
An Improved Hexahedral Mesh
Matching Algorithm

Jinming Chen, Hua Zhu, Shuming Gao∗, and Haiyan Wu

CAD&CG State Key Laboratory, Zhejiang University
smgao@cad.zju.edu.cn

Summary. Mesh matching is an effective way to convert the non-conforming
interfaces between two hexahedral meshes into conforming ones, which is
very important for achieving high quality finite element analysis. However,
the existing mesh matching algorithm is not robust and efficient enough.
In this paper, the algorithm is improved in three aspects: by introducing a
more precise criteria for chord matching and the concept of partition chord
set, complex interfaces with internal loops can be handled more efficiently;
by putting forward a mesh quality evaluation method, the sheet extraction
operation during mesh matching is sped up; by bringing up a new solution,
self-intersecting sheet can be inflated locally. Test results demonstrate the
effectiveness of the improved mesh matching algorithm.

Keywords: Mesh matching, Sheet operation, Hexahedral mesh, Finite
method analysis.

1 Introduction

For finite element analysis, hexahedral meshes are usually better than tetra-
hedral meshes[1]. Thus a lot of work has been conducted on hexahedral mesh
generation. Up to now, however, it is still too difficult to automatically gen-
erate hexahedral meshes of complex CAD models. As a result, a complex
model that cannot be well meshed as a whole is usually decomposed into a
number of components each of which can be meshed automatically by certain
algorithms, and then the hexahedral meshes of all components are combined
together as the resultant meshes of the whole CAD model. One problem
of this method is that the interfaces between the hexahedral meshes of the
components are usually non-conforming.

The assembly meshing is a typical example. We usually mesh the assembly
components, i.e. parts, separately, instead of the whole assembly. Because

∗ Corresponding author.

J. Sarrate & M. Staten (eds.), Proceedings of the 22nd 183
International Meshing Roundtable,
DOI: 10.1007/978-3-319-02335-9_11, c© Springer International Publishing Switzerland 2013



184 J. Chen et al.

each part of the assembly may be meshed by different FEA engineers, or
using different meshing techniques, or taking different element density, the
meshes of the parts often become non-conforming on the assembly interfaces.

In addition to assembly meshing, the reusing of the existing hexahedral
mesh models also faces the non-conforming interfaces problem. Because the
high quality hexahedral mesh generation of complex CAD models is very dif-
ficult and time-consuming, reusing of the existing hexahedral mesh models
in the library whose size keeps expanding is becoming more and more impor-
tant. In reuse-based scenario, for a complex CAD model, instead of meshing
it from scratch, its hexahedral meshes are generated by combining some ex-
isting mesh models searched and some new generated meshes. Obviously the
searched mesh models are hardly conforming to the new generated one on
their interfaces.

Currently, in order to obtain an integral solution based on the mesh model
with non-conforming interfaces, it is necessary to impose constraints on the
non-conforming interfaces, like gap elements, multi-point constraints etc[2,
3, 4]. Nevertheless, when mesh models are large and interfaces are complex,
the tasks of correctly imposing the required constraints become tedious and
erroneous, and the analysis result is usually not as accurate as that obtained
based on the mesh model with conforming interfaces.

Several algorithms have been brought out to generate conforming meshes
of complex CAD models. Cooper Tool projects all the barrels’ outlines on
the interfaces to generate conforming hexahedral meshes[5]. However, this
method can only handle situations of sweepable models conjoining in the
sweeping direction. Graft Tool[6] and Multi-axis Cooper Tool[7] relax the
conjoining direction restriction, but the former needs the branch models to
be sweepable and the latter not only needs the child models to be sweepable
but also has limitations on the angle formed by two child models.

Staten et al. proposed an algorithm called mesh matching, which gradually
converts the non-conforming hexahedral mesh interfaces into conforming ones
using some dual operations like pillowing, dicing etc[8, 9]. Staten, later in his
dissertation, brought up an automatic strategy in order to get rid of manual
intervention[1]. They are the first to use sheet technologies to provide an
alternative method dealing with non-conforming interfaces. Although it is
an excellent work, there are still some aspects to improve. For example, the
efficiency of the sheet extraction operation during mesh matching is low and
it seems that self-intersecting sheets can not be locally dealt with.

Recently, Lo proposed another algorithm for merging non-conforming hex-
ahedral meshes[10]. However, the resultant meshes contain non-hexahedral
elements like tetrahedra, pyramids. For finite element analyzing, a pure hex-
ahedral mesh is preferred.

