
Polyhedral Mesh Generation and
Optimization for Non-manifold
Domains

Rao V. Garimella, Jibum Kim, and Markus Berndt

Los Alamos National Laboratory, Los Alamos, NM, USA
{rao,jibumkim,berndt}@lanl.gov

Abstract. We present a preliminary method to generate polyhedral meshes
of general non-manifold domains. The method is based on computing the
dual of a general tetrahedral mesh. The resulting mesh respects the topology
of the domain to the same extent as the input mesh. If the input tetrahe-
dral mesh is Delaunay and well-centered, the resulting mesh is a Voronoi
mesh with planar faces. For general tetrahedral meshes, the resulting mesh is
a polyhedral mesh with straight edges but possibly curved faces. The initial
mesh generation phase is followed by a mesh untangling and quality improve-
ment technique. We demonstrate the technique on some simple to moderately
complex domains.

1 Introduction

Numerical solution of PDEs by commonly used methods typically requires
that the geometric domain be discretized or meshed using elements such as
tetrahedra, hexahedra or other polyhedra.

Tetrahedralmeshes are popular because, in principle, valid domains bounded
by triangles can always be filled with tetrahedra. There now exist a number
of fully automatic, fast tetrahedral mesh generation tools for arbitrarily com-
plex domains [6]. Unfortunately, tetrahedral elements, particularly lower order
ones, are not preferred for non-linear problems because they exhibit lower ac-
curacy and artificial stiffness.

Many analysts choose hexahedral meshes because they are more accurate
and they tessellate a domain with fewer degrees of freedom than tetrahedra.
However, despite nearly two decades of research, hexahedral mesh generation
has largely remained a time-consuming, semi-automatic process. This is be-
cause hexahedral meshes have a fixed but more complex topology leading to
much stronger constraints in their tiling [12]. Analysts requiring hexahedral
meshes of complex domains often spend weeks if not months decomposing
models into simpler, automatically meshable pieces.

J. Sarrate & M. Staten (eds.), Proceedings of the 22nd 313
International Meshing Roundtable,
DOI: 10.1007/978-3-319-02335-9_18, c© Springer International Publishing Switzerland 2013

314 R.V. Garimella, J. Kim, and M. Berndt

One solution to the dual conundrum of not being able to use tetrahedral
meshes and not being able to generate hexahedral meshes is to use general
polyhedral meshes. While tetrahedral elements represent the simplest topo-
logical construct in 3D, polyhedral elements represent the most general with
no constraint on the number of faces or vertices, and for this reason they are
ideally suited to tile difficult geometries.

This paper presents a method to generate general polyhedral meshes in
which the general element has an arbitrary number of faces and vertices. The
edges of these elements are always straight but the faces may be curved.

1.1 Previous Work

Most work on generation of polyhedral meshes has been in generating Voronoi
tessellations [7]. Voronoi meshes are a partitioning of space corresponding to a
discrete set of point generators such that the every location in a Voronoi poly-
hedron is closer to its generator than to any other generator. True Voronoi
tessellations are unbounded on the exterior but for the purposes of numeri-
cal computations, Voronoi tessellations are truncated by the boundary of the
domain. A Voronoi tessellation is a dual of another tessellation made up of
simplices (triangles, tetrahedra) called the Delaunay triangulations [8]. The
circumsphere of any element in a Delaunay triangulation does not contain
any other vertex of the triangulation. The vertices of a Delaunay mesh are
the point generators of its corresponding Voronoi tessellation.

The first method of generating Voronoi meshes uses the property that the
common face between two Voronoi elements is the perpendicular bisector of
the line connecting the generators of the two elements. Therefore, the al-
gorithm constructs a Voronoi polyhedron by finding the intersection of half
spaces formed by the perpendicular bisecting planes between a generator and
its neighbors. There are many implementations of this method for computing
convex hull’s of point sets and unbounded Voronoi diagrams but few for mesh-
ing complex 3D domains. QHull[5] is a Voronoi mesh generator that does not
handle non-convex objects and Voro++[13] can generate the Voronoi volume
around each point but not necessarily a fully connected mesh. One effort that
appears to meet the criteria of generating boundary conforming polyhedral
meshes for numerical simulations is that of Yan et.al. [16] who represent the
domain as a tetrahedral mesh and clip the unbounded Voronoi cells using
the tetrahedral elements. They show numerous examples of complex objects.
However, there is no direct discussion of what happens at concave edges and
corners. Ebeida and Mitchell have also presented a viable method [17] for gen-
erating Voronoi meshes of domains based on maximal point sampling. They
handle concavities by pre-sampling them more densely so that the Voronoi
property will naturally produce valid elements at these corners. They collapse
small edges in a post-processing step.

