
On Finding Large Polygonal Voids
Using Delaunay Triangulation: The
Case of Planar Point Sets

Carlos Herv́ıas1, Nancy Hitschfeld-Kahler2,
Luis E. Campusano1, and Giselle Font2

1 Departamento de Astronomı́a, Universidad de Chile, Casilla 36-D,
Santiago, Chile
{chervias,luis}@das.uchile.cl

2 Departamento de Ciencias de la Computación, Universidad de Chile
{nancy,gfont}@dcc.uchile.cl

Summary. In astronomy, the objective determination of large empty spaces
or voids in the spatial distribution of galaxies is part of the characterization of
the large scale structure of the universe. This paper proposes a new method to
find voids that starting from local longest-edges in a Delaunay triangulation
builds the largest possible empty or almost empty polygons around them.
A polygon is considered a void if its area is larger than a threshold value.
The algorithm is validated in 2D points with artificially generated circular
and non-convex polygon voids. Since the algorithm naturally extends to 3D,
preliminary results in 3D are also shown.

1 Introduction

A practical geometrical problem consists in finding under-dense zones in ei-
ther 2D planar point sets or 3D volumetric point sets and represent the zone
shape by using simple polygons or polyhedra, respectively. This problem is
faced in many areas of science but is particularly relevant in astronomy, where
the regions almost empty of bright galaxies in the 3-D galaxy distribution
are known as cosmological voids.

In computational geometry, a similar and well studied problem is to find
the large convex holes in a planar point set P. A convex hole or an empty
convex polygon defined by vertices of P is a convex polygon that contains
no point of P in its interior. The key question here is the expected size
(number of vertices) of the convex polygons that can be found [1, 2]. A
special case of this problem is to find the largest empty rectangle, and an
extension to the empty rectangle problem is to look for the empty staircase
polygon of largest area [3]. This last problem appears in Very-large-scale
integration (VLSI) layout design. It appears to be that none of the existing

J. Sarrate & M. Staten (eds.), Proceedings of the 22nd 275
International Meshing Roundtable,
DOI: 10.1007/978-3-319-02335-9_16, © Springer International Publishing Switzerland 2013



276 C. Herv́ıas et al.

solutions use the Delaunay triangulations of the point set as the basis for
finding large empty spaces, possibly because they usually deal with convex
holes. Such solutions would not generally apply to the problem in astronomy,
where the cosmological voids are almost always not convex and may contain
a few galaxies in its interior, and thus a Delaunay triangulation approach can
be of interest to find cosmological voids. In the astronomical literature there
are quite a few algorithms for finding large empty spaces in the 3-dimensional
distribution of galaxies, however there is not yet a generally accepted method
to find and characterize them. Some of them are based on growing spheres
(see [4, 5, 6] for example). That is, the point set is divided into cells and
then spheres are grown whose maximum sizes are set by the condition that
the growth is stopped when the surface of any given sphere makes contact
with a point. Afterwards the spheres are merged and processed to identify
cosmological voids.

A new method to search for voids is proposed here, valid in principle for
point sets of arbitrary dimension, based on a Delaunay mesh. However, the
basis for the design and testing of the algorithm is on planar point sets, and
the voids are assimilated to empty or almost empty polygons whose area are
equal or larger than a threshold value. This value is adopted depending on the
application field this algorithm is going to be used. At each step the algorithm
looks for the longest-edge of the Delaunay triangulation that does not belong
to any already found polygon. Starting from the two triangles that share
a local longest-edge (initial triangle set) the algorithm adds at each step,
neighboring triangles that share their longest edge with the current triangle
set, until a polygon (a “void”) embracing all the accumulated triangles is
reached when no further addition of them is allowed. The algorithm was
successfully tested with artificially generated data, for both circular and non-
convex polygonal voids.

The paper is organized as follows: § 2 describes the proposed method,
and § 3 describes how the method is validated with artificial data. In § 4
the extension of the algorithm to 3D point sets is described and preliminary
results are given. In § 5 there is a discussion of how to apply this algorithm
to astronomy. Finally § 6 gives some conclusions.

