimation of error bounds can be broadly classified into the following
two main categories: a priori and a posteriori error estimation. An a pri-
ori estimation is carried out before any numerical simulation of a physical
phenomenon takes place, and a posteriori error estimate is computed after
some knowledge of the solution is obtained through any method. Both forms
of error estimation drive the mesh generation and refinement process. In this
paper, we focus on an a priori error estimation technique. Sometimes, the er-
ror bound is estimated through the means of a quality metric that is defined
as a function of the geometry of an element. The quality metric may also
capture the effect of the element on the conditioning of the stiffness matrix.

For linear elements, some examples of a priori analysis include the works of
Babuška and Aziz [1], Knupp [2], Munson [3], and Baker [4]. A comprehensive
analysis of the associated error estimates and quality metrics in these papers
and many other such metrics is present is Shewchuk’s manuscript [5].
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For high-order elements, some of the quality metrics for linear elements de-
scribed above are used for the purpose of mesh quality evaluation. Examples
of this work include Lu et al. [7, 8] and Lowrie et al. [9]. In [7], the quality
of a curved high-order element is considered to be the product of the follow-
ing two quantities: (a) the quality of a straight-sided linear element with the
identical location of the corner vertices, and (b), the ratio of the largest and
the smallest value of the determinant of the Jacobian matrix of the physical
coordinate system with respect to the parametric coordinate system. Lowrie
et al.’s [9] paper looks at the correlation between the quality metric for a lin-
ear element and the solution accuracy for high-order meshes through a series
of numerical experiments.

Although Lowrie et al.’s paper establishes a strong correlation between
quality of a linear element and the corresponding high-order element, a theo-
retical basis has not been provided for the claim. Besides, the location of the
additional nodes in high-order elements is fixed with respect to the barycen-
tric coordinate system in their analysis. We believe that movement of the
edge nodes in a quadratic triangular element and other additional nodes in
higher-order elements can reduce the error bound in certain contexts.

For elements of very high order, several node placement techniques such
as electrostatic points [10], Fekete points [11], Chen-Babuška points [12],
etc. have been proposed. These techniques have not been derived from an
explicit error bound formulation, but have been shown to lower the Lebesgue
constant [13], which bounds the error of an interpolated function with respect
to the most accurate (measured in L∞ norm) polynomial interpolation of
the same function. The vertex placement techniques have been derived by
minimizing certain properties such as the electrostatic potential, condition
number of the Vandermonde matrix, etc. In these papers, the analysis is
carried out on a equilateral triangular high-order element. A natural question
is: would the node placement be different for other triangles? We attempt to
answer this question by deriving error bound for quadratic, straight-sided
triangular elements and studying its characteristics.

3 Background

In this section, we present some background concepts that are used in this
paper.

3.1 Barycentric Coordinates and Shape Functions

A barycentric coordinate system, denoted by ωi(x), 1 ≤ i ≤ 3, is used to
describe every point in a triangle as a weighted sum of the coordinates of
the triangle’s vertices. In order to compute the weights, the point is joined to
each of the vertices by straight lines, and the areas of three smaller triangles
are computed. The weight of a vertex for the point is given by the ratio of
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the signed area of a smaller triangle (that does not contain the vertex) with
the total signed area of the triangle. The barycentric coordinates sum to one
for every point in the plane.

Linear interpolation can be carried out using the barycentric coordinate
system. Let the value of the function be fi at vertex i of a triangle. For a
point P in the triangle, let the barycentric coordinates be ωi(xP ), 1 ≤ i ≤ 3.

The linearly interpolated value at P is given by
∑3

i=1 ωi(xP )fi.
Typically, Lagrange polynomial interpolation over a triangle is carried out

by assigning weights to each of its vertices. These weights vary for every
point in the triangle and are known as shape functions. The shape function
for a vertex i is equal to 1 at that vertex and 0 at all other vertices of the
triangle. As we infer from above, the shape functions for a linear triangle is
equivalent to the barycentric coordinate system. For a quadratic triangle, the
shape functions, denoted by λi(x), 1 ≤ i ≤ 6, are as given below:

