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Abstract. A method to triangulate the medial axis [1] is modified. In the new 
method the coping surfaces of a thin-wall object are used for insidedness but ig-
nored for footpoints, yielding the mid-surface, not the medial axis. Three distinct 
contour-followers are employed. After a brief, manual tagging of the coping sur-
faces, the method is automatic. It computes a triangulation to arbitrary precision 
and appears robust for complex, thin-wall objects. 
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1 Introduction 

The algorithm presented in [1] to compute the medial axis of a solid object may be 
modified to compute the mid-surface of a thin-wall object. In the original method, 
the medial axis is implicitly defined as the locus of centers of inscribed spheres 
that touch the generating object at two or more locations, or footpoints. The unit-
length vector from an arbitrary 3D point to its footpoint is the point’s footpoint 
vector. 

The implementation defines a lattice of cells that collectively surrounds the ob-
ject. For each cell edge, the footpoint vectors at the endpoints are compared: if 
they diverge significantly, the edge is presumed to transect the medial axis, as 
shown below. With binary sectioning, the surface is found to arbitrary precision. 

 

   

Fig. 1 Cell edge crossing the medial axis (left) and binary sectioning of edge (right) 
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The footpoint serves also to determine object insidedness: if the footpoint vec-
tor v of a given point and the (outward-facing) surface normal n at the footpoint 
are in the same hemisphere (that is, n • v > 0), then the point is interior to the  
object. Employing this test, the medial axis is confined to the object interior. 

For a thin-wall object, if the coping surfaces are utilized for insidedness but  
ignored for footpoints, then the algorithm yields the mid-surface, not the medial 
axis. A coping surface is the ‘covering course of a wall’ (from Merriam-Webster); 
in the figure below, right, the coping surfaces are the left and right edges of the 
cross-section. 

 
  
 

 
 
 
 

Fig. 2 Medial axis and mid-surface in cross-section; vectors are to non-coping footpoints 

In the figure below, left, the coping surfaces are yellow, and the non-coping 
surfaces green. Below, right, a piece of the mid-surface is shown along with lines 
between mid-surface vertices and non-coping footpoints. 

     

Fig. 3 Coping surfaces (left) and footpoints on object (right) 

This use of coping surfaces is the principal novelty of this paper. The paper also 
introduces, in section 4, an improved method to connect mid-surface vertices. 

2 Previous Work 

The use of the mid-surface for design and analysis is described in [2] and [3]; 
methods for its computation are described in [2] and [5-8]. 
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In [2] offsets to a defining ‘outer’ surface are used to compute an ‘inner’ and 
‘mid’ surface. In [5] the mid-surface is computed based on a modified Delaunay 
triangulation, given a known pairing of surface elements. In [6] the mid-curve of a 
coping surface is used to determine loops in adjacent surfaces so that surface pairs 
that sandwich pieces of the mid-surface can be identified. In [7] and [8] surface 
pairs are identified after complicating features of the object are removed.  

These methods all depend to some extent on a high-level description of the  
object to guide the selection of surface pairs. For non-trivial objects, some manual 
pairing may be required. Several commercial software packages offer mid-surface 
generation if surfaces are presented pair-wise by manual input or a priori  
specification. 

Test objects demonstrating these methods are relatively simple and not all ob-
ject topologies are accommodated. The mid-surface results of individual pairings 
must be stitched together, which can be problematic.  

In contrast, the method presented in this paper is automatic except for a brief, 
manual tagging of the coping surfaces of the object.1 The method only requires the 
ability to compute the nearest point on a thin-wall object; no feature description or 
high level abstraction is considered. 

3 Overview 

The input to the method is the boundary representation of a 3D, thin-wall object. 
The present implementation accepts a triangulated mesh, but any surface represen-
tation suffices provided it supports an operator to compute the footpoint of an  
arbitrary 3D point.2  

The method in [1] generates the medial axis piecewise within semi-adjacent 
tetrahedra. Any set of tetrahedra that collectively enclose the object can be used 
(this precludes a Delaunay triangulation, which consists of points on but not  
outside the object). 

The present implementation uses tetrahedra whose vertices lie on a cubic  
lattice; the lattice points are readily identified by an integer triplet and the relation-
ship between tetrahedra (i.e., the shared edges and faces) is fixed. 

Within each transected tetrahedron, a piecewise solution for the mid-surface is 
generated. 