Recognizing the promise of hexahedral mesh matching, the objective of
this paper is to make improvements to make the algorithm more capable and
efficient. By introducing the concept of partition chord set and adopting a new
chord matching criteria, we can deal with complex interfaces with internal



An Improved Hexahedral Mesh Matching Algorithm 185

loops more effectively. And we also provide a method to locally inflate self-
intersecting sheets. Moreover by adopting a mesh quality prediction strategy,
we speed up the sheet extraction operation during mesh matching.

The rest of this paper is organized as follows: Section 2 introduces basic
concepts and gives the overview of our algorithm. Section 3 describes the
details of the key steps of our improvements. Section 4 shows some examples.
Finally, Section 5 gives the conclusions and future work.

2 Basic Concepts and Overview of Algorithm

2.1 Basic Concepts

In this paper, we bring out new chord matching criteria to make the algorithm
to match chords on interfaces with internal loops more efficiently and the
concept of partition chord set to enable localization of sheet operations when
interfaces contain internal loops. Some related concepts are given in this
section. Due to the limited space of this paper, we leave out some common
concepts like hexahedral mesh, sheet and quadrilateral mesh etc which can
be found in [1, 8, 9, 11, 12].

Definition 1 (Chord). Given a quadrilateral mesh Q and a edge e, a chord
c can be represented as a set of edges c = Ec, Ec ⊂ Q, e ∈ Ec, where Ec

is the maximum set of edges that can be recursively found by getting the
topological parallel edge of e.

On a quadrilateral mesh, a chord must be associated to a sheet, while a
sheet may associate to several chords on this quadrilateral mesh.

(a) (b)

Fig. 1 Partition chord and partition chord set: (a)Two partition chords;(b)One
partition chord set

Definition 2 (Partition chord). Given a quadrilateral mesh Q and the
edge set E of Q, a chord c = Ec is a partition chord if edges in E′ = E −Ec

can form two unconnected groups.

For interfaces without inner loops, all the chords are partition chords ex-
cept for self-intersecting ones, which separate the mesh into more than two



186 J. Chen et al.

unconnected groups. For interfaces with multiple loops, chords connecting to
the same loop are partition chords. Fig. 1(a) shows two partition chords.

Definition 3 (Partition chord set). Given a quadrilateral mesh Q and
the edge set E of Q, a chord set C = {c1, c2, · · · , cn} is a partition chord set
if E′ = E − Ecs can form two unconnected groups, where Ecs are the edges
of C, while E′ = E − E′

cs cannot form two unconnected groups where E′
cs

are the edges of C′ ⊂ C.

Fig. 1(b) shows one partition chord set. It can be seen that all the chords
in the partition chord set connect different loops on the interface.

Definition 4 (Direction of chord). Given a chord c = Ec, its direc-
tion is determined by the order of the edges in Ec, which can be sorted
as (e1c , e

2
c , · · · , enc ), where eic ∈ E, and eic and ei+1

c are adjacent to a same
quadrilateral face, i = 1, 2, · · · , n− 1.

Definition 5 (Closed chord and open chord). Given a chord c = Ec, c
is called an open chord if ∃e ∈ Ec on the boundary curves, otherwise c is
called a closed chord.

Fig. 2 Illustration of cross sequence, decomposed regions, chord segments and
curve segments

Definition 6 (Cross sequence of a chord). The cross sequence of a chord
c with respect to a chord set C refers to the sequence of all the chords in C
that cross with c, sorted according to c’s direction. It can be expressed as
CrossSeq(c|C) = (c1c , c

2
c , · · · , cnc ), where cic ∈ C, i = 1, 2, · · · , n.

Fig. 2 gives an example. In the figure, the red chord is the chord c whose
direction is marked by the black arrows, the chord set C is {ci|i = 1, 2, · · · , 8},
and the cross sequence of c with respect to C is (c2, c6).

Definition 7 (Chord segment). The cross sequence of a chord c with re-
spect to a chord set C separates c into a number of sections. These sections
are termed as the chord segments of chord c.



An Improved Hexahedral Mesh Matching Algorithm 187

Each chord segment of a chord is represented by the pair of chords that
separates it from the chord. To express the beginning and ending of the chord,
we add two virtual chords, Start and End. In Fig. 2, the chord segments of
chord c with respect to C are (Start, c2), (c2, c6), and (c6, End).

Definition 8 (Curve segment). Given a chord set C and a boundary curve
l, chords in C that intersects with l separate l into a number of sections. These
sections are called the curve segments of the boundary curve.