λ1(x) = ω1(x) ∗ (1− γ4 ∗ ω2(x)− γ3 ∗ ω3(x)),

λ2(x) = ω2(x) ∗ (1− γ5 ∗ ω3(x)− γ1 ∗ ω1(x)),

λ3(x) = ω3(x) ∗ (1− γ6 ∗ ω1(x)− γ2 ∗ ω2(x)),

λ4(x) = γ1 ∗ γ4 ∗ ω1(x) ∗ ω2(x),

λ5(x) = γ2 ∗ γ5 ∗ ω2(x) ∗ ω3(x),

λ6(x) = γ3 ∗ γ6 ∗ ω3(x) ∗ ω1(x),

where (see Fig 1) γ1 = ||A4−A2||
||A1−A2|| , γ2 = ||A5−A3||

||A2−A3|| , γ3 = ||A6−A1||
||A3−A1|| , γ4 =

||A4−A1||
||A1−A2|| , γ5 = ||A5−A2||

||A2−A3|| , and γ6 = ||A6−A3||
||A3−A1|| . In this paper, vertices A1,

A2, and A3 called corner vertices, and vertices A4, A5, and A6 are called
edge nodes.
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3
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A
4

A
6

Fig. 1 A quadratic triangle with the three edge nodes that purposefully do not lie
at the mid-points of the edges. In this paper, vertices A1, A2, and A3 called corner
vertices, and vertices A4, A5, and A6 are called edge nodes.

3.2 Mesh Quality Improvement by Vertex Movement

Mesh quality improvement is carried out by moving vertices (r-refinement),
by swapping edges, or by adding and deleting vertices (h-refinement). These
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operations help improve the one or more of the following properties: a) inter-
polation error, b) conditioning of the associated stiffness matrix for solving
a PDE using the FEM, c) discretization error, etc. We restrict ourselves to
mesh quality improvement through vertex movement for the purpose of min-
imizing the bounds on the interpolation error. The movement of the vertices
is dictated by a numerical optimization algorithm such that the quality of
the mesh, computed using some composite function of the qualities of all the
triangles in the mesh, is improved. We use the bounds on the interpolation
error as the quality metric, and the nonlinear conjugate gradient algorithm
is used to minimize the objective function given by

∑m
i=1 q

p
i , where m is the

number of elements in the mesh, qi is the quality of element i, and p is some
integer. Note that a larger p penalizes poor elements more; and, thus, the
quality of the worst element is more likely to be improved.

3.3 Nonlinear Conjugate Gradient Method

The nonlinear conjugate gradient method [14] is used to solve unconstrained
optimization problems. We use this method in following two contexts: a) in
the computation of bounds on the interpolation error within a triangle, and
b) in the movement of vertices for mesh quality improvement. In both the
contexts, we employ a line search technique in order to compute an optimal
solution.

3.4 Active Set Method

The active set method [14] is used on solve constrained optimization prob-
lems. In our computation of the error bounds over a triangle, the optimal
value may lie on the boundary of the triangle. When such an instance is
found, the active set method is used to solve the optimization problem. We
have described the optimization algorithm in Section 6 for both the error
bound computation and mesh quality improvement.

4 Interpolation Error Bound

In this section, we derive the bounds on the interpolation error for second-
order triangular elements for both the function and its derivative. The proofs
for the error bounds closely follow the techniques employed by Johnson [6].
We denote a function by v(x) and its quadratic approximation over a tri-
angle by πv(x). In order to establish an error bound on some approxima-
tion of a function, we assume that the third derivative of the function is
bounded by some constant k. The bound k is necessary because the bound
on ‖v(x) − πv(x)‖ or ‖∇v(x) − ∇πv(x)‖ would behave arbitrarily if v(x)
behaves arbitrarily.
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In [6], barycentric coordinates were used to establish the interpolation error
bound on a linear triangular element. In order to derive the bounds for high-
order triangles, we use the shape functions associated with Lagrangian poly-
nomial interpolation used in FEM. In our analysis, we denote the barycentric
coordinates as ωi(x) for i ∈ {1, 2, 3} and shape function parameters as λi(x)
for i ∈ {1, ..., 6} for straight-sided quadratic triangular elements. Each of the
vertices of the quadratic triangle is denoted by ai, 1 ≤ i ≤ 6. In the derivation
below, x and y are 2D vectors, (x1, x2) and (y1, y2), representing points on
a 2D plane. Also, e1 and e2 are orthogonal unit vectors along the coordinate
axes.

