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Abstract.  Instead of using the polygon defined by adjacent vertices to a 

vertex (called the ball) or its kernel [1], we propose a modified polygon 

that is easy to compute, convex and an approximation of the kernel. We 

call this polygon the “quick kernel ball region.” This novel algorithm is 

presented in details. It is easy to implement and effective in constraining a 

vertex to remain within its feasible region, preventing element folding. 

1 Introduction 

It is well known that the application of the Laplacian smoothing tech-

nique can result in inverted or negative elements. The presence of even one 

element with negative jacobian will render most field solvers inoperable.   

Many Laplace variants exist that try to prevent the creation of inverted 

elements in non-convex domains. The most commonly used is the so 

called “smart” Laplace smoothing [2] that checks after a node has been 

moved if any inverted elements have been created.  

The kernel of a polygon is the locus of the points internal to the polygon 

from which all its vertices are visible [1]. For a convex polygon, all verti-

ces are visible to each other and its kernel is the polygon itself. For con-

cave polygons, the kernel is the intersection of half planes determined by 

the polygon’s edges.  

The present work proposes a simple and natural modification to the ball 

of a vertex that prevents the generation of inverted elements near concave 

boundaries. When Laplace smoothing is restricted to this modified poly-

gon inverted elements will not be created during the smoothing process  
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2 Quick Kernel Ball Algorithm 

2.1 Laplacian smoothing in 2D 

Laplace smoothing [2, 4] computes a new position    of vertex P that is in 

a linear combination of the vertices of the polygon formed by it surround-

ing vertices. The new location will lie in the convex hull of the ball     . 

 
Fig. 1:      =  union of surrounding elements.   is at the centroid. 

 

The general formula for Laplace smoothing is: 
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2.2 Quick Kernel Ball Algorithm 

Given a point P to move, we define   (P) = {  ,i=1,n} the ball defined 

by the first neighbors to P. We assume that   (P) is a circular list oriented 

counter clockwise (P is to the left of the directed edge       ). The steps 

to compute the quick kernel ball qkB(P) are described below: 

Do { 

1. Find the most concave point in   (P) i.e.       

2. If all the points in   (P) are convex (i.e.      { }) 

a. qkB(P) =    (P).  

b. Exit. 

3. else (i.e.      { }) 

a. Remove from        both previous and next point to     . 

     (P)=    P)-{       ,       } 

b. Update the circular linked list of points. 

c. Recompute the new angles for       ,     ,        

} until (     (P) is convex ) 

 

The advantage of our approach compared to the computational geome-

try computation of the kernel is that no new vertices need to be computed. 

qkB starts with a list of vertices that defines the ball of a point and retains 

a subset that convexifies the ball - The algorithm is constructive. 

 

Figure 2 shows a comparison of the quick kernel Ball {  ,   ,   ,   }  
and the kernel {  ,         ,               }  for a simple polygon with 

eight vertices. QkB is almost included in the kernel except for the small 

triangular region Δ(        ,    that is not visible from   .  

 
Fig. 2 :     {  ,   ,   ,   } approximates the kernel

(+)



 

4 Results and Discussion 

4.1 Parameters to Control the Iterative Laplace Smoother   

The list of nodes that need to be updated is kept in a (C++) set. During, 

the first iteration the set is filled with all interior nodes. We define 

maxSmoothingIteration the maximum number of iterations. The stop-

ping criterion at a node is chosen so that the node is not moved if the rela-

tive displacement 
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⃗⃗ ⃗⃗ ⃗⃗  ⃗  ) representing a charac-

teristic length defined as the average surrounding edges’ length.  When a 

node is not moved, it is removed from the set for the next iteration.  When 

a node is moved, its coordinates are updated and its neighbor nodes are 

added to the set. The iteration stops when either the maximum number of 

iterations is reached or the set of nodes that need to be updated is empty. 