The expression of the curve segment of a boundary curve is similar to the
chord segment. Taking the boundary curve l in Fig. 2 as an example, given
the direction of l as shown in the figure, the curve segments of l with respect
to C are (Start, c4), (c4, c3), (c3, c2), (c2, c1), and (c1, End).

Definition 9 (Decomposed regions of mesh). Given a set of chords of a
mesh, the mesh is decomposed into a number of regions by the chords, which
are defined as decomposed regions of the mesh.

Each decomposed region can be represented by a 3-tuple (c, s, p), where c
is one of the chords that surround this region, s is a chord segment of c that
is adjacent to the decomposed region, and p stands for the left side or right
side of c that the region lies in.

Fig. 2 shows an example of decomposed regions. In this example, chord
set C decomposes the quadrilateral mesh into 11 regions A - K. Re-
gion A can be expressed as A = (c1, (Start, End), right). Similarly, B =
(c2, (Start, c3), right), C = (c3, (c2, End), left) etc.

A decomposed region may have several expressions, e.g. decomposed
region B can also be expressed as B = (c1, (Start, End), left) besides
(c2, (Start, c3), right). All these expressions are interchangeable. In addition,
if the set of chords is empty, there will be only one decomposed region, i.e.
the whole mesh.

Definition 10 (Polyline of a chord). Given a chord c = (e1c , e
2
c , · · · , enc ),

its chord polyline is defined as (m1,m2, · · · ,mn), where mi is the middle
point of eic, i = 1, 2, · · · , n.

Fig. 3(a) shows the polylines (dashed lines) of two chords c1 and c2.

Definition 11 (Polyline for chord inflation). The polyline for chord in-
flation refers to the polyline in the mesh along which the chord inflation will
be conducted.

Fig. 3(a) shows a polyline for chord inflation with the inflating directions
indicated in bold black arrows. And the new chord generated by the chord
inflation along the polyline is shown in Fig. 3(b).

Definition 12 (Topological 4-tuple of a chord). Given a set of chords
C, the topological 4-tuple of a chord c is defined as (T,E, I, R), where T



188 J. Chen et al.

(a) (b)

Fig. 3 Two types of polylines: (a)The polyline for chord inflation (in bold black);
(b)The new chord generated by chord inflation (in bold black)

stands for c’s type, i.e. open chord or closed chord; E stands for its starting
and ending boundary curves and the curve segments where c intersects with
the curves if c is an open chord or E is empty set if c is a closed chord; I
refers to the cross sequence of c with respect to C and the chord segments
where these chords intersects with c; R refers to the decomposed regions that
c passes created by chords in C.

In essence, topological 4-tuple of a chord is used to dynamically and pre-
cisely characterize a chord during mesh matching. Like the chord, the polyline
of the chord also has the topological information, so a similar topological 4-
tuple can also be defined on the polyline.

Definition 13 (Polygon associated to two chords). Let chords c1 and
c2 come from quadrilateral mesh QA and QB respectively and both are open
chords, the polygon associated to these two chords refers to the polygon
formed by the polylines of c1 and c2 and the segments of the boundary curves
between their intersection points with the polylines of c1 and c2.

(a) (b)

(c) (d)

Fig. 4 Polygon associated to two chords: (a)Chords c1 and c2 in QA; (b)Chord c3
in QB; (c)Polygon associated to c1 and c3; (d)Polygon associated to c2 and c3

Fig. 4(c) shows the polygon associated to chord c1 and chord c3 where
the black dashed lines are the segment on l1 and l2 between the intersection



An Improved Hexahedral Mesh Matching Algorithm 189

points with the polylines of c1 and c3. It can be seen that the polygon shown
is self-intersecting and contains no internal loops while the polygon associated
to c2 and c3 shown in Fig. 4(d) contains a circular loop.

Definition 14 (Topological equivalence of two chords). Chord ca and
cb are in quadrilateral mesh QA and QB respectively, the sets of matched
chords on QA and QB are Cpair−A and Cpair−B respectively, and Ppair =
{(ci, c′i)|ci ∈ Cpair−A, c

′
i ∈ Cpair−B , where ci and c′i are matched chords}. ca

and cb are topologically equivalent with respect to Ppair if and only if they
meet the following conditions:

1. The two topological 4-tuples of ca with regard to Cpair−A and cb with
regard to Cpair−B are homeomorphic;

2. If ca and cb both are open chords, then the polygon associated to these
two chords should contain no internal loops;

3. if ca and cb both are closed chords, then their polylines should surrounds
the same internal loops.