In general, a quadratic approximation of a function v(x) over a triangle K
has the representation

πv(x) =

6∑

i=1

v(ai)λi(x), (1)

where πv(x) is the quadratic approximation and x ∈ K. The Taylor series
expansion at x ∈ K is given by v(y) = v(x) + L(x, y) + Q(x, y) + C(x, y),
where

L(x, y) =

2∑

j=1

∂v

∂ej
(yj − xj),

Q(x, y) =
1

2

2∑

i,j=1

∂2v

∂ei∂ej
(x)(yi − xi)(yj − xj),

C(x, y) =
1

3!

2∑

i,j=1

∂3v

∂ei∂e2j
(ζ)(yi − xi)(yj − xj)

2,

and ζ is a point on the line segment between x and y. By choosing y = ai, we
have v(ai) = v(x) + L(x, ai) +Q(x, ai) + C(x, ai). By substituting for v(ai)
in the quadratic representation (Eq. (1)), we obtain

πv(x) =

6∑

i=1

λi(x) (v(x) + L(x, ai) +Q(x, ai) + C(x, ai)) . (2)

As it has been shown for linear interpolation over a triangle [6], we will
show that the following lemma holds true for shape functions associated with
quadratic interpolation of a solution over a triangle.

6∑

i=1

λi(x) = 1 (3)

6∑

i=1

λi(x)L(x, ai) = 0 (4)
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6∑

i=1

λi(x)Q(x, ai) = 0 (5)

By substituting the equations above into Eq. (2) and then rearranging the
terms, we obtain

πv(x) − v(x) =

6∑

i=1

λi(x)C(x, ai).

Since the third derivative is bounded by k, we obtain the following inequality:

|πx(v) − v(x)| ≤ k

3!

6∑

i=1

|λi(x)|||x − ai||32. (6)

In order to prove the lemma stated above, we construct a new function
v∗(x) whose value, gradient, and the Hessian at a given x∗ is identical to that
of v(x). Since the left-hand side of the equalities stated in the lemma are only
a function of the coordinates of x∗, replacing v(x) with v∗(x) will evaluate
the left-hand side to the same value. Since a function v∗ can be constructed
for every point x∗ in the triangle, we claim that the left-hand side of the
lemma evaluates to the same value for all points in the triangle.

Consider a constant function v∗(x) = c = v(x∗). The quadratic model

is given by πv∗(x) =
∑6

i=1 λi(x)v
∗(ai). Since v∗(x) is a constant func-

tion, πv∗(x) = v∗(x). Thus,
∑6

i=1 λi(x) = 1, which prove Eq. (3). Con-
sider a linear function v∗(x) whose gradient is identical to gradient of v(x)

at some x∗. Again πv∗(x) = v∗(x) =
∑6

i=1 λi(x)v
∗(ai). Also, since the

second and the third derivative vanish at all points for a linear function,
Q(x, ai) = 0 and C(x, ai) = 0. By substituting for Q and C in Eq. (2), we

obtain πv∗(x) =
∑6

i=1 (λi(x)v
∗(ai) + λi(x)L(x, ai)). Since πv∗(x) = v∗(x),

∑6
i=1 λi(x)L(x, ai) = 0, which proves Eq. (4). Now consider a quadratic

function v∗(x) whose value, gradient, and the Hessian are identical to v(x)
at x∗. As in the previous case, πv∗(x) = v∗(x), and this function can
be uniquely represented by the value of v∗(x) at ai, 1 ≤ i ≤ 6. Thus,
∑6

i=1 λi(x)Q(x, ai) = 0, which proves Eq. (5).
For linear triangle, the global maximum for interpolation error bounds is

present at the center of the mincontainment circle2. Unfortunately, we were
unable to find such an expression that would provide the local maxima for
quadratic triangles. Thus, we resort to numerical optimization techniques to
compute the location of the local maxima.