4.2  Parameters to Control the Approximation of the Kernel   

The reflex interior vertex angle threshold         is used to decide if a 

point is concave or not. The theoretical value for         is π. However, 

this parameter can be used to improve the stiffness of a mesh around high-

ly concave regions. In our work, we found that a value of             

degrees led to good results.  

4.3 Benchmark on a Non-Convex Domain 

A framework was implemented to benchmark the reliability of the La-

place variants presented earlier as well as other smoothing strategies. In 

this framework, the convergence criteria remained the same for all the al-

gorithms (maxSmoothingIteration =100,       . The only variable 

that changed was the method used to move a node.  

For quadrilateral elements, initially we used the ball formed by the un-

ion of surrounding elements which, translated to triangular meshes, is 

equivalent to adding a fictitious diagonal edge centered at  . Our experi-

ence showed that the results improved if instead we used the enveloping 

polygon of the adjacent vertices to   as suggested in [7]. Figure 4 depicts 

the enveloping polygon {           } of adjacent vertices to P in dashed 
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lines. Notice that, in general, the enveloping polygon of the adjacent verti-

ces is contained in the union of surrounding elements (unless some quad 

elements have negative jacobians).  

Figure 3a depicts the initial mesh that was used as a benchmark. An ini-

tial coarse structured mesh was constructed and the interior nodes per-

turbed so that no folded element exist and the mesh is valid.  Figure 3b 

shows the converged mesh, after 12 iterations, using constant weight La-

place smoothing. The mesh is folded close to the concave boundary. Fig-

ure 3c shows the converged mesh, after 55 iterations using inverse distance 

Laplace. The mesh is valid but many elements exhibit high aspect ratio and 

are becoming almost degenerate. Figure 3d shows the mesh obtained mod-

ifying the surrounding polygon according to [6]. It converged after 40 iter-

ations. Although the mesh is valid with no folded elements, they also ex-

hibit high aspect ratio near the concave boundary. Figure 3e depicts the 

mesh using qkB, converged after 12 iterations. The mesh obtained pre-

served the mesh regularity and element did not get attracted and concen-

trated to the concave boundary. Finally, Figure 3f shows the results using 

Winslow smoothing [3] converged after 6 iterations. This is our reference 

mesh. Winslow smoothing does provide a better mesh than qkB on this 

structured example. However, our qkB algorithm is applicable to tri, quad 

and mixed meshes. 

5 Conclusion 

A new technique to compute an approximation of the kernel of a poly-

gon was presented. The technique is intuitive and easy to implement. It 

works by deactivating vertices before and after the most concave point of a 

simple polygon, updating the new polygon and repeating until a convex 

sub-polygon is obtained. The algorithm removes most of the regions in the 

original polygon that are not visible to all other vertices and therefore pro-

vides an approximation to the kernel of the polygon. The technique was 

coined “Quick Kernel Ball” or qkB in short. Preliminary results are en-

couraging and demonstrate that starting with a valid mesh, the present al-

gorithm will maintain a valid mesh. 

The key ideas of our technique have the potential to be extended to three 

dimensions. The dihedral angle of an edge is the extension to the interior 

angle at a vertex. The three dimensional ball at a point   is convex if, and 

only if, all the dihedral angles to the opposite edges to   have an angle that 

is lower than  . Once some edges have been classified as concave, it 

makes sense to start with the edge with the largest dihedral angle and drop 
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the two vertices on both sides of the edge as they are not visible from each 

other. The challenge is then to reconnect the triangles in the outer bounda-

ry to form a closed ball. Edge collapse or re-triangulation could be used to 

this end.  
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Fig. 3a: Initial mesh perturbed 

 
Fig. 3b: Standard Laplace 

 
Fig. 3c: Laplace inverse distance 

 
Fig. 3d: Inside feasible region 

 

 Fig. 3e: qkB + Laplace 

 
Fig. 3f : Winslow Smoothing 

Fig. 4: Quad elements.  

Enveloping polygon of adjacent 

vertices to P. 

P