(a) (b) (c)

Fig. 5 Illustration of topological equivalence: (a)Chord ca in mesh A; (b)Chord cb
in mesh B; (c)Polygon associated to ca and cb

Fig. 5 shows an example of topological equivalence of two chords, where
chords ci and c′i (i = 1, 2, · · · , 6) are matched pairs and ca and cb are both
open chords. It can be seen that ca and cb meet all the conditions in Defi-
nition 14, so they are topologically equivalent and can form a matched pair.
Similarly, two closed chords cc and cd are also topologically equivalent.

2.2 Overview of Algorithm

The algorithm takes two hexahedral meshes (denoted as HA and HB) and
their corresponding B-Rep models as input.

The two hexahedral meshes contain non-conforming interfaces. After con-
ducting the initial matching, mesh matching gradually changes the topology
of the two meshes using sheet operations including sheet extraction and sheet
inflation. In order to limits the topological modification of the sheet opera-
tions within a certain layers of hexahedra, depth control can be enabled. At



190 J. Chen et al.

last conforming interfaces will be generated, and then the two hexahedral
meshes can be connected on the conforming interfaces.

Algorithm 1 below shows the main procedures of the algorithm when depth
control is required. If depth control is not required, the algorithm flow is
almost the same except that sheet operations need not to be localized.

Algorithm 1. Mesh matching

1: Find the interface between two input models
2: Get the quadrilateral meshes QA and QB on the interfaces from HA and HB

3: Retrieve all the chords in QA and QB, store them in CA and CB

4: Make initial matching, put the matched chord pairs in P , and put the un-
matched chords into Cuc−A and Cuc−B

5: while Cuc−A �= ∅ or Cuc−B �= ∅ do
6: Get an unmatched chord ca from Cuc−A or Cuc−B

7: if ca needs to be grouped into a partition chord set then
8: Form a partition chord set pcsa
9: end if
10: Choose sheet extraction or sheet inflation
11: if Sheet extraction is chosen then
12: Do quality evaluation and choose the best strategy for localization
13: Execute sheet extraction on pcsa or ca
14: else
15: Execute sheet inflation, generating a new sheet on the other mesh
16: Put new paired chords into P
17: end if
18: Remove ca or all chords in pcsa from Cuc−A or Cuc−B

19: Perform mesh smoothing
20: end while

3 Key Steps of Algorithm

In this section, four key steps of the algorithm are described in detail, includ-
ing initial matching, check and form partition chord set, sheet inflation and
sheet extraction based on mesh quality prediction.

3.1 Initial Matching

After gathering all the chords in quadrilateral mesh QA and quadrilateral
mesh QB, and storing them in Cunpair−A and Cunpair−B respectively, the
initial matching is performed. This step finds out the existing chords that can
be matched between the two meshes without doing any dual mesh operations.
In this process, whether two chords can be matched is determined by the
topological equivalence criteria. If more than one chord meet the topological
equivalence criteria, then chord distance is used to help select the best one.



An Improved Hexahedral Mesh Matching Algorithm 191

At the very beginning, since there is no matched chords, only T and E in
the topological 4-tuple of the chords and the other two requirements in the
definition of topological equivalence are checked. Since boundary sheets are
more important to the quality of mesh, they are matched prior. For example
in Fig. 6(a) and Fig. 6(b) both chords c1 and c′1 start from E1 and end at E3,
and since currently there are no matched chords, so the topological 4-tuples
of c1 and c′1 are equal. Additionally, their associated polygon contains no
internal loops, so they become a matched chord pair.

As the algorithm continues, matched chords become position reference of
chords that are to be matched. For example, in Fig. 6(c) and Fig. 6(d) chords
ci and c′i(i = 1, 2, · · · , 5) are matched chords and the black arrows show the
chords’ directions. Topological 4-tuples of chord ca (denoted in red in Fig.
6(c)) and chord cb (denoted in red in Fig. 6(d)) are (T =open chord, E =
((E1, 1), (E5, 0)), I = ((c4, (c3, c1)), (c6, (c5, c1))), R = (c4, (c3, c1, Left))),
and (T =open chord, E = ((E1, 1), (E5, 0)), I = ((c′4, (c

′
3, c

′
1)), (c

′
6, (c

′
5, c

′
1))),

R = (c′4, (c
′
3, c

′
1, Left))). With the matched chord pairs, it can be seen that

ca and cb are topological equivalent, so they become a new pair of matched
chords.