2 The Proposed Method

Voronoi tessellations and Delaunay triangulations are dual geometrical struc-
tures that allow us to quickly find the input points (sites) that are (locally)
close or far from each other. The Voronoi tessellation consists of polygonal
regions, one for each site, whose interior points are closer to this site than to
any other site. Voronoi edges represent points equidistant from two sites. The
Delaunay triangulation is obtained by adding edges between the sites that
share a Voronoi edge. The endpoints of a Delaunay edge show that these sites
are the closest ones in that direction. Since each edge is a Delaunay edge,



Polygonal Voids with Delaunay Triangulation 277

Fig. 1 (a) Few points simulating a void. (b) Delaunay triangulation of this point
set. Delaunay triangles that go across the void are clearly larger and have longer
edges than triangles and edges around the void.

there exists an empty circle that passes through its endpoints. Then, there
are circular regions that do not contain any other site in its interior [7]. This
fact facilitates the design of an algorithm that starting from the two triangles
(initial triangle set) that share a local longest-edge, builds the largest possi-
ble polygon (void) by adding neighboring triangles whose longest edge is the
one shared with the triangle set that is currently defining the polygon. The
algorithm stops when no neighboring triangle fulfills this condition.

In the following, the concepts that support the algorithm, and the algo-
rithm itself are described. The algorithm is divided in two consecutive main
steps: (1) eliminating large empty polygons that touch the boundary of the
point set, and (2) finding large internal void polygons.

2.1 Basic Concepts

The algorithm works with the following definition of a void.

Definition 1. A void is a zone of low point density in a point set. It may
have some points in its interior.

The main idea behind the algorithm is that when a void is present on a planar
point distribution, the edges of the Delaunay triangulation that will cross
the void itself are local longest-edges in comparison with edges belonging to
the neighborhood of the void (see Figure 1). The two triangles that share the
local longest-edge will be part of the void, and so define the boundaries of the
initial empty polygon. The question is: which other triangles should be added
to these two initial triangles to form a larger polygon? From Figure 1, it can
be observed that the algorithm should include triangles that are adjacent
to the two initial triangles and that share their longest-edge with these two
initial triangles. Then the polygonal void will be now defined by the two
initial triangles plus the neighboring triangles that fulfill this criterion. This



278 C. Herv́ıas et al.

process is repeated for the newly added triangles until no other triangle can
be added. Notice that this criterion avoids going from a large low-density
region to another large low-density region through a zone like a tunnel or a
region with higher point density. In addition, it characterizes the limits of
the largest low point density space in an intuitive way.

The strategy just described does not distinguish voids at the boundary
of the set of points from internal voids. When a Delaunay triangulation is
computed from the planar point set, the boundary is defined by its convex
hull. Obtuse triangles with longest-edges on the convex hull can easily appear
(see the edges pointed by arrows in Figure 2) and these edges could be used
as a starting point for finding voids. If such empty space is located at the
boundary of the planar point set (presumably adjacent to the convex hull)
it should not be considered as a void in real applications because of two
reasons: firstly, the sampling of points might not be complete at the boundary,
generating an under-density of points which is not a real void. Secondly, even
if the void is real (a priori there is no way to know it), it could not be described
even qualitatively because it has an open boundary. Before eliminating zones
close to the boundary, the α-shape of the planar point set is computed. The
α-shape [8] is a generalization of the convex hull concept in the sense that it
allows generation of a non-convex polygon that better fits the shape of the
points. By selecting an appropriate α value, large edges from the convex hull
can be deleted. The α-shape could also be used to eliminate large edges in the
interior and in this sense it could be useful to find empty zones. This approach
was not used because it is limited by finding a very specific threshold value
and does not build in a natural way the polygon that surrounds a low-density
zone.

Fig. 2 Two hundred and fifty random points with an artificial void in the middle.
The Delaunay edges are drawn in dashed lines and the α-shape polyline is the thick
solid line. The arrows show some of the obtuse triangles at the boundary.