We also derive the error bounds for the gradient of a finite element solu-
tion in a similar way. By differentiating Eq. (1) and using the Taylor series
expansion at x, we obtain the gradient of the quadratic model function as
shown here:

2 Mincontainment circle is the circumcircle for an acute triangle; for an obtuse
triangle, it is the circle with the longest side as the diameter.
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∂πv(x)

∂ej
=

6∑

i=1

∂λi(x)

∂ej
(v(x) + L(x, ai) +Q(x, ai) + C(x, ai)) . (7)

As described above, it is can shown by constructing functions v∗(x) that the
following lemma holds:

6∑

i=1

∂

∂ej
λi(x) =

∂

∂ej

∑
λi(x) = 0, (8)

6∑

i=1

∂

∂ej
λi(x)L(x, ai) =

∂v

∂ej
, (9)

6∑

i=1

∂

∂ej
λi(x)Q(x, ai) = 0, (10)

for j = {1, 2}. By substituting this into Eq. (7), we obtain

∂πv(x)

∂ej
− ∂v(x)

∂ej
=

6∑

i=1

∂λi(x)

∂ej
C(x, ai),

and the inequality

∣
∣
∣
∣
∂πv(x)

∂ej
− ∂v(x)

∂ej

∣
∣
∣
∣ ≤

k

3!

6∑

i=1

∣
∣
∣
∣
∂λi(x)

∂ej

∣
∣
∣
∣ ||x− ai||32

is obtained by using the bound k on the third derivative of v(x). This can be
simplified to

∣
∣
∣
∣
∂πv(x)

∂ej
− ∂v(x)

∂ej

∣
∣
∣
∣ ≤

k

3!

6∑

i=1

|∇λi(x)|2 ||x− ai||32,

for j = {1, 2}. Thus,

|∇ (πv(x) − v(x))|2 ≤
√
2k

3!

6∑

i=1

|∇λi(x)|2 ||x− ai||32. (11)

5 Characteristics of the Interpolation Error Bounds

In this section, we describe some of the characteristics of the bounds we
obtained for interpolation error of a function and its gradient. We use these
characteristics to design an algorithm to compute the bounds for a triangle
and to develop an algorithm to improve the bounds.
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5.1 Interpolation of the Function

In order to gain an understanding of the error bounds provided in Eq. (6),
we plot the error bounds for various triangles as shown in Fig. 2. The figure
provides the plots for the error bounds within a triangle. The black dots
in the figure denote the vertices of the quadratic triangles. Notice that the
error bounds are the low near the vertices, and they grow as we move away
from them. Also notice that the bounds are discontinuous at points where
the shape function vanish, i.e., λi(x) = 0, due to the presence of the absolute
function, |λi(x)|, in the equation. For a straight-sided quadratic triangle, the
bounds are discontinuous along the lines joining the edge nodes. There are
three-four local maxima in each plot, and three higher maxima are present
near the three vertices.

In Fig. 2(a)-(e), the edge nodes are chosen to be the mid points of the
respective edges. For an equilateral triangle, the error bound are symmetric
with respect to all its vertices, but for other triangles, the global maximum
is found near the vertex with the smallest angle. In Fig 2(f)-(h), we have
moved the edge nodes from the midpoints towards the smaller angles on the
respective sides of the triangle. Intuitively, we move the edge nodes towards
the higher maximum in order to reduce the error in the neighborhood. In all
the cases, the higher maximum is present near the smaller angle on the side
of a triangle. We were able to improve the error bounds only for the right
triangle, scalene triangle, and long isosceles triangle by this operation. The
equilateral triangle and short isosceles triangle did not respond positively
to the movement of the vertices on the edge, i.e., the bounds could not be
improved by vertex movement because the local optimum had already been
reached. For the right triangle, scalene triangle, and long isosceles triangle,
we observed an improvement of 3%, 7%, and 11%, respectively.