(a) (b)

(c) (d)

Fig. 6 Initial matching: (a) First matched chord c1 on quadrilateral mesh QA; (b)
First matched chord c′1 on quadrilateral mesh QB ; (c) Chord ca on mesh QA; (d)
Chord cb on mesh QB



192 J. Chen et al.

3.2 Establishing Form Partition Chord Set

In Algorithm 1 line 7, if ca is not a partition chord, it need checking whether
it should be grouped into a partition chord set. There are two situations
when the chord needs to be grouped into a partition chord set: depth control
is required, or there exist other chords that associate to the same sheet of ca.

In the first case, suppose ca starts from loop l1 and ends at loop l2, l1 �= l2,
we try to find a set of chords c2, · · · , cn whose starting and ending loops can
be sorted in a sequence (l2, · · · , l1), using a greedy-based algorithm. If all the
chords in the set C = {ca, c2, · · · , cn} do not intersect with each other, C
is a partition chord set. If there is no chord in the unpaired chord set that
can form a partition chord set with c1, then we will go further to check the
matched chords.

The second case happens when blind holes exist. Chords belong to the same
sheet should be grouped into a partition chord set and be dealt together.

3.3 Sheet Inflation

Given an unmatched partition chord or partition chord set on one interface,
one way to match it is to create a corresponding chord or a corresponding
chord set on the other interface through sheet inflation. In order to correctly
do that, firstly we determine the polylines for chord inflation which define
the topological positions of the chords to be created, then conduct the sheet
inflation to create the sheet based on the polylines determined.

Determination of Polylines for Sheet Inflation Based on
Topological Equivalence

In our algorithm, we find these polylines based on the following observation:
if chord c is in QA and we want to create c′ on QB to match with c, a polyline
in QB is the polyline for chord inflation of c′ if and only if it is topologically
equivalent to c. We first set up a topological 4-tuple in QB equivalent to that
of c, and then use it as the constraints to search for the polyline.

The specific procedures are described below, illustrated by a simple ex-
ample shown in Fig. 7-8. Suppose the matched chord set of QA and QB are
Cpair−A and Cpair−B respectively and the matched chords pairs set is P .
In Fig. 7(a), the red chord set {ca, cb, cc} is the partition chord set we are
now dealing with, and the green chords refer to the matched chord pairs set
denoted as P = {(ci, c′i)|i = 1, 2, · · · , 8}.

For each chord in {ca, cb, cc}, we find its corresponding polyline in following
6 steps, taking ca as an example here:

1. Set up the topological 4-tuple. Get ca’s topological 4-tuple, say t, with
respect to Cpair−A. According to the chords matching relation in P , we
get a topological 4-tuple, say t′, with respect to Cpair−B .



An Improved Hexahedral Mesh Matching Algorithm 193

(a) (b)

Fig. 7 Two quadrilateral meshes before chord inflation: (a)Mesh QA with partition
chord set {ca, cb, cc} and matched chords ;(b)Mesh QB with matched chords.

(a) (b)

(c) (d) (e)

Fig. 8 Process of finding polylines: (a)Starting and ending nodes (in blue and red
respectively);(b)Decomposed regions that new chord should pass (in bold blue);
(c)Edges candidates (in bold blue and bold red); (d)The searched polyline for chord
inflation (in bold black); (e)All polylines for partition chord set.

2. Find starting and ending nodes. Obtain the starting boundary curve and
its curve segment from t′. Mesh nodes in QB that lie on the curve segment
of the starting boundary curve form a nodes set which is called the starting
nodes set Nstart. Similarly, we get the ending nodes set Nend on the ending
boundary curve. In Fig. 8(a), the starting nodes are marked as blue while
the ending nodes as red.

3. Gather edges in decomposed regions. Find the decomposed regions in QB

according to t′ and collect all the mesh edges in these regions into an edges
set Ecandi. These edges are highlighted in blue in Fig. 8(b).



194 J. Chen et al.

4. Get edges on chord segments. Get the cross sequence and the chord seg-
ments in t′. Retrieve all the edges that lie on the chord segments of the
chords in the cross sequence, and put them into Ecandi. In Fig. 8(c), these
edges are highlighted in red.

5. Search the polyline for the chord inflation. Find a polyline from Ecandi,
which starts from one of the nodes in Nstart, then crosses all the chords in
cross sequence in the same order, at last ends in one of the nodes in Nend.
Note that when the polyline overlaps with other polylines in the partition
chord set, it is modified by manual interaction to avoid the overlaps.

Using the above algorithm, the two polylines pb and pc for cb and cc are
gotten, as shown in Fig.8(e).