Polyhedral Mesh Generation 315

The second method of generating Voronoi meshes is by computing the
dual of a Delaunay triangulation. In this method, the elements of the poly-
hedral mesh are formed by connecting the circumcenters of the tetrahedra
connected to the primary mesh vertex. However, at the domain boundaries,
tetrahedra of a Delaunay mesh can be very flat and yet their circumspheres
can be empty of any other mesh vertices thereby satisfying the Delaunay cri-
terion. The circumcenters of such tetrahedra will then be outside the domain
boundary and therefore cannot be used to construct a valid Voronoi mesh
(see Fig. 1c). To construct a valid Voronoi mesh of a domain truncated by the
domain boundary, the input mesh must satisfy a far stricter criterion than the
Delaunay criterion, i.e., every boundary tetrahedron in the input mesh must
contain its circumcenter. Such meshes, called well-centered meshes [10], are
extremely difficult to construct directly for anything but the simplest geome-
tries. The most visible example of polyhedral meshing by computing the dual
of a Delaunay mesh are capabilities advertised by CD-adapco [4]; however,
their publications do not discuss many details and it appears this capability
is not in much use in practice.

Some analysts use a variant that connect the centroids of tetrahedral el-
ements, centroids of triangular elements and the mid-points of the tetrahe-
dral mesh edges to construct the so-called median mesh. Unfortunately, such
meshes by definition have non-convex elements and contain many more mesh
vertices than Voronoi meshes and are often unsuitable for computation (See
Fig. 1d).

Finally, researchers have also proposed generating a mixed hexahedral-
polyhedral mesh by superimposing a regular axes-aligned hexahedral mesh
on a domain and converting cells cut by the boundary into polyhedral cells
[14]. Such meshes have all the disadvantages of octree based mesh generation
techniques (such as being orientation dependent and also being subject to
robustness issues from line-surface and plane-curve intersections) and can
generate poor quality elements and extremely small facets at the boundary
that have to be subsequently cleaned up.

2 Generation of Polyhedra

2.1 Overview

Consider that we are given a non-manifold geometric model describing our
domain of interest in terms of its topology (vertices, edges, faces and re-
gions) and geometry (vertex locations, curve description, surface description).
Mathematically, an n-manifold is a topological space in which each point has
neighborhood that is homeomorphic or equivalent to an n-dimensional Eu-
clidean space (e.g. a line is a 1-dimensional manifold but a figure eight is
not, a sphere is a 2-dimensional manifold and so on) [1]. A non-manifold
domain consists of combinations of manifolds of different dimensions. In

316 R.V. Garimella, J. Kim, and M. Berndt

Primal Mesh Edge Primal Mesh Vertex

Triangle that is not well-centered

(a)

Dual Mesh Edge
Primal Mesh Circumcenter,
Dual Mesh Vertex

(b) (c)

(d) (e)

Fig. 1 (a) Delaunay mesh (b) Voronoi diagram with open (semi-infinite) regions at
the boundary (c) Voronoi mesh created by truncating Voronoi diagram by boundary
of primal mesh (d) Median mesh (e) Generalized dual

Polyhedral Mesh Generation 317

addition to simple 2-manifolds like surfaces (including planes) and 3-manifolds
with 2-manifold boundaries, we consider non-manifold domains that are com-
binations of multiple solids. The algorithm described in this paper can also
be applied, with trivial modifications, to non-manifold combinations of solids
and surfaces (e.g. a piston with zero-thickness fins) or combinations of sur-
faces alone (such as an underground fracture network), although we do not
present any results for these cases.

Our goal is to generate an unstructured, conformal1, polyhedral mesh of
this domain. Moreover, the mesh must have strict topological compatibility
with the geometric model [15], i.e., every geometric model vertex must be
represented by a mesh vertex, every model edge must be represented by a set
of mesh edges etc.