Polygonal Voids with Delaunay Triangulation 279

2.2 Eliminating Large Empty Polygons at the
Boundary

The first step of the proposed algorithm is to compute the α-shape of the
planar point set. Depending on the specified parameter α, the α-shape of
a set of points can be defined by several closed polylines or no one at all.
The assumption is that by choosing an appropriate α, there exists one closed
polyline that surrounds all the points, and the algorithm uses this closed
polyline to eliminate all the triangles members of the Delaunay triangulation
that lie outside the α-shape.

In order to explain this step, Figure 2 shows an artificial void generated
inside a point set of 250 points. A Delaunay triangulation was generated,
whose edges are drawn in dashed lines. It can be observed that several obtuse
triangles with their longest-edge at the convex hull of the planar point set
were naturally generated as part of the Delaunay triangulation. Some of them
are indicated with arrows. The thick polyline shows an α-shape of this point
set (α = 3000). All triangles outside this polyline are discarded because they
are not part of a complete void.

2.3 Finding Large Internal Polygonal Voids

The second step is to look for internal voids in the Delaunay triangulation,
after eliminating the triangles outside the α-shape. The algorithm reads the
remaining Delaunay triangulation and stores it as dictionaries of points and
triangles. The triangles are sorted by its longest edge so that the algorithm
processes them in order. The algorithm looks as follows:

Read the Delaunay triangulation;
Read threshold value;
void list= ∅;
Order the triangles by their longest-edge;
repeat

get the two not-used triangles t1, t2 that share the longest-edge;
triangle set = [t1,t2];
label t1,t2 as used;
foreach t neighbor of triangle set do

if t shares its longest-edge with a triangle of triangle set then
triangle set = triangle set ∪ t;
label t as used;

end

end
if area of the triangles in triangle set ≥ threshold value then

void list = void list ∪ polygon(triangle set)
end

until there is no triangle to process;



280 C. Herv́ıas et al.

Figure 3 illustrates the steps of the algorithm applied to a random gener-
ated planar point set with one artificial void. Figure 3(a) shows the Delaunay
triangulation of this planar point set. In Figure 3(b), the longest-edge is out-
lined in the middle as a thick dashed line. Note that it effectively crosses
the void. The two triangles that share this edge are shown in gray in Fig-
ure 3(c). These triangles are the seed triangles to start the computation, and
the boundary edges (dashed lines) of this initial polygon are shown in Fig-
ure 3(d). Figure 3(e) shows in gray all the neighboring triangles that share an
edge with the initial empty polygon. These are candidates to be added to the
current void. A candidate triangle will be only added if it shares its longest
edge with a triangle that is already a member of a current void. Figure 3(e)
shows that the four candidates fulfill the criterion and Figure 3(f) shows, with
a dashed polyline, the updated boundary of the current polygon. Figure 3(g)
shows again neighbors that fulfill the criterion and the current polygon is
updated. Figure 3(h) shows how the void looks after two more iterations and
finally, Figure 3(i) shows the final polygon that models the void. The com-
putational cost of this algorithm is O(N log(N)) where N is the number of
points. This order is given by the calculation of the Delaunay triangulation

Fig. 3 Algorithm demonstration applied to artificial data



Polygonal Voids with Delaunay Triangulation 281

and the edge sorting. Once the Delaunay triangulation is computed and the
edges sorted, the computation of the voids is O(N).

2.4 Algorithm Implementation

For the implementation of the algorithm several open source software were
integrated inside the program. For the computation of the Delaunay trian-
gulation qhull1 [9] was used. For generating the α-shape hull2 was used with
the option -aa in order to specify the α value. α is the radius of the ball
used to select which set of edges will belong to the α-shape. For each pair of
neighbor sites that belong to the α-shape there must exist a ball of radius α
containing those sites on its bounding sphere, and containing no other sites
in its interior. Also the “point in polygon” method of the Python module
Shapely3 was used for eliminating the triangles that are outside the polygon
that represents the α-shape.

2.5 Output Data

The output data of the algorithm is a set of voids, in general non-convex
polygons, each one defined by a set of triangles. The edges that define a void
are the edges that belong to only one triangle of the corresponding triangle
set. The area of a void is calculated as the sum of the triangle areas. The
final list of voids includes those polygons that have an area equal to or larger
than the defined threshold value. For each void, the algorithm also stores its
area and its centroid. The centroid of a void (Xvoid) is calculated using the
weighted sum of the centroids of each triangle divided by the void area. The
weight of each triangle is its area [7]. The centroid formula is as follows:

Xvoid =

∑
iAiXi∑
iAi

(1)

where i runs through the individual triangles that make up the void.

