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Summary. This paper describes a parallel procedure for anisotropic mesh adapta-
tion with boundary layers for use in scalable CFD simulations. The parallel mesh
adaptation algorithm operates with local mesh modification operations developed
for both unstructured and boundary layer parts of the mesh. The adaptive approach
maintains layered elements near the viscous walls and accounts for the mesh mod-
ification operations that are carried out in parallel on a distributed mesh. In the
process mesh relationships and approximations with respect to curved complex 3D
geometries of interest are properly maintained. The parallel mesh adaptation proce-
dures are applied to two problems: a heat transfer manifold and a scramjet engine.
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1 Introduction

Adaptive meshing provides a powerful tool for addressing the creation of op-
timal meshes for problems such as fluid flows in which highly anisotropic
solution features can develop and only be located and resolved through adap-
tivity [1–4]. It is well known that uniformly refined meshes will not yield the
desired levels of solution accuracy at an adequate computational cost and that
adaptive methods provide an effective means to create meshes that will yield
the requested solution quality at acceptable costs [1,5,6]. One approach to the
development of these adaptive meshes is to modify a given mesh to match an
anisotropic mesh size field, where such a mesh size field is derived from error
correction indicators evaluated based on a computed solution [5–10].

Many physical problems of interest involve directional solution features,
for example, boundary layers which form near the walls in viscous flows or
shocks in high-speed flows. In such cases the application of anisotropic mesh
adaptation will yield meshes that provide the same level of accuracy with
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over an order of magnitude fewer elements than isotropically adapted ones.
In the case of viscous flow simulations the degree of mesh anisotropy required
can lead to element aspect ratios of much greater than 1000 to 1. In these
regions carefully constructed boundary layers that consider the physics of the
flow and the abilities of the flow models used result in the most effective
means to construct the local portions of the mesh [11–14]. The best method
of construction of such boundary layer meshes is to decompose the mesh in an
unstructured mesh in the “plane of the surface” and a graded and structured
mesh in the normal direction [11, 12, 15–17]. Layered structure of elements
in boundary layer meshes near no-slip walls plays a critical role. It has been
shown that maintaining a graded stack of boundary layer elements results in
accurate prediction of wall and near-wall quantities (such as wall shear stress
or turbulent eddy viscosity) [18]. Thus, it is crucial that the mesh adaptation
maintains the structured nature of the mesh normal to the surface.

Even applying the best mesh adaptation procedures, the meshes required
have millions to billions of elements. Such meshes can only be solved using
massively parallel computers [19–22]. To effectively execute such simulations
the mesh adaptation procedures must operate in parallel on the same com-
puter as the flow solution using the same form of parallel decomposition which
is commonly represented as a partitioned mesh [20,21,23].

Techniques addressing parallel anisotropic mesh adaptation with bound-
ary layers are considered in [24–26]. Reference [24] presents a method with
refinement and coarsening implemented on mixed element meshes. However,
the coarsening is done through parent entity recovery of previously subdivided
elements. Thus, coarsening cannot be applied to create elements larger than
initial mesh. Also, derefinement constraints are limited in dealing with higher
anisotropy and complex geometry curvatures. The approach in [25] uses par-
allel volume mesh generation to fill the holes with elements after surface parts
have been remeshed in parallel. Remeshing techniques generate meshes with
satisfactory resolution to capture required anisotropy and well conform to ge-
ometrical boundaries, however parallel mesh generation is a time consuming
process, especially on the shared part boundaries of a mesh. It also introduces
complexities in the transfer of solution fields from one mesh to another. The
work discussed in [26] is similar to the approach considered in this paper.

This work outlines a procedure for parallel anisotropic mesh adaptation
with boundary layers based on a set of local mesh modification operations. It
is a parallelization of mesh adaptation technique previously presented and
proved the robustness of the method with the analysis of simulation re-
sults [11,12]. The advantage of this method is the ability to handle curved com-
plex 3D geometries while being able to achieve a desired degree of anisotropy
with inexpensive solution transfer process. To address boundary layer specifi-
cations, the issues related to manipulation and maintenance of boundary layer
stacks are considered for a partitioned mesh that is distributed across a num-
ber of parts on a parallel computer. The paper describes the importance of the
mesh modification operations of swapping and node reposition, in addition to
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refinement and coarsening, which allow matching the requested anisotropic
size field and increasing the mesh quality. Finally, the paper studies the scal-
ability of parallel mesh adaptation approach on different 3D geometries.

The organization of the paper is as follows. Section 2 describes the basic
anisotropic mesh adaptation concepts for the meshes with boundary layers.
Section 3 discusses the parallel implementation of the mesh modification oper-
ations. Section 4 shows the application of parallel anisotropic mesh adaptation
procedures to two CFD problem cases.

Nomenclature{
Md
}

the set of topological mesh entities of dimension d. d = 0: vertex,
d = 1: edge, d = 2: face, and d = 3: region.

Md
i the ith mesh entity of dimension d.{
Md

i

{
MD

}}
the set of mesh entities of order D adjacent to Md

i .