Our approach to generating polyhedral meshes for complex domains fol-
lows the path of computing the duals of tetrahedral meshes. However, it
generalizes the idea of computing Voronoi meshes from the dual of Delaunay
or well centered triangulations. Rather we compute the dual of any valid
tetrahedral mesh to generate a polyhedral mesh and then post-process it to
satisfy specific geometric criteria demanded by the computational method.
In our method, Voronoi meshes are but a subset of all possible realizations of
a polyhedral mesh. In fact, our technique can be generalized to compute the
dual of any mesh with a mix of elements including hexahedra, prisms and
pyramids, although this is not implemented at this time.

We have chosen to pursue this strategy for generating polyhedral meshes
because of the remarkable robustness and automation with which tetrahedral
or mixed meshes can be generated for arbitrarily complex domains, thereby
putting this algorithm on the path to full automation as well.

2.2 Primal Mesh Generation

There are a wide range of meshing algorithms and software codes for robust
generation of tetrahedral meshes of general non-manifold domains [6]. This
paper will not delve into details of these algorithms - instead, it is simply
assumed that some external software is used to generate the input mesh.

2.3 Dual Computation

The dual computation algorithm requires, as its input, a valid conformal
mesh consisting of tetrahedral elements (although it can be extended easily
to handle other types of elements). This input mesh is referred to in this
discussion as the primal mesh.

Ideally, the input mesh will also include information about the classifica-
tion of each of its mesh entities, or in other words, the relationship of each

1 In a conformal mesh, the intersection of two elements is a vertex, edge or face.

318 R.V. Garimella, J. Kim, and M. Berndt

mesh entity to the geometric model [15]. A mesh entity is said to be classified
on a model entity if the mesh entity forms part or all of the discretization
of the model entity. In the absence of detailed classification information, the
input may specify the classification of only its elements (mesh regions in 3D)
on geometric regions. This allows the algorithm to guess the classification of
all other primal mesh entities in most cases. Additional geometric computa-
tion is used to detect features such as sharp edges and corners. Classification
yields useful information such as which mesh entities are on external bound-
aries (adjacent to only one solid), which are on internal boundaries (adjacent
to two or more solids) and which are in the interior of solids. Understanding
the classification of primal mesh entities is essential to preserving geometric
model features such as sharp edges, external and internal surfaces, and faults
in the dual mesh. The steps for creating a dual mesh from a primal mesh are
given in Algorithm 1.

Algorithm 1. Algorithm to create dual mesh

1: Create a dual vertex at a central point in each primal mesh region.
2: Create a dual vertex at a central point in each primal mesh face classified on

the boundary.
3: Create a dual vertex at mid-point of each mesh primal edge classified on a

model edge.
4: Create a dual vertex at each primal mesh vertex classified on a model vertex.

5: Create an interior dual face corresponding to each primal mesh edge classified
on the interior of the domain.

6: Create one or more interior dual faces corresponding to each primal mesh edge
classified on the boundary.

7: Create one or more boundary dual faces corresponding to each boundary primal
vertex.

8: Create one dual region corresponding to each interior primal vertex.
9: Create one or more dual regions corresponding to each boundary vertex.

2.4 Creating a Dual Vertex

The dual vertex corresponding to a tetrahedron in the primal mesh is located
at some central point in the tetrahedron (Step 1, in Algorithm 1). If the tetra-
hedron is well centered (i.e. it contains its own circumcenter), our procedure
will use the circumcenter as the central point. If not, the procedure will find
a point within the tetrahedron as close to the circumcenter as possible on the
line connecting the circumcenter and centroid.

In addition to dual vertices inside tetrahedron, a dual vertex is created
at a central point of each primal mesh face classified on a model face, i.e.,
on each boundary face (Step 2), at the midpoint of each primal mesh edge

Polyhedral Mesh Generation 319

classified on a model edge (Step 3) and at each primal mesh vertex classified
on a model vertex (Step 4).

2.5 Creating Dual Faces Corresponding to Primal
Edges

Each edge of the primal mesh leads to one or more dual mesh faces depending
on whether the primal edge is classified on the interior of the domain, on an
exterior boundary or on an interior boundary. Regardless of the classification
of the primal edge, dual faces arising from an edge are always classified in
the interior of the domain.