5.2 Interpolation of the Gradient of the Function

As in the section above, we visualize the error bounds for the magnitude of
the gradient of the interpolated function by plotting the contours of Eq. (11).
For linear triangles, the corresponding bounds yield a result that show that
the bounds are locally maximum at the vertices of the triangle3. For quadratic
triangles, too, the bounds are locally maximum at the three vertices of the
triangle. The plots are show in Fig. 3. Since the error was observed to be
maximum at the vertices, computation of the bound does not require the use
of numerical optimization algorithms. A formal proof for this claim is not
available at this point. We have not shown the plot for equilateral triangle
because they are similar to these plots and also very symmetric. A closer

3 The error bounds are locally maximum because they are constrained to be inside
the triangle. By locally maximum, we mean that the Kahn-Karush-Tucker (KKT)
conditions are satisfied.
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(a) equilateral triangle (b) right triangle

(c) short isosceles triangle (d) scalene triangle

(e) long isosceles triangle (f) improved right triangle

(g) improved scalene triangle (h) improved long isosceles triangle

Fig. 2 A contour plot of the error bounds of the interpolant (as given in Eq. (6)) for
various triangles. Note that the scaling of the axes and the colors are different for
every plot. We moved the edge nodes for only those triangles for which improvement
was observed. This improvement comes at a cost of the increasing the bounds on
the error in other parts of the triangles.
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(a) right triangle (b) short isosceles triangle

(c) scalene triangle (d) long isosceles triangle

(e) improved right triangle (f) improved short isosceles triangle

(g) improved scalene triangle (h) improved long isosceles triangle

Fig. 3 Contour plots of the error bounds of the gradient of the interpolant (as given
in Eq. (11)) for various triangles after being normalized with respect to their area.
Note that the scaling of the axes and the colors are different for every plot. The
plots are smooth, but appear nonsmooth due to insufficient sampling and rendering.
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observation of the plots reveal that greater improvements in the bounds can
be achieved by moving the edge nodes than in the previous case. For the right
triangle, scalene triangle, short isosceles triangle, and long isosceles triangle,
we observed an improvement of 14.5%, 15.9%, 20.9%, and 67.7%, respectively.

5.3 Saddle Point in the Movement of the Edge
Vertices

Another characteristic of the error bound is the existence of saddle points with
respect to the location of the edge nodes. For instance, a typical quadratic
right triangle contains the edge nodes at the mid point of the respective
edges. We observe that moving both the edge nodes on the sides forming the
right angle improves the error bound of the interpolant and the gradient. But
moving only one of the edge nodes results in the worsening of the maximum
error bounds. Analytical or finite difference computation of the gradient of the
error bound with respect to the location of the edge node will not provide
the desired descent direction. Heuristic techniques have to be designed to
determine the direction and the magnitude of the movement of edge nodes
for the optimization of the error bounds.

5.4 Scale Invariance

Eqns. (6) and (11) are not normalized for the area of the triangle. In order to

convert them to a shape-based metric, the equations can be divided by (Ar)
3
2 ,

where Ar is the area of the triangle. The inverse of the above metric is usually
plotted so that the quality is maximum for an equilateral triangle and the
quality is 0 for a degenerate triangle. The contour plots for the scale invariant
quality metrics associated with the interpolation error is shown in Fig. 4. Two
of the three corner vertices of the triangle are fixed at (0.25, 0.00) and (0.75,
0.00), and the third corner vertex is free to move in the plane. The edge nodes
are fixed to be the mid points of the corresponding edges. The interpolation
error bound contours are plotted as a function of the position of the third
corner vertex. The contours are very similar to corresponding bounds for
linear elements as shown in [5], but the relative magnitudes of the bounds
are different because they have been derived from different formulations.

6 Implementation

In this section, we discuss the implementation of the algorithm to compute the
bound on the interpolation error for a quadratic triangle and an algorithm
to improve the bounds. Both the computation of the bounds and its im-
provement are numerical optimization problems. While both are constrained
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(a) function interpolation error (b) gradient interpolation error

Fig. 4 Contour plots of the normalized scale-invariant quality metrics associated
with the interpolation error bound and the gradient interpolation error bounds.
The contours are very similar to the corresponding bounds for linear elements as
shown in [5].

optimization problems, the latter can be solved using unconstrained opti-
mization algorithms. In the latter problem, the vertices are constrained to
define a triangle of positive orientation, but the cost of the objective function
associated with near-degenerate triangle is very high. This is because either
the quality of the triangle is normalized to take the area of the triangle into
account or a near-degenerate triangle leads to bigger triangle in the neigh-
borhood whose bounds are very large. Thus, the problem behaves like an
unconstrained optimization problem.