2 Anisotropic mesh adaptation with boundary layers

2.1 Meshes with boundary layers

A common method to construct boundary layer meshes, referred to as the
advancing layers method [12, 15, 17], inflates the unstructured surface mesh
on no-slip walls, where boundary layers form. This inflation is done into the
volume, along the local surface normals as a structured stack of layers, up
to a specified distance and fills the rest of the domain with unstructured ele-
ments. Problem cases presented in this study mostly involve attached flow and
therefore, boundary layer elements fully cover no-slip surfaces with attached
flow. However, the procedures described can deal with problem cases in which
flow separation is encountered on a portion of a no-slip surface, where bound-
ary layer elements will partially cover the surface. Similarly, in portions of a
no-slip surface where flow anisotropy is absent or marginal, boundary layer
elements can be automatically and adaptively decimated.

Boundary layers consist of stacks of prisms (or wedges) near no-slip walls
with the majority of the remaining domain being unstructured tetrahedral
mesh. The only additional element type introduced is a small number of pyra-
mids that are used to cover four sided faces of boundary layer prisms that are
exposed to the interior of the domain due to trimming of specific boundary
layer stacks, for example, near sharp corners [17].

The boundary layer stack is defined as an ordered set of higher-order di-
mension entities, where the first entity in the set is instantiated from a model
boundary, and each of the next entities in the set are connected with a sin-
gle lower-order entity. The last entity in a boundary layer stack is one that
is connected to a higher-order entity which does not belong to any bound-
ary layer stack. Thus, the top-most entity of a boundary layer is exposed to
unstructured regions and shares corresponding lower-order entities with them.



4 Aleksandr Ovcharenko et al.

The boundary layer structure is decomposed as the product of a layer
surface (2D) and thickness (1D) mesh [12]. The mesh composed of triangles
located at the top of each layer is referred to as layer surface, while the lines
orthogonal to the wall composed of edges are called growth curves (see Fig-
ure 1(a)). The edges that belong to layer surfaces are referred to as layer
edges and ones that reside on growth curves are called growth edges. Each
layer of elements is formed with the help of layer surfaces above and below
and with growth edges in between. The height of each layer is referred to as
layer thickness whereas the collective height of all layers is referred to as total
thickness. The number of vertices (or edges) on growth curves determine its
level. The vertices on walls from which growth curves originate are referred
to as originating vertices. The top most layer of the stack of boundary layer
elements shares an interface with the unstructured volume mesh, where the
interior tetrahedral or prismatic elements are referred to as interface elements.

(a) (b)

Fig. 1. Decomposition of a boundary layer stack (a) and a growth curve (b)

The vertex spacing on each growth curve determines the local normal
resolution. The important parameters in defining the correct spacing of growth
curve vertices for further interaction and spacing with unstructured regions
are the spacing of the first vertex off the wall t1, the gradation factor g which
holds the spacing between vertices on the growth curve, the number of layers
n, and the total thickness of the boundary layer T (see Figure 1(b)).

Given initial values of t1, g and n, each spacing for the corresponding i-th
vertex on the growth curve is calculated as:

ti = t1g
i−1 (1)

The total thickness for the growth curve is computed as:

T = t1

n∑
i=1

gi−1. (2)

t1 has essential information for computing the remaining parameters in
Eq. (1) and Eq. (2). T points to the top-most vertex location where the
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boundary layer is connected to the unstructured mesh. Note that g is a fixed
constant for a particular growth curve, however it can vary from one growth
curve to another as it is dictated by the problem boundary definition. Mean-
while, spacing of the last growth edge of the growth curve tn is used to verify
the ratio between the last growth edge on a boundary layer and the normal
height in the unstructured mesh region immediately outside the boundary
layer tunstr (see Figure 1(b)). tunstr is a meaningful value to compare with tn
since it is dictated by the requested mesh metric and the difference in the two
should provide an acceptable gradation of the mesh at that location.

2.2 Mesh metric field

Mesh adaptivity requires size field specification that matches the desired ele-
ment size in all directions [1]. At each point of the space, the computed metric
field is represented by a 3D symmetric definite positive tensor T (P ) such that
the desired directional mesh edge length distribution at this point follows an el-
lipsoidal surface. The transformation XT (P )XT = 1, where X = {x1, x2, x3}
is a coordinate vector, defines a mapping of an ellipsoid in the physical space
into a unit sphere in the metric space. Since mesh metric field represents the
transformation that maps an ellipsoid into a unit sphere, any tetrahedron that
satisfies the mesh metric field in the unstructured part of the mesh should be a
unit equilateral tetrahedron in the transformed space [1] (see left of Figure 2).

Fig. 2. The transformation associated with a mesh metric tensor (left) and its
decomposition for boundary layer vertices (right)

Meanwhile, in order to align mesh metric decomposition with the boundary
layer structure specification, at any vertex of a boundary layer the ellipsoid
associated with the metric tensor is decomposed into a planar part, which
dictates in-plane size resolution control, and a normal component which in-
fluences the the stack height adjustment [11, 12]. Figure 2 (right) illustrates
the decomposition of mesh metric field for the boundary layer vertices.