3 Validation with Artificial Data

In order to validate the algorithm, artificial 2D data were generated with
simulated voids (circles and non-convex polygons) and random points placed
among them. The validation of the results of the algorithm is by comparing
the position and area of the artificially generated voids with the position and
area of the recognized voids.

1 http://www.qhull.org
2 http://www.netlib.org/voronoi/hull.html
3 http://toblerity.github.io/shapely/manual.html

http://www.qhull.org
http://www.netlib.org/voronoi/hull.html
http://toblerity.github.io/shapely/manual.html


282 C. Herv́ıas et al.

3.1 Artificial Data Sets

Three test data sets are defined. The first data set simulates a single circular
void. This is generated by locating a single circle of radius 400 at the center of
a 2000 by 2000 square region. 500 points are randomly generated outside the
circle. The second test data set consists of generating multiple circular voids
inside the 2000 by 2000 square region. The voids are simulated with circles
that do not overlap each other. This is done with the purpose of testing how
well the algorithm works in recognizing voids that do not overlap. 30 circles
are placed and three sets of random points are inserted around them: 1000,
10000 and 50000 points.

Table 1 Summary of test data sets, indicating the main characteristics of each test

Number of voids Number of points α value Threshold area Void shape

1 500 8000 450000 circular

30 1000 20000 11000 circular

30 10000 2000 11000 circular

30 50000 1000 11000 circular

20 1000 20000 5000 polygonal

20 10000 2000 5000 polygonal

20 50000 1000 5000 polygonal

Since a void in the real world is normally not a perfect circle, the algorithm
is also tested with non-convex polygons. The third test data set consists of
20 manually generated polygons (most of them non-convex) in an 8 by 8
bounding box. Then, the polygons are placed in the 2000 by 2000 square
region at randomly generated positions and scaled up by a random factor
between 20 and 40. In the same way as before, random points are put around
the polygons in order to generate three test cases of different size: 1000, 10000
and 50000 points. Table 1 shows a summary of each data set to be tested.
The test cases with the same number of voids but different point density
around them allow us to check the performance of the algorithm recognizing
and recuperating the shapes of the original voids. Intuitively, the greater the
density of points, the voids boundaries are better defined, and so, better
results at higher densities should be expected.

3.2 Results

Figure 4 shows the result of applying the algorithm to the single void test
case. The triangles that form part of the void are shown in dashed lines, the
α-shape of the point set in thick solid line, and the centroid of the void with
a cross. The chosen α value is 8000 and the threshold area is set to 450,000.
The original void is a circle of radius 400 and area of 502,654, located at



Polygonal Voids with Delaunay Triangulation 283

Fig. 4 A single circular void of radius 400 inside a 2000 by 2000 square region
of 500 points. The cross is the void centroid and the α-shape of the point set is
outlined in the thick polyline.

(x, y) = (0, 0). The algorithm found a void of area 644,624 at the position
(x, y) = (24,−16). The area of the found void is 28% larger than the area
of the original void. This is an expected result because the point density
distribution around the void is quite low and so the void boundary is not
well defined. However, the determined centroid coordinates differ only by
approximately 5% from the centroid of the original void, showing that the
algorithm determined the void in the right position. Figure 5 shows the results
obtained by applying the algorithm to the second data set. As expected it
can be observed that when the point density is higher the empty polygons
that represent a void are closer to a circle. In order to quantitatively check
how well the found voids represent the artificial voids, the areas and centroids
are correlated. Two voids are the same if their centroids are at a distance less
than the mean of the found void radius and the real circular void radius.
Using this criterion, real voids were matched against the found voids for each
sample. The results of the correlation of both void areas and void centroids
are shown in Figure 6. In this figure the best fit straight line for each case
is shown. The ideal straight line should be with slope equal to 1. It can
be observed that when the point density increases, the void boundaries are
sharply defined and the area correlation is more accurate. For example, for a
highest density of 50,000 points, the correlation is almost exact because the
line slope is 1.057. On the other hand, when the point density is not so high,
the found voids are bigger than the real ones because the polygonal voids
grow more if the void boundary is not clearly defined. This is seen in the test
case with 10,000 points, where the slope is still close to 1 but steeper than