6.1 The Active Set Method for Interpolation Error
Bound Computation

From the contour plots in Fig. 2, we know that we need to compute three
maxima that may be located inside the triangle or on its boundary. The
active set method requires a starting iterate, and by positioning the initial
iterate at strategic locations, we may be able to compute all three maxima.

In order to compute the initial iterates, we join the edge nodes so that
the triangle is divided into four parts. The centroids of the three of the four
triangles that contain the corner vertices are chosen as initial iterates. The
active set method described in Algorithm 1 is used to find the maxima near
each of the three iterates. Note that the gradients are continuous within each
of four parts of the triangle. Thus, the gradient computation can be done
analytically. The maximum of the three bounds returned by the active set
method is chosen as the quality for a triangle.
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Algorithm 1 . The active set method for computing the maximum bound
of the interpolation error.

start the iteration with point x0 and i = 0.
while the KKT conditions are not satisfied do

if xi is on the border then
compute the gradient
if the gradient points outside the domain then

maximize the function along the border
else

carry out a line search in the usual manner as described below
end if

else
compute the gradient and decent direction
carry out a line search along the decent direction
if the line search takes xi outside the triangle then

snap xi back to the edge
end if

end if
update xi and increment i

end while

6.2 The Nonlinear Conjugate Gradient Method for
Mesh Quality Improvement

The nonlinear conjugate gradient method for mesh quality improvement is
implemented as it is implemented in Mesquite [15]. We implemented a Polak-
Ribière variant of the algorithm, and the gradient computation is carried
out using finite differences. The p-norm of the qualities for all triangles was
chosen as the objective function because the worst element is more likely to
be optimized for a high p. A global optimization technique is used in which
the gradient (and the descent direction) of the objective function is computed
for all the corner vertices, and the vertices are moved simultaneously. The
magnitude of the gradients dictate the relative distances by which the vertices
move in an iteration.

For an edge node, however, a direction was chosen by observing how the
lowest of the three maxima changes as a result of the movement of the edge
node along an edge4. Note that a typical edge node affects the quality of two
triangles. Thus, it is necessary to examine the effect of its movement on both
triangles and then choose a direction to move. We chose the direction that
increases the p-norm of the lowest maxima of the two triangles. We hope that
that the increase in the lowest maxima translates to a decrease in the highest
maxima. The magnitude of the increase in the p-norm helps us determine the
relative distances by which all the edge nodes should be moved for effective

4 Recall that the error bound function has a saddle point with respect to the
location of an edge node if the node at the mid point of the edge.
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quality improvement. This heuristic technique enables global optimization
of edge nodes through a line-search technique. Note that the actual element
quality, the highest maxima, is optimized in the line search.

6.3 Possible Acceleration Techniques

We have to carry out numerical optimization iterations to compute the qual-
ity associated with the interpolation error. This may be expensive if im-
plemented naively. Techniques such as memorization of the location of the
maximum bound may be used, but they are likely to improve the time only
by a limited factor. A practical technique is to store a precomputed table for
various location of the triangle vertices, and to refer to the table for quality
evaluation. Simple interpolation techniques may be used to interpolate for
vertex locations that are not present in the table.

For quality metric associated with the error in the gradient of the function,
such acceleration techniques are useful, but not necessary as we have observed
that the maximum bounds are found at the vertices of the triangle. Thus, a
constant number of computations are necessary to compute the quality.

7 Experiments

In order to assess the impact of our mesh quality improvement algorithm,
we carry out numerical experiments and examine the improvement of the
bounds. The purpose of this section is to demonstrate the possible mesh
quality improvement through the use of the an appropriate quality metric.
We find that small meshes were sufficient for this purpose. The experiments
can be carried out for large meshes as well, but we believe no additional
insights can be gathered from them.

The algorithm is implemented in C++ as described in the previous section.
Gmsh [16] was used to generate a small mesh with 252 element and 545
vertices. The in-built mesh quality optimization routine in Gmsh was used to
improve the mesh before its quality was improved by our algorithm. Gmsh
generates a mesh with edge nodes at the mid point of the respective edges.
We improve the mesh by moving both the corner vertices and edge nodes.