(B) Primal edge
on model face

(C) Primal edge
on model edge

(A) Primal edge
in the interior

Fig. 2 Interior face (gray) in dual mesh corresponding to primal edge (thick) clas-
sified on the model interior (A) , on a 2-manifold model face (B) and a 2-manifold
model edge (C)

.

Given a primal edge in the domain interior, a dual mesh face is constructed
(Step 5) by traversing all its connected tetrahedra sequentially in a single
direction and connecting their corresponding dual vertices (See Figure 2,
label A).

A primal edge classified on an exterior model face also gives rise to a
single dual mesh face (Step 6). The algorithm to construct the dual mesh
corresponding to a external boundary edge, starts with the boundary face in
the primal mesh connected to the edge. Starting from that primal boundary
face and its dual vertex, the algorithm traverses the set of primal tetrahedra
sharing the edge connecting the corresponding dual vertices until it reaches
the other primal mesh face classified on the boundary and its dual vertex. The
dual face construction is completed by connecting the final dual vertex on
the model face back to the first dual vertex on the model face (See Figure 2,
label B).

320 R.V. Garimella, J. Kim, and M. Berndt

For an interior boundary face, the space around the face is locally divided
into two parts, belonging to the same model region or different model regions.
Therefore, two dual faces must be created for a primal edge on such a model
face. The construction of the dual face follows the same method as above,
and is repeated for each side of the model face (Step 6).

Construction of dual faces corresponding to a primal edge on a model edge
(Also Step 6) roughly follows the same method, except that the dual vertices
corresponding to the boundary primal faces are connected to the dual vertex
at the midpoint of the primal edge instead of directly to each other (See
Figure 2, label C).

2.6 Creating Boundary Dual Faces Corresponding to
Primal Boundary Vertices

Dual faces are also created for every boundary vertex in the primal mesh and
later serve as capping faces for the dual polyhedra (Step 7).

Given a primal vertex classified on a model face, the dual face is con-
structed merely by traversing the set of primal faces classified on that model
face in a single direction and connecting their corresponding dual vertices.
(See label A in Figure 3).

When a primal vertex is classified on a model edge, it gives rise to as many
dual faces as there are model faces emanating from the model edge. Each of
the dual faces starts with a dual vertex on one of the primal edges connected
to the primal vertex. Then the dual face algorithm traverses the primal faces
connected to the vertex and classified on that model face until it gets back
to the other primal edge classified on the model edge (See labels B and D
Figure 3).

Finally, when a primal vertex is classified on a model vertex, it too gives
rise to as many dual faces on the boundary as there are connected model faces.
The difference is that instead of connecting the two dual vertices classified
on model edges directly to each other they are connected to the dual vertex
classified on the model vertex (See label C in Figure 3).

The specialized procedures described above for creating capping faces cor-
responding to different classifications of primal mesh vertices on the model
boundary ensure that the model boundary is represented with the same fi-
delity in the dual mesh as in the primary mesh.

2.7 Creating Polyhedral Regions

Polyhedral regions are created in the dual mesh by gathering all the dual
faces corresponding to a primal mesh vertex.

For a primal mesh vertex classified in the interior of the domain, a polyhe-
dral region is formed from all the dual faces associated with the primal edges
connected to the vertex (Step 8).

Polyhedral Mesh Generation 321

D

C

B

A

Fig. 3 Boundary capping faces in the dual mesh created at various primal vertices.
(A) Primary vertex classified on a model face (B) Primary vertex classified on a
2-manifold model edge (C) Primary vertex classified on a 2-manifold model vertex
(D) Primary vertex classified on a non-manifold edge.

For primal mesh vertex classified on a model face, the corresponding poly-
hedral region is formed from the dual faces of primal edges connected to this
primal vertex and capped off by the boundary dual face corresponding to the
primal mesh vertex (Step 9).

Polyhedral regions corresponding to the primal mesh vertex on a model
edge or model vertex are formed (Also Step 9) by dual faces of interior primal
edges and multiple boundary dual faces corresponding to the primal mesh
vertex. In complex non-manifold situations in which a single primal mesh
vertex gives rise to multiple polyhedral regions, some topological queries of
the capping faces are required to ensure that the right subset of capping faces
are used.