 

                                                           
1 The test object (fig. 13) contains several hundred coping triangles; these were manually 

tagged in 15 minutes. 
2 For a triangulated mesh, the footpoint is the nearest of the proximate points, one for each 

triangle. The number of triangles to be tested can be substantially reduced with an octree. 
The test object (fig. 13) is a mesh of 2600 triangles; with an octree depth of 5, the number 
of triangles per octree node ranges from 3 to nearly 200; most tests involve nodes with 
fewer than 35 triangles. 
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Fig. 4 Six tetrahedra within a lattice cell 

 
For manifold sections, the intersections of tetrahedral edges with the mid-

surface are computed and connected to form a single triangle or quadrilateral per 
transected tetrahedron, as shown below. 

 

    
 

Fig. 5 Surfaces intersecting tetrahedron as triangle (left) and quadrilateral (right) 

 
The medial axis and the mid-surface are, however, non-manifold; they contain 

orientable component surfaces attached to other components along a non-manifold 
seam. These components are internally defined by manifold edges and are circum-
scribed by non-manifold and boundary edges, as shown below. 

 

Fig. 6 Non-manifold seams and boundary edges 

Therefore, in addition to manifold vertices located on tetrahedral edges, non-
manifold and boundary vertices may be located on tetrahedral faces. And, because 
a non-manifold seam may be terminated arbitrarily by a boundary edge, non-
manifold vertices also occur internal to a tetrahedron. 
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Fig. 7 Manifold edge vertices, left, and non-manifold face vertex, right 

 
In the following figure, the white point is internal to the tetrahedron and is at 

the top of the non-manifold seam, which is shown in red. The bottom of the seam 
rests on the lower face of the tetrahedron. The upper boundary edges, in blue, are 
the border of the three component surfaces (shown in yellow tint, radiating about 
the red non-manifold seam), trimmed by a coping surface. 

 

     
 

Fig. 8 Non-manifold seam and boundary edges within a tetrahedron (two views) 

 
This example suggests an algorithm that consists of the following steps: 

• determination of ‘edge vertices’ by binary-subdivision along transected 
tetrahedral edges, 

• determination of ‘face vertices’ by 2D contour-following within a tetra-
hedral face beginning at an edge vertex, and 

• determination of ‘inner vertices’ by 3D contour-following along a non-
manifold seam or boundary edge within the tetrahedron. 

 
The resulting triangulation produces manifold edges shared by two triangles, non-
manifold edges shared by three or more triangles, and boundary edges shared by a 
single triangle. 
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4 Connectivity 

After all vertex locations are computed for a tetrahedron, their connectivity is 
established. With manifold surfaces, this can be performed using a brief table of 
edge configurations (i.e., those three or four tetrahedral edges transecting the mid-
surface). 

With non-manifold and boundary vertices present, however, connectivity is 
more difficult to establish. In [1] surface normals at vertices are matched to estab-
lish a vertex-to-vertex pairing. 

The surface normal can be calculated from footpoint vectors v1 and v2 as: 

N = (v1 + v2) X (v1 X v2),   (1) 

for (v1• v2) /(|v1||v2|) > -1 (otherwise v1 is opposite v2 so that either can serve as N). 
The unit length normal is given by N/|N|. 

Reliance solely on surface normals, however, can produce connectivity errors if 
a contour has significant curvature within a tetrahedron. The present method es-
tablishes connectivity through contour-following, except in the few manifold cases 
(fig. 5) where connectivity is obvious. 

Three distinct contour-followers are employed. One is two-dimensional within 
the face of a tetrahedron; two are three-dimensional and interior to the tetrahedron: 

• from each edge vertex a 2D contour is followed to another edge vertex or to 
a face vertex, 

• from each face vertex a 3D contour is followed along a non-manifold seam 
to another face vertex or to an inner vertex, and 

• as above but the contour follows a boundary edge (not a non-manifold 
seam). 

4.1 2D Follower 

The 2D contour follower creates a series of transecting segments along the face of 
a tetrahedron, until a change in the footpoint vectors is detected. For example, in 
fig. 9, three contours on the tetrahedron’s right face intersect at the red vertex, s. 

The short pink segments crossing the contour connect samples from which green 
footpoint vectors are drawn. Beyond the intersection but in line with the contours 
are grey segments whose footpoint vectors do not align with those tracking the 
contour, indicating a branch point. 