Sheet Inflation Capable of Handling Self-intersecting Sheets

After finding out all the polylines of {ca, cb, cc} in Fig. 7(a), now we create
the new sheet using the sheet inflation operation. These polylines will guar-
antee that the new chords on QB associated with the new sheet created are
topologically equivalent to the corresponding chords on QA.

If what we are currently dealing with is partition chord or partition chord
set, pillowing can be used to generate sheets[13]. It first select a number of
hexahedra to form a shrink set. Then the shrink set shrinks, creating blank
space between the set and the rest of the mesh. At last, a new sheet is formed
in the gap, so as its associated chord on the interface. Since {ca, cb, cc} is a
partition chord set, we use pillowing to generate the sheet. The processes are
shown in Fig. 9.

(a) (b) (c)

Fig. 9 Pillowing: (a)A shrink set is selected; (b)The shrink set shrinks and a new
sheet is created filling the gap; (c)The new sheet and its three associated chords on
the interface (marked as dashed yellow line)

If what we are currently dealing with is a self-intersecting sheet, then gen-
eralized sheet inflation can be used[8, 9]. However this method seems cannot
locally generate the sheet, when depth control is required in many situations.
In this paper, we present a method to locally generate a self-intersecting sheet



An Improved Hexahedral Mesh Matching Algorithm 195

by extending the generalized sheet inflation algorithm. Since sheets that in-
tersect itself once are the most common, we currently only deal with this
kind of self-intersecting sheets. The specific steps are as follows:

1. Determine a polyline polya on the interface with one self-intersecting point
A based on the algorithm of finding polyline for chord inflation described
previously. Then we find another polyline polyb with one self-intersecting
point B on the side face within the required depth. polya and polyb are
connected, shown in Fig.9(a) as blue lines.

2. Use path finding algorithms like A* to find a path from A to B, all edges
of which have valences no less than 4, as the red lines in Fig.9(a).

3. Retrieve 4 sequences of faces along the path, shown in Fig.10(c) as yellow
faces.

4. Get two sets of hexahedra based on the 4 sequences and polyline on the in-
terface. Then do some optimization on these two hexahedra sets according
to edge valences and number of hexahedra.

5. Perform pillowing on the two sets respectively, shown in Fig.10(d).
6. Then make a column inflation between the two newly generated sheets,

creating a self-intersecting sheet, shown in Fig.10(e).

(a) (b)

(c) (d) (e)

Fig. 10 Localized inflation of self-intersecting sheet: (a)Find self-intersecting poly-
lines and the shortest path between two intersecting points; (b)Four sequences of
faces along the path; (c)Two hexahedra sets; (d)Pillowing results of two hexahedra
sets; (e)Self-intersecting sheet is created by a column inflation



196 J. Chen et al.

3.4 Sheet Extraction Based on Mesh Quality
Prediction

Another strategy of dealing unmatched partition chord or partition chord set
is extracting it from the interface using sheet extraction. One problem with
sheet extraction is how to get it executed locally, i.e. meets the depth control
requirement. For example, given a partition chord set pcs in Fig.11(a), asso-
ciated sheets Spcs cannot be extracted together locally. To solve this problem
the sheet extraction is executed in three steps in the previous work: firstly,
an assistant sheet Sassist at the required depth which intersects with Spcs

in Fig.11(c) needs to be determined. Secondly, columns at the intersections
between Sassist and Spcs are collapsed to get a localized sheet S′

assist.
Thirdly, this sheet is extracted to have the partition chord set extracted,

as illustrated in Fig.11(e).

(a) (b)

(c) (d) (e)

Fig. 11 Procedures of sheet extraction for partition chord set: (a)Sheets associated
with the partition chord set; (b)Inflatable face set; (c)Assistant sheet; (d)Column
collapse; (e)Extraction of sheet

In the first step mentioned above, there exist more than one possible assis-
tant sheet satisfying the required depth, also it can be generated by inflating
a quadrilateral face set Q from Fig.11(b) to Fig.11(c). Thus, the best assis-
tant sheet which admits the highest quality of the resultant mesh needs to be
found out. To obtain the best one, every possible assistant sheet is assessed.
In the original mesh matching algorithm, in order to backtrack to the original



An Improved Hexahedral Mesh Matching Algorithm 197

mesh model, the mesh model is copied to a new one to perform each assess-
ment. This brings about many time-consuming mesh model copy operations,
making the efficiency of the sheet extraction greatly decreased.