2.8 Cleanup

During the procedure to create the dual mesh, some very small edges may
be created due to the shape of the input tetrahedra or the choice of the dual
vertex positions. The mesh is post-processed to collapse out these small edges
since they may lead to small time steps in simulations.

322 R.V. Garimella, J. Kim, and M. Berndt

3 Polyhedral Mesh Untangling and Smoothing

The result of the above steps is a conforming polyhedral mesh that respects
the boundaries of the domain as represented by the primal mesh. However,
the basic polyhedral mesh creation step can result in some polyhedra that
are highly distorted and have very curved faces. Therefore, we apply a mesh
untangling and smoothing procedure to make all the polyhedral elements
valid and improve the quality of the mesh.

3.1 Polyhedral Validity

Polyhedral mesh validity and quality are poorly defined concepts, more so
than for standard elements. For example, even for hexahedral meshes, validity
is defined in multiple ways, two options being positive triple products at the
corners (not very reliable for highly twisted elements) and positive Jacobians
of the isoparametric mapping at quadrature points (better than the former
if multiple integration points are considered)

In our research, we conservatively assume that to be usable in computation,
polyhedra have to pass a carefully designed metric of convexity, called the
“star-shaped test.” In this test, a symmetric decomposition of the polyhedron
into tetrahedra is computed by connecting each of its edges to a “central”
point on a face and connecting the so formed triangle to a “central” point in
the region. A polyhedron is considered to be valid or have positive volume if
each of these tetrahedra have positive volume. It is burdensome to determine
what the real shape of a curved polygonal face is (likely a minimal surface
formed by the straight edges of the face) or where its centroid is. We choose
the simplest definition possible by declaring the face “center” to be the geo-
metric mean of the vertices of the face and the region “center” to likewise be
the geometric mean of the vertices of the region. While this definition may
be more conservative than allowed by some PDE discretization schemes, it
is our goal to satisfy this criterion so that other more relaxed conditions are
also met. Since both elements on either side of the face use the same defini-
tion of the face center there is no inconsistency in the form of overlaps in the
computations. Also, the choice of the face and region centers is simple enough
to communicate unambiguously to an external program (See Figure 4).

3.2 Polyhedral Quality

In [19], the authors detailed a condition number quality measure for trivalent
corners in a solid element and an algorithm for optimizing a mesh based on
an objective function using this quality measure.

The expression for the condition number of a trivalent corner in a 3D
element is

Polyhedral Mesh Generation 323

F V1

V2

R

Fig. 4 (Left) General polyhedron (Middle) Triangulation of face (right) One tetra-
hedron in the symmetric decomposition used to check for polyhedron validity

κ =

√||e1 × e2||2 + ||e2 × e3||2 + ||e3 × e2||2
√||e1||2 + ||e1||2 + ||e1||2

(e1 × e2) · e3
=

AL

V
(1)

where, e1,2,3 are the three edge vectors emanating from a corner and

A =
√
||e1 × e2||2 + ||e2 × e3||2 + ||e3 × e2||2

L =
√
||e1||2 + ||e1||2 + ||e1||2

V =(e1 × e2) · e3
V is also equal to six times the signed volume of the tetrahedron formed

by the edge vectors e1, e2, e3.
Since the volume of the tetrahedron going to zero causes a singularity in

the expression, Escobar et. al. suggested a modification [11] to allow for a
smooth transition of the function through the singular point along the lines
of the following expression:

κmod =
2AL

V +
√
V 2 + δ2

(2)

As explained by the authors this modification allows for a simultaneous
untangling and smoothing of meshes. However, an important modification
is that we use an adaptively changing value of δ with respect to the signed
volume of the element as shown below:

δ =
1

1 + ce(V/V0)
, (3)

where V0 is some average element volume around the element being untangled
and c is a constant. We have found that choosing c between 10 and 100 works
well.