The location of the branch point can be computed to arbitrary precision, and 
serves as the center for a circle of footpoint vector tests that guarantee all contours 
at the branch point have been followed.3 

                                                           
3 Although most 2D contours proceed from a tetrahedral edge to a branch point on a tetra-

hedral face, some contours must proceed from the face. For example, in fig. 9 vertices 1 
and 2 are on tetrahedral edges; contours are followed from them to the branch point. But 
vertex 3 is not on an edge and is detected by following the contour from the transecting 
segment marked s. 
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Fig. 9 2D contours from edge vertices meet at a face vertex; three distinct footpoint direc-
tions imply three contours 

4.2 3D Non-manifold Follower 

The three-dimensional non-manifold seam is followed using a series of transverse 
circles perpendicular to the contour; each circle is expected to intersect the mid-
surface in three or more locations, which leads to a straightforward solution for the 
intersection of the three or more sub-surfaces that impinge on the seam. 

For example, in Figure 10, left, the follower takes a step along its previous tan-
gent, shown by the green arrow; this new location (the green dot) is the center for 
footpoint vectors that yield three transecting segments (with the intersection points 
shown in white). Each of the three dashed magenta lines represents the intersec-
tion of the sub-surface with the plane of the circle. The pairwise intersections of 
these lines are nearly coincident and their average can be used as the next point of 
the contour. 

     

Fig. 10 Contour-following along a non-manifold seam 
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In Figure 10, bottom, a series of contour steps defines the contour until it 
reaches its end, in this case a coping element; in the figure, the purple dots are 
external to the object. 

4.3 3D Boundary Follower  

The boundary contour requires a more complex mechanism. The transverse circle 
is expected to intersect the mid-surface in only one location, so that the intersec-
tion technique employed for non-manifold seams cannot be applied. Instead, from 
the one and only intersection, a 2D contour is followed in the plane of the circle, 
until the boundary edge is located, as shown below. 

So that surface branches are not skipped (e.g., hopping over a ‘T’ intersection), 
a “sweep” circle is tested for the expected two intersections with the mid-surface. 

 

Fig. 11 A contour-following step on a boundary edge; the transverse circle is in orange and 
the overlapping sweep circles are in light blue 

The contour follower is complicated further by the need to accommodate two 
types of boundary terminations: one caused by a weakening difference between 
the footpoint vectors, such as the center of a round; and one caused by a coping 
surface where the footpoint vectors remain divergent but the contour leaves the 
object interior. 

 
Fig. 12 A tetrahedral face with boundary point due to rounded object 
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4.4 Vertex Ordering 

Each contour, whether from edge vertex to face vertex, or face vertex to inner 
vertex, inherently specifies one or more pairings between mesh vertices (for ex-
ample, the non-manifold seam in Figure 9 represents three pairings: 1/4, 2/5, and 
3/6). The pairs can be created in any order, but once all contours have been de-
fined for a tetrahedron, the pairs are sequenced so that one pair connects to anoth-
er (not unlike dominos end to end) until a polygon of three or more sides is 
formed. The polygon, if 4 or more sides, is decomposed into triangles. 

5 Results 

The mid-surface below was generated from approximately 8500 cubic cells. 
 

   
 

  

Fig. 13 Upper left: original thin-wall object with yellow coping elements, upper right: mid-
surface within semi-transparent object, and bottom: mid-surface 
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Fig. 14A Object detail 

Fig. 14B Mid-surface details
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Fig. 15 (continued) 

7 Future Work 

Several areas of future wo

7.1 Parallelization 

The solutions within a lat
are a number of specific
multiple processors, such 
ently about one hour for f

7.2 Mesh Reductio

The intersection of the m
triangles. A technique int
thin triangles, reducing tr
non-manifold triangulatio

Fig. 16 Mid-surface detail sh

Defined Mid-Surfaces 27

 

ork are promising. 

tice cell are local and thus amenable to parallelization, a
c operations. If the software were ported to execute o

as afforded by a modern GPU, the execution time (pre
fig. 13) could be significantly reduced. 

n 

mid-surface with lattice tetrahedra yields thin and sma
troduced in [4] processes the lattice to collapse small o
riangle count and improving triangle shape. Its use wit

ons may be problematic, however. 

 

howing thin and tiny triangles 

73

as 
on 
es-

all 
or 
th 



274 J. Bloomenthal 

7.3 Coping Detection  

The automatic tagging of coping elements should be possible, although a solution 
is not necessarily straight-forward. 

8 Conclusion 

This paper has presented a method to generate a triangulated mid-surface mesh 
from an arbitrary thin-wall object. Aside from minor preparation and post-process 
pruning, the method is automatic. Results are computed with arbitrary precision 
and appear robust for complex objects. 

Techniques developed in this paper are protected by US patent 6956565 and 
others pending. 
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