In order to improve the efficiency of the sheet extraction operation, we pro-
pose a method to predict the quality of the resultant mesh for each possible
assistant sheet without conducting the mesh model copying and the real sheet
extraction. Here the mesh quality is computed using the 3D topology score
EEVS[1], thus edge valence (count of adjacent faces) and hexahedra num-
ber variation are taken into consideration. Before describing our prediction
method, we first give the analysis of edges valence variation and hexahedra
number variation.

Analysis of edges valence variation

During the process of sheet extraction, the valence variation for existing edges
and new edges can be classified into following three situations:

1. In sheet inflation, edges of the quadrilateral face set Q are doubled, and
new edges are inserted between Q and the new quadrilateral face set Q′.
Then the new edge valences for the preserved edge epreserve and the newly
inflated edge einflate are the counts of the adjacent faces at their individual
side of Q plus 1, and the edge valence for the newly inserted edge einsert
is the valence of node ninsert on Q, as illustrated in Fig.12(a).

2. In sheet extraction, Q and Q′ are the two quadrilateral face sets of the
sheet, and every pair of edges come from them individually is collapsed to
one edge, and edges connecting Q and Q′ are removed. As illustrated in
Fig.12(b), the valence of edge collapsing from edge ecollapse to epreserve is
the count of their connected faces minus 3, and removed edge eremove is
not counted.

3. In column collapse, edges are collapsed or preserved with valence decreased
by 1. Fig.12(c) illustrates a hexahedron of the column for collapse, and
qAEFB and qHGCD are two of the quadrilateral faces of the column which
are topologically perpendicular to the column. After column collapse, edges
are collapsed, e.g. AE and AB are collapsed to A′B′, EH and BC are col-
lapsed to B′C′. In addition, AD is preserved as A′D′, and its connected
faces qAEHD and qABCD are collapsed to qA′B′C′D′ , so its valence is de-
creased by 1.

Analysis of hexahedra number variation

The variation of hexahedra number is relatively simple and clear: in sheet
inflation, the number is increased by the same number of quadrilateral faces
in Q, then decreased by the number of hexahedral elements in the columns at
the intersection of Sassist and Spcs, and finally hexahedral elements in S′

assist

are all removed in sheet extraction.



198 J. Chen et al.

(a) (b)

(c)

Fig. 12 Edge valence variation: (a)Edge valence variation during sheet inflation;
(b)Edge valence variation during sheet extraction;(c)Edge valence variation during
column collapse.

Fig. 13 Mesh matching example of assembly

Based on the above analysis, our method of mesh quality prediction is
as follows: firstly, predict the resultant edge valences according the above
analysis. Then the variation of hexahedra number is predicted. Finally, 3D
topology score EEVS is predicted using edge valences and hexahedra number
variation as input, in order to select the best assistant sheet efficiently.

4 Examples

We implement our algorithm in C++ on the platform of 32-bit Windows
7, Visual Studio 2010 and test the algorithm on several meshes. Fig.13 and
Fig.14 are two examples.



An Improved Hexahedral Mesh Matching Algorithm 199

Fig.13 shows an example of applying mesh matching on an assembly model.
The two hexahedral meshes of two parts are generated by different size func-
tions, so the interfaces between them are non-conforming. All the sheet op-
erations applied to them during mesh matching are localized.

Fig. 14 Mesh matching example of the screw part

Fig.14 shows another kind of situation. The original screw part shown in
Fig.14(e) is hard to be directed meshed. So it is cut into two parts, both of
which can be meshed much more easily, shown in Fig.14(a) and Fig.14(b).
Then we perform the mesh matching algorithm on the two meshes, and finally
get the conforming interfaces.

The testing results show that mesh qualities degenerate due to sheet op-
erations, however they are still within the acceptable tolerance for analysis.
The sheet extraction with our prediction method is about 7 times faster than
the original one.

5 Conclusion

In this paper, we have made some improvements to the original mesh match-
ing algorithm to extend its ability and efficiency. By bringing out the new
chord matching criteria, we can deal with complex interfaces with internal
loops more effectively. Based on the new concept of partition chord set, we
can now locally inflate or extract sheets associated with a partition chord
set, sheets that cannot be locally inflated or extracted alone. For a sheet
that intersects itself once, we present a solution to locally create a new self-
intersecting sheet to match with it. And we also put forward an algorithm
of predicting the quality of the resultant mesh model after sheet extraction
without actually doing the operation, which greatly improves the efficiency
of sheet extraction by avoiding frequently copying the whole mesh model.