324 R.V. Garimella, J. Kim, and M. Berndt

VN

F

R

R

F

N V

R
F

V

N

V

N

F

R

V

N

F

R

R

FN

V

Fig. 5 Tetrahedral corners at one vertex V in a polyhedral element involved in
assessment of element quality (F is the face center, R the region center and N is a
neighbor)

VN

R
R

V

N

V

N

R

N

N

N

Fig. 6 Tetrahedral corners at one vertex V in a polyhedral element involved in
alternate method of assessing of element quality

The effect of this choice of δ is two-fold. When the element is tangled or
close to degenerate, the adaptive δ moderates the magnitude and steepness
of the objective function so that numerical derivatives can be more reliably
obtained. On the other hand, as the element volume becomes sufficiently
positive, δ becomes quite small and the function becomes very close to the
original condition number function.

Polyhedral Mesh Generation 325

Since the shape measure defined in Eq. 1 and its modifications only quan-
tifies the distortion of a trivalent corner with respect to a unit right corner
in 3D, it is not applicable to general polyhedra that may have non-trivalen
corners(e.g. pyramid shaped elements with four edges emanating from the
apex). Therefore, we propose two new ways of measuring the quality of gen-
eral polyhedral elements that are closely related to the definition of validity.

In the first method, we define the quality measure of a polyhedral element
to be the sum of the condition numbers of the tetrahedral corners in the sym-
metric decomposition of the polyhedron. However, the tetrahedral corners at
face centers and region centers are excluded and only corners at the vertices
of the original element are considered (See Figure 5). The sum is normalized
by the number of tetrahedral corners of an element used in the computation.
Since the quality metric is built upon the decomposition used to ensure va-
lidity, improving this metric will also make elements star-shaped. However,
it does require evaluation of a large number condition numbers per element
computed as

∑V
i 2ei where V is the number of vertices in an element and ei

is the number of element edges connected to the ith vertex of the element.
For example, a hexahedral element evaluated this way requires 24 condition
number evaluations instead of 6.

An alternative method of measuring the condition numbers in an element
evaluates the corner of a tetrahedron formed by the region center and the
two edges coming into a vertex on a polyhedron face. This cuts down the
number of condition numbers that must be evaluated to

∑V
i fi where V is

the number of vertices in an element and fi is the number of element faces
connected to the ith vertex of the element (Figure 6. In a hexahedral element
this method requires evaluation of 18 condition numbers.

In our tests we have found that both these methods give similar results
but sometimes the symmetric decomposition results in faster untangling and
fewer invalid elements.

3.3 Untangling and Smoothing Procedure

The algorithm used to improve the quality of the mesh is an advancement
over our previous work on this topic [20, 19]. These articles described methods
for minimizing a global objective function formed by summing the condition
numbers at element corners. However, instead of solving the global system,
the procedure minimized the local component of the global objective function
at each vertex. Movement of mesh vertices on the boundary was constrained
to the original facetization by use of a dynamically changing local paramet-
ric space. Surface optimization was alternated with volume optimization to
achieve good quality on the surface and in the interior. The difference here is
that the mesh optimization procedures use a different method for assembling
the objective function that is applicable to a wider class of meshes.

326 R.V. Garimella, J. Kim, and M. Berndt

(a) (b)

Fig. 7 (a) Initial tetrahedral mesh of a simple model (b) Untangled and optimized
polyhedral mesh of a simple model

(a) (b)

(c) (d)

Fig. 8 (a) Cut of initial tetrahedral mesh of a simple 2-material model (b) Cut of
initial polyhedral mesh showing valid (green) and invalid (red) elements (c) Cut of
untangled and optimized polyhedral mesh (d) Full polyhedral mesh

Additionally, the minimization of the objective function f(x) is now done
by solving ∇f = 0 using Newton’s method instead of a nonlinear conjugate
gradient method as described in [20, 19]. Both the gradient and the Hessian
are computed numerically. The algorithm has additional steps to ensure that
the Hessian is positive definite before using in an update step. If the Hessian
has non-positive eigenvalues, we iteratively modify the Hessian by adding a
constant term to the diagonal until positive Hessians are obtained [9]. The

Polyhedral Mesh Generation 327

(a)

(b) (c)

Fig. 9 (a) Initial tetrahedral mesh of model with concavitites (b) Initial polyhe-
dral mesh of model (c) Optimized polyhedral mesh showing that remaining invalid
elements (shown in red) are only at sharp concavities.

update is also damped in order in order to satisfy mesh validity and the
Armijo condition of minimization [9].