In our first experiment, we seek to optimize the error bound for the inter-
polated function. Since we carry out a numerical optimization routine just to
compute a quality of an element in this experiment, the implementation is not
yet optimal. A practical implementation, however, may use some of the ac-
celeration techniques described at the end of the previous section. In our ex-
periment, the maximum error bound in the initial mesh was about 293 units.
By moving just the corner vertices, the maximum bound was improved to 268
units (8.5% improvement). Our algorithm was able to improve it to about 263
units (10.0% improvement) by moving both the edge nodes and corner ver-
tices. The root mean square (RMS) bound was marginally improved from 172
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(a) initial mesh (b) optimized mesh

Fig. 5 The initial and optimized quadratic mesh. The initial mesh was generated
using Gmsh [16], and the mesh was optimized to minimize the bound on the error
gradient of an interpolated function. Notice the movement of the edge nodes from
the mid points of the respective edges, especially for triangles with very small or
large angles. Encircled regions show a large movement of the edge nodes from the
mid point of their respective edges.

to 171 units (0.5% improvement) in both the cases. Note that the bounds were
not normalized for the areas of the triangles and also that the mesh quality was
improved in Gmsh before it was improved here.

In our second experiment, we seek to optimize the error bound in the gra-
dient of the interpolated function. The maximum bound in the initial mesh
was 721 units, and the RMS bound was about 456 units. First, by moving
only the corner vertices, we were able to improve the maximum bound to 658
(8.7% improvement), and the RMS bound to 426 units (6.5% improvement).
Next, we moved the edge nodes and corner vertices, but only after the corner
vertices had been optimized. In this case, the maximum bound was improved
to 557 units (22.7% improvement), and the RMS bound was improved to 380
units (16.7% improvement). Finally, we moved both the edge nodes and cor-
ner vertices in all the iterations. The maximum bound improved to 539 units
(25.2% improvement), and the RMS bound improved to 378 units (17.1%
improvement). The initial and the final meshes for the last experiment are
shown in Fig. 5.

From the above experiments, we infer that using the r-refinement technique
to improve the bounds for the gradient of the interpolated function is more
effective than using the technique to improve the bounds for the function
interpolation. The first experiment is prohibitively expensive without any
acceleration technique. It should be used sparingly and only when necessary.
A quality metric used for linear elements may suffice for quadratic elements.
One possible application of using the error bound is the placement of vertices
on a surface mesh to improve the geometric fidelity. As the number of surface
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elements are low compared to the number of elements in a volume mesh,
the error bound quality metric would work well for this purpose. The second
experiment takes about as much time as an implementation in which any
other linear element quality metric used to optimize the mesh. This is because
we compute the bound on the gradient only at the three corner vertices. This
was possible because we observed that the location of maximum bound is
always at the corner vertices. Note that a formal proof for this claim is not
available at this point.

8 Conclusions and Future Work

In this paper, we adapted a framework to bound the errors observed in func-
tion interpolation and its derivatives for a quadratic triangle. The framework
can be extended to quadratic tetrahedra or other high-order elements used
in FEM. Visualization of the bounds has revealed some of its characteris-
tics that can enable high-quality mesh adaptation for numerical solvers. The
study of the characteristics has also helped us develop a numerical technique
to optimize the error bounds, and we have shown the improvement in a mesh
through its use.

This work can be easily extended to include other quadratic elements such
as quadrilaterals, tetrahedra, and hexahedra and also to include cubic or
higher-order triangles. We have only considered straight-sided triangles in
this paper. Curvilinear triangles are also present in contemporary high-order
meshes, and the behavior of the error bounds over such elements can shed
light on appropriate ways to define a quality metric. Such definitions [17]
may also help in untangling high-order meshes efficiently. We assumed that
the third order derivatives were isotropic in our study. We also plan to study
anisotropy and its effect on vertex placement.

It would be interesting to compare some of the vertex placement techniques
mentioned in Section 2 for high order elements [10, 11, 12] with the technique
described in this paper.

Geometric fidelity is also an important factor in numerical simulations. Our
interpolation bounds could be used to place vertices on the surface meshes to
best approximate the underlying geometry. Its effect on numerical simulation
can also be studied by carefully-constructed experiments.

Other important factors in determining the mesh quality include the condi-
tioning of the stiffness matrix constructed from the mesh and discretization
errors. These facets of high-order finite element quality metrics should be
studied in detail as it has been studied for linear elements [5].
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