284 C. Herv́ıas et al.

Fig. 5 Voids found with the algorithm in the circular void test case. The crosses
are void centroids. The α-shape of the point set is outlined in the thick polyline.
(Top) 30 circular voids with 1,000 points. (Middle) 30 circular voids with 10,000
voids. (Bottom) 30 circular voids with 50,000 points.

the one obtained for the 50,000 points test case. This means that the found
voids are systematically larger than the original ones. In the case of very low
point density (1,000 points) the scatter is higher and the correlation is not



Polygonal Voids with Delaunay Triangulation 285

Fig. 6 Left, the correlation between the area of real voids against the area of the
found voids for the three data sets of circular voids. Right, the correlation of the
centroid coordinates of the real voids against the centroid coordinates of the found
voids.

so clear. However, the centroid location of the found voids is very good in all
the test cases.

Figure 6 shows at the right each centroid coordinates of a found void
against the centroid coordinates of the original void. The lowest straight line
represents the correlation between them in the 50,000 points test case. For
clarity, the 10,000 and 1,000 correlations are displayed 500 and 1000 units
upwards, respectively. The correlations are very good because the slopes are
very close to 1.

The voids found in the third data set (with 20 polygonal voids) are shown
in Figure. 7. It can be observed that in the case of 1,000 points, the voids
grow to fill nearly every empty space left over, and several voids surpass the
threshold area limit of 5,000. This case will not be considered in the area
correlation because it does not represent real applications. In the cases of
10,000 and 50,000 points, the voids that are highly irregular and non-convex
are found as a series of “void fragments”. Because of this fact, the pieces of
voids naturally have less area that the entire void. However, the fragments
are found to be adjacent to each other, so they are joined to form all the
individual voids. In order to correlate the areas, the criterion used is to handle
all found voids as void fragments. If the centroid of a void fragment is inside



286 C. Herv́ıas et al.

Fig. 7 Voids found with the algorithm in the irregular non-convex polygon void
test case. The crosses are void centroids. The α-shape of the point set is outlined
in the thick polyline. (Top) 20 irregular polygons voids with 1,000 points. (Middle)
20 irregular polygons voids with 10,000 voids. (Bottom) 20 irregular polygons voids
with 50,000 points.

the polygon defining the void, then it is considered part of that void. The
areas of the void fragments are summed to give the total area of the found
void. The correlation between the found void area and the area of the original



Polygonal Voids with Delaunay Triangulation 287

Fig. 8 Area of the non-convex polygonal voids against the area of the found voids
for the cases of 50, 000 and 10, 000 points. The slope equal to 1 is also plotted.

void (area of the respective polygon) is shown in Figure 8. As expected, when
the point density is lower, the area of the found voids is systematically larger
than the area of the real voids. Most of the stars (10,000 points test case)
are mainly above the crosses (50,000 points test case). Just for reference, the
straight line with slope equal to 1 is plotted in the figure. The scatter is due
to the fact that some voids are counted via partial fragments and that those
fragments often grow outside the real polygon limits.

4 3D Extension

For astronomical applications it is necessary to have an algorithm to find voids
in 3D volumetric point sets, where points can represent galaxy positions,
for example. The algorithm presented in 2D can be naturally extended to
3D by using similar principles. For a 3D point set, a Delaunay tetrahedral
mesh is built and local longest-edges are searched for because they represent
large empty spaces. The α-shape of the point set is also computed in order



288 C. Herv́ıas et al.

to eliminate tetrahedra with large edges at the boundary. The pseudo-code
looks like this:

Read the Delaunay tetrahedral mesh;
Read threshold volume value;
void list= ∅;
Order the tetrahedra by their longest-edge;
repeat

get the N not-labelled tetrahedra t1,t2,...,tN that share the longest-edge;
tetrahedra set= [t1,...,tN];
label members of tetrahedra set as used;
foreach t of tetrahedra set do

foreach e edge of t at the boundary of the set do
look for neighbor tetrahedra t′ of t that have e as its longest-edge;
foreach t′ that has e as longest-edge do

label t′ as used;
tetrahedra set = tetrahedra set ∪ t’;

end

end

end
if volume of the tetrahedra in tetrahedra set ≥ threshold value then

void list = void list ∪ polyhedron(tetrahedra set)
end

until there is no tetrahedra to process;

The algorithm is very similar to the one proposed for a 2D planar point set:
all those tetrahedra that lie outside the α-shape (a closed polyhedron) are
discarded before the algorithm starts searching for voids. Then, the edges are
sorted by length and the algorithm starts with the tetrahedra that share this
longest edge. All those tetrahedra are marked as members of the polyhedron
that is being built. The procedure continues by adding tetrahedra that share
their longest edge with the current polyhedron. This process is finished when
no tetrahedron fulfills this criterion.

Preliminary results of the application of the 3D algorithms are shown in
Figure 9. At the left of Figure 9 there is an artificially generated spherical
void. The void found with the algorithm is shown in black and is represented
by a set of tetrahedra. On the right, a preliminary test on astronomical data,
where the first 50 found voids on a magnitude limited sample of galaxies from
the Data Release 5 of the Sloan Digital Sky Survey (SDSS) [10] are shown.
This sample of voids can be directly compared with the voids founds by [6]
in the same galaxy sample.

5 Discussion

In astronomy, voids in the three-dimensional galaxy distribution are impor-
tant because they impose constraints to the theories of structure forma-
tion and cosmology. The SDSS and the Two Degree Field Galaxy Redshift



Polygonal Voids with Delaunay Triangulation 289

Fig. 9 3D test cases. Left, an artificial spherical void (radius 60) generated inside
a box of 200 on each side with 800 points. The found void is outlined in black with
transparent faces. Right, an application of this algorithm to ∼ 52000 galaxies of
the Data Release 5 of the SDSS. The first 50 found voids are shown.

Survey (2dFGRS) [11] are two of the most comprehensive galaxy redshift
surveys presently available. Walls and string-like filaments are seen, usually
described as the “cosmic web” [12], and between these filaments large regions
nearly devoid of bright galaxies are revealed. These voids, or low-density re-
gions, have typical sizes of 50 Mpc4. The cosmological voids are not com-
pletely empty [13], so one question is how can this affect the algorithm.

4 1[Mpc] = 3.262 × 106[ly] = 3.086 × 1019[km].



290 C. Herv́ıas et al.

Fig. 10 (a) The void found inside a set of points. (b) The same set of point as (a)
but with a point placed inside the void. Two distinct adjacent voids are found. The
crosses are the void centroids.

Figure 10 shows the effect of a point inside a void. This is analogous to what
happens on non-convex empty polygons (see § 3.2). The resulting voids are
fragmented into smaller adjacent components. One way to deal with this
problem for circular/oval voids is the “third neighbor criterion” used in some
void finding algorithms [4, 5, 6]. This consists of computing for each point,
the distance to its third nearest neighbor. Then the mean l3 and the stan-
dard deviation σ3 of these distances are calculated. Every point whose third
neighbor distance is greater than l3 + λσ3 are not considered as part of the
initial set of points to search for voids. λ is a constant that differs for every
algorithm, typically 1.5 or 2.0.

In this way, all those isolated points (galaxies) that lie in the interior of
a void do not interfere with the void search. This criterion appears to be
an effective and simple choice to allow the application of this algorithm to
the search of cosmological voids in the data sets provided by state of the art
galaxy redshift surveys.

6 Conclusions

An algorithm that can search and find polygonal voids in 2D planar points
using a Delaunay triangulation and its related α-shape is presented. This
algorithm has only two parameters as input: a threshold area and a suitable
α value. In particular, the α value should be chosen in a way that better
reflects the shape of the point set. The algorithm is tested on artificial data
and it is found that the algorithm works very well in finding the original
position of the artificial voids as well as their areas. Simple shapes are used
to represent the artificial voids, starting with circular voids, and then with



Polygonal Voids with Delaunay Triangulation 291

non-convex polygonal shapes. In the latter case, fragments of the complete
voids are initially found, and the problem is solved by joining the fragmented
parts that are adjacent.