4 Results and Discussion

The examples in this section show general polyhedral meshes on 2-manifold
and non-manifold domains of varying complexity. In most of these exam-
ples, the input tetrahedral mesh was first optimized using condition number
optimization before the dual was computed. This minimized the number of
invalid elements in the polyhedral mesh that needed to be rectified. Figure 7
shows a very simple example of valid polyhedral mesh generated from an in-
put tetrahedral mesh. Figure 8 illustrates the process for a simple 2-manifold
domain. In this example, the initial dual mesh (Figure 8b has several invalid
elements but after optimization the mesh (Figure 8c,d) is completely valid.

The last two examples (Figures 9, 10) show the initial tetrahedral mesh
and final polyhedral mesh for more complex domains with concavities. While

328 R.V. Garimella, J. Kim, and M. Berndt

(a)
(b)

(c) (d)

Fig. 10 (a) Initial tetrahedral mesh of fracture model (courtesy Joe Bishop, San-
dia National Labs) (b) Zoom-in of initial tetrahedral mesh (c) Zoom-in of initial
polyhedral mesh of model showing invalid elements (d) Optimized polyhedral mesh
showing that remaining invalid elements (shown in red) are only at the concavities.

the raw dual meshes generated from the tetrahedral meshes contain numerous
invalid elements, the final mesh after optimization has invalid elements only
at concave boundaries due to violation of the star shape. If the discretization
requires that such polyhedra be eliminated then the only option left is a topo-
logical modification of the problematic polyhedra. In the future, we expect
to implement a simple procedure to generate multiple polyhedra instead of a
single polyhedron at these locations in order to fix this problem. We propose
to explore methods of subdividing concave polyhedra so that the resulting
polyhedra pass the star shaped test. Since there are no restrictions on the
type of element generated by the subdivision, this is expected to be easier
than subdivision of standard elements such as hexahedra. Alternatively, we
will explore methods to recognize this situation in the tetrahedral mesh and
directly generate multiple convex polyhedra at a non-convex corner or edge
of the domain.

5 Conclusion

We have presented a fully automatic method for generating polyhedral
meshes for a large class of non-manifold geometric models. The method trans-
forms a general tetrahedral mesh into a polyhedral mesh with straight edged,

Polyhedral Mesh Generation 329

but possibly curved face elements. The mesh is post-processed to eliminate
small edges and then optimized to ensure that all elements satisfy the star-
shaped validity test. Our method gives good results except at concave corners
where topological modification of elements is necessary to generate valid ele-
ments. We have proposed a couple of techniques to rectify this deficiency and
will be exploring it in the near future. To the best of our knowledge, this is the
first time polyhedral mesh generation by transforming a tet mesh into a dual
has been described in such detail including handling of non-manifold bound-
aries. It is also the first time polyhedral validity has been clearly defined and
a method for untangling and smoothing such meshes has been proposed.

In the future, we plan to work on topological modification of the meshes
to resolve invalid elements at concave boundaries as well as work on a multi-
objective optimization to improve planarity of the polyhedral faces.

Acknowledgments. This work was performed under the auspices of the National

Nuclear Security Administration of the US Department of Energy at Los Alamos

National Laboratory under Contract No. DE-AC52-06NA25396 and supported by

the DOE Advanced Simulation and Computing (ASC) program. LA-UR-13-24225.

References

1. Lee, J.M.: Introduction to Topological Manifolds. Springer (2000)
2. Sieger, D., Alliez, P., Botsch, M.: Optimizing Voronoi Diagrams for Polygo-

nal Finite Element Computations. In: Proceedings of the 19th International
Meshing Roundtable, Chattanooga, TN, USA, pp. 335–350 (2010)

3. Fortune, S.: A sweepline algorithm for Voronoi diagrams. In: Proceedings of
the 2nd Annual Symposium on Computational Geometry, Yorktown Heights,
NY, USA, pp. 313–322 (1986)

4. Peric, M.: Flow Simulation using Control Volumes of Arbitrary Polyhedral
Shape. ERCOFTAC Bulletin (62) (September 2004),
http://www.plmmarketplace.com/The_Advantage_of_polyhedral.pdf, Also
see http://www.cd-adapco.com/products/star_ccm_plus/meshing.html