Future research will focus on four aspects:

1. Find method to localize sheet extraction of self-intersecting sheets.



200 J. Chen et al.

2. Make the algorithm be fully automatic. As described previously, when
polylines of the chords in a partition chord set overlap, human interactions
are needed to correct the polylines. A better optimization algorithm should
be applied during searching the polylines in the future.

3. For a chord that is not a partition chord it can be grouped into different
partition chord set, and different combinations of partition chord set have
different impact on the quality of the resultant meshes. Thus we will study
how to determine the optimal partition chord sets.

4. Extend the current algorithm so that it can deal with the case that the
two interfaces only partly overlap.

References

1. Staten, M.L.: Sheet-based Generation and Modification of Unstructured Con-
forming All-hexahedral Finite Element Meshes. Dissertation, Carnegie Mellon
University, Department of Civil and Environmental Engineering (2010)

2. Dohrmann, C.R., Key, S.W.: A Transition Element for Uniform Strain Hexa-
hedral and Tetrahedral Finite Elements. International Journal for Numerical
Methods in Engineering 44, 1933–1950 (1999)

3. Trujillo, D.M., Pappoff, C.G.: A General Thermal Contact Resistance Finite
Element. Finite Elements in Analysis and Design 38(3), 263–276 (2002)

4. Dohrmann, C.R., Key, S.W., Heinstein, M.W.: Methods for Connecting Dis-
similar Three-Dimentional Finite Element Meshes. International Journal for
Numerical Methods in Engineering 47, 1057–1080 (2008)

5. Blacker, T.D.: The Cooper Tool. In: Proceedings of 5th International Meshing
Roundtable, pp. 13–29 (1996)

6. Jankovich, S.R., Benzley, S.E., Shepherd, J.F., Mitchell, S.: The Graft Tool: an
All-Hexahedral Transition Algorithm for Creating a Multi-Directional Swept
Volume Mesh. In: Proceedings of 8th International Meshing Roundtable, pp.
387–392 (1999)

7. Miyoshi, K., Blacker, T.D.: Hexahedral Mesh Generation Using Multi-Axis
Cooper Algorithm. In: Proceedings of 9th International Meshing Roundtable,
pp. 89–97 (2000)

8. Staten, M.L., Shepherd, J.F., Shimada, K.: Mesh Matching - Creating Con-
forming Interfaces between Hexahedral Meshes. In: Proceedings of 17th Inter-
national Meshing Roundtable, pp. 467–484 (2008)

9. Staten, M.L., Shepherd, J.F., Ledoux, F., Shimada, K.: Hexahedral Mesh
Matching: Converting Non-conforming Hexahedral-to-hexahedral Interfaces
into Conforming Interfaces. International Journal for Numerical Methods in
Engineering 82, 1475–1509 (2010)

10. Lo, S.H.: Automatic Merging of Hexahedral Meshes. Finite Elements in Anal-
ysis and Design 55, 7–22 (2012)

11. Shepherd, J.F.: Topologic and Geometric Constraint-based Hexahedral Mesh
Generation. Dissertation, The University of Utah, School of Computing (2007)

12. Ledoux, F., Shepherd, J.F.: Topological Modifications of Hexahedral Meshes
via Sheet Operations: a Theoretical Study. Engineering with Computers 26,
433–447 (2010)



An Improved Hexahedral Mesh Matching Algorithm 201

13. Merkley, K., Ernst, C.D., Shepherd, J.F., Borden, M.J.: Methods and Applica-
tions of Generalized Sheet Insertion for Hexahedral meshing. In: Proceedings
of 16th International Meshing Roundtable, pp. 233–250 (2007)

14. Borden, M.J., Benzley, S.E., Shepherd, J.F.: Coarsening and Sheet Extrac-
tion for All-Hexahedral Meshes. In: Proceedings of 11th International Meshing
Roundtable, pp. 147–152 (2002)

15. Staten, M.L., Benzley, S.E., Scott, M.A.: A Methodology for Quadrilateral
Finite Element Mesh Coarsening. Engineering with Computers 24, 241–251
(2008)

16. Woodbury, A.C., Shepherd, J.F., Staten, M.L., Benzley, S.E.: Localized Coars-
ening of Conforming All-hexahedral Meshes. In: Proceedings of 17th Interna-
tional Meshing Roundtable, pp. 603–619 (2008)


	Introduction
	Basic Concepts and Overview of Algorithm
	Basic Concepts
	Overview of Algorithm

	Key Steps of Algorithm
	Initial Matching
	Establishing Form Partition Chord Set
	Sheet Inflation
	Sheet Extraction Based on Mesh Quality Prediction

	Examples
	Conclusion
	References