The main attribute of this algorithm is its simplicity and near parameter-
independence, meaning that simple polygons are used (just made out of tri-
angles) which are basic units of study in computational geometry. A centroid
and a total area of a resulting void can be automatically calculated without
much effort. This approach provides simple representations of potentially very
complex objects such as cosmological voids.

The proposed algorithm naturally extends to three dimensions. Prelimi-
nary results are included. A full comparison with the results from other void
finding algorithms used in astronomy (see [14]) will be done in the near future.

Acknowlegments. CH, NH and LEC received partial support from a CONICYT

Anillo project (ACT 1122). NH was also partially supported by Fondecyt Project

N 1120495. We would like to thank the anonymous referees for their suggestions to

improve this paper.

References

1. Pinchasi, R., Radoicic, R., Sharir, M.: On empty convex polygons in a planar
point set. J. Comb. Theory, Ser. A 113(3), 385–419 (2006)

2. Balogh, J., González-Aguilar, H., Salazar, G.: Large convex holes in random
point sets. Comput. Geom. 46(6), 725–733 (2013)

3. Nandy, S.C., Bhattacharya, B.B.: On finding an empty staircase polygon of
largest area (width) in a planar point-set. Comput. Geom. Theory Appl. 26(2),
143–171 (2003)

4. El-Ad, H., Piran, T.: Voids in the Large-Scale Structure. Astrophysical Jour-
nal 491, 421 (1997)

5. Hoyle, F., Vogeley, M.S.: Voids in the Point Source Catalogue Survey and the
Updated Zwicky Catalog. Astrophysical Journal 566, 641–651 (2002)

6. Foster, C., Nelson, L.A.: The Size, Shape, and Orientation of Cosmological
Voids in the Sloan Digital Sky Survey. Astrophysical Journal 699, 1252–1260
(2009)

7. O’Rourke, J.: Computational Geometry in C, 2nd edn. Cambridge University
Press, New York (1998)

8. Edelsbrunner, H., Kirkpatrick, D.G., Seidel, R.: On the shape of a set of points
in the plane. IEEE Transactions on Information Theory 29(4), 551–558 (1983)

9. Bradford Barber, C., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm
for convex hulls. ACM Transactions on Mathematical Software 22(4), 469–483
(1996)

10. Adelman-McCarthy, J.K., Agüeros, M.A., Allam, S.S., et al.: The Fifth Data
Release of the Sloan Digital Sky Survey. Astrophysical Journal Supplement
Series 172, 634–644 (2007)

11. Colless, M., Dalton, G., Maddox, S., Sutherland, W., Norberg, P., et al.: The
2dF Galaxy Redshift Survey: spectra and redshifts. Monthly Notices of the
Royal Astronomical Society 328, 1039–1063 (2001)



292 C. Herv́ıas et al.

12. Bond, J.R., Kofman, L., Pogosyan, D.: How filaments of galaxies are woven
into the cosmic web. Nature 380, 603–606 (1996)

13. Pan, D.C., Vogeley, M.S., Hoyle, F., Choi, Y.-Y., Park, C.: Cosmic voids in
Sloan Digital Sky Survey Data Release 7. Monthly Notices of the Royal Astro-
nomical Society 421, 926–934 (2012)

14. Colberg, J.M., Pearce, F., Foster, C., Platen, E., Brunino, R., et al.: The Aspen-
Amsterdam void finder comparison project. Monthly Notices of the Royal As-
tronomical Society 387, 933–944 (2008)


	Introduction
	The Proposed Method
	Basic Concepts
	Eliminating Large Empty Polygons at the Boundary
	Finding Large Internal Polygonal Voids
	Algorithm Implementation
	Output Data

	Validation with Artificial Data
	Artificial Data Sets 
	Results

	3D Extension
	Discussion
	Conclusions
	References