5. Barber, C.B., Dobkin, D.P., Huhdanpapp, H.T.: The Quickhull algorithm for
convex hulls. ACM Trans. on Mathematical Software 22(4), 469–483 (1996),
http://www.qhull.org

6. Owen, S.J.: A Survey of Unstructured Mesh Generation. In: Proceedings of
the 7th International Meshing Roundtable, Dearborn, MI, USA, pp. 239–267
(1998)

7. Aurenhammer, F.: Voronoi Diagrams - A Survey of a Fundamental Geometric
Data Structure. ACM Computing Surveys 23(3), 345–405 (1991)

8. Frey, P.J., George, P.-L.: Mesh Generation - Application to Finite Elements.
Wiley, London (2008)

9. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Berlin (2006)
10. Vanderzee, E., et al.: Well-centered Triangulation. SIAM Journal on Scientific

Computing 31(6), 4497–4523 (2010)

http://www.plmmarketplace.com/The_Advantage_of_polyhedral.pdf
http://www.cd-adapco.com/products/star_ccm_plus/meshing.html
http://www.qhull.org

330 R.V. Garimella, J. Kim, and M. Berndt

11. Escobar, J.M., et al.: Simultaneous Untangling and Smoothing of Tetrahedral
Meshes. Computer Methods in Applied Mechanics and Engineering 192(25),
2775–2787 (2003)

12. Murdoch, P.J., Benzley, S.E.: The Spatial Twist Continuum. In: Proceedings
of the 4th International Meshing Roundtable, Albuquerque, NM, USA, pp.
243–251 (1995)

13. Rycroft, C.H.: Voro++: A three-dimensional Voronoi cell library in C++.
Chaos 19, 041111 (2009)

14. Oaks, W., Paoletti, S.: Polyhedral Mesh Generation. In: Proceedings of the 9th
International Meshing Roundtable, New Orleans, LA, USA, pp. 57–67 (2000)

15. Shephard, M.S., Georges, M.K.: Reliability of Automatic 3-D Mesh Generation.
Computer Methods in Applied Mechanics and Engineering 101, 443–462 (1992)

16. Yan, D.-M., Wang, W., Lévy, B., Liu, Y.: Efficient Computation of 3D Clipped
Voronoi Diagram. In: Mourrain, B., Schaefer, S., Xu, G. (eds.) GMP 2010.
LNCS, vol. 6130, pp. 269–282. Springer, Heidelberg (2010)

17. Ebeida, M.S., Mitchell, S.A.: Uniform Random Voronoi Meshes. In: Quadros,
W.R. (ed.) Proceedings of the 20th International Meshing Roundtable, vol. 90,
pp. 273–290. Springer, Heidelberg (2011)

18. Knupp, P.: Achieving Finite Element Mesh Quality Via Optimization of the
Jacobian Matrix Norm and Associated Quantities. Part II - A Framework for
Volume Mesh Optimization and the Condition Number of the Jacobian Ma-
trix. International Journal of Numerical Methods in Engineering 48, 1165–1185
(2000)

19. Dyadechko, V., Garimella, R.V., Shashkov, M.J.: Reference Jacobian Rezoning
Strategy for Arbitrary Lagrangian-Eulerian Methods on Polyhedral Grids. In:
Proceedings, 13th International Meshing Roundtable, Williamsburg, VA, San-
dia National Laboratories report SAND #2004-3765C, pp. 459–470 (September
2004)

20. Garimella, R.V., Shashkov, M.J., Knupp, P.M.: Triangular and Quadrilateral
Surface Mesh Quality Optimization using Local Parametrization. Computer
Methods in Applied Mechanics and Engineering 193(9-11), 913–928 (2004)

	Introduction
	Previous Work

	Generation of Polyhedra
	Overview
	Primal Mesh Generation
	Dual Computation
	Creating a Dual Vertex
	Creating Dual Faces Corresponding to Primal Edges
	Creating Boundary Dual Faces Corresponding to Primal Boundary Vertices
	Creating Polyhedral Regions
	Cleanup

	Polyhedral Mesh Untangling and Smoothing
	Polyhedral Validity
	Polyhedral Quality
	Untangling and Smoothing Procedure

	Results and Discussion
	Conclusion
	References