2.3 Cavity concept to localize mesh modification operations

Given a mesh metric and the criteria which controls how well the size and
shape of mesh entities satisfy the prescribed size field values, mesh adaptation
is accomplished by applying mesh modification operations following a specific
logic to create the desired mesh that remains conforming to the geometry.
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During the execution of a mesh modification operation it is important to
clearly identify the set of mesh entities that will be affected by that modifi-
cation. This set of mesh entities defines a subdomain referred to as a cavity.
For the effective parallel implementation of mesh modification operations the
mesh modification cavity needs to be large enough that the mesh outside of
the cavity boundary is not altered.

In a 3D domain, a single cavity C is comprised of regions adjacent to a
mesh entity that triggers a specific mesh modification operation and has a
dimension less than 3. The set of outer faces in closure of regions localized in
C forms the cavity boundary which stays intact during the required altering
within the cavity. The application of a local mesh modification operation then
is a retriangulation of the cavity, C, into a new mesh subdomain S, which
has the same cavity boundary as C, but contains a different set of regions
compared to original set of regions in C.

2.4 Mesh modification operations in the semi-structured part of
the mesh

There are four major operators used for mesh modification [1,12,27], namely:
split, collapse, swap and vertex repositioning. In addition, there are compound
operators applied in the unstructured part of the mesh, which chain multiple
single step operators in the unstructured mesh in such a manner to effectively
yield the desired mesh configuration. The interested reader is referred to [1]
for a more detailed description of mesh modifications in the unstructured part
of the mesh. This paper is focuses on mesh modification procedures associated
with the boundary layer part of the mesh.

To preserve the layered nature of boundary layer elements along the nor-
mals, mesh modification for the layered part of the mesh is divided into two
steps [12]: layer surface modification and thickness adjustment. Surface mesh
modification operations are propagated through the stack of boundary layer
entities and affect all the layer surfaces along with the interface entities within
a stack in the same way. The local mesh modification operations of edge split,
collapse and swap are utilized to perform the surface mesh adaptation while
vertex repositioning is applied to adjust the layer thicknesses and move growth
curve vertices to the geometric model boundaries. The thickness adjustment
is currently in the development stage, however it is easily integrated with the
set of procedures implemented to support boundary layer mesh modifications.

The layer edge split operation splits edges in the boundary layer stack and
applies subdivisions in the interface to the unstructured mesh. If M1

I is the
layer edge to be split in the stack of N boundary layer edges, then the cavity

associated with it consists of a set of unique regions
{⋃N

i=1

{
M1

i

{
M3
}}}

,

where I ∈ [1..N ]. Figure 3(a) illustrates the layer edge split example.
The layer edge collapse operation is performed on stacks that contain short

edges in the local mesh metric in a manner that avoids oscillation between
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collapse and split operations [11,12]. The edge collapse operations can only be
applied when the affected unstructured mesh entities at the top of the stack
also remain valid. If

{
(M1

i ,M
0
i )
}

are the pairs of stacks of N layer edges to be
collapsed and their correspondent vertices being deleted, the cavity associated

with the collapse operator is
{⋃N

i=1

{
M0

i

{
M3
}}}

with a deletion of a set

of regions
{⋃N

i=1

{
M1

i

{
M3
}}}

. Figure 3(b) shows two boundary layers and

interface elements before and after the layer edge collapse operation.

(a) (b)

Fig. 3. Example of boundary layer split (a) and collapse (b) operations

The layer edge swap operation changes the connectivity of neighboring
boundary layer stacks. In contrast to tetrahedral cavity for edge swap op-
eration, which is reconfigured based on the equatorial plane, there is only
one other possible configuration in case of layer edge swap for layer faces. If{
M1

i

}
is the stack of N layer edges to be swapped, then the layer edge swap

operation retriangulates the cavity
{⋃N

i=1

{
M1

i

{
M3
}}}

with new layer edges

being introduced inside the cavity and deletion of M1
i . Figure 4(a) gives an

example of layer edge swap operation.

(a) (b)

Fig. 4. Example of boundary layer swap (a) and vertex reposition (b) operations

When edge splits are applied to boundary layer edges on curved wall sur-
faces, the newly introduced vertices must be moved to the curved boundary to
maintain the proper geometric approximation. All the vertices in the growth
curve should gradually move following the correspondent originating vertices
with the help of the movement vector [12] which is determined based on the
originating vertex target location as: m = (vt

0 − v0), where vt
0 is the target

location of originating vertex on the curved boundary and v0 is the current
locations of the originating vertex. The movement vector m is then applied
to all the vertices of the growth curve to provide layer vertex repositioning
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operation. The procedure first evaluates target locations for vertices on all the
growth curves, with each vertex’s target location calculated as: vt

i = vi + m,
where vi is the current i-th vertex location on a growth curve corresponding
to its originating vertex location v0. It then moves vertices to their computed
target locations as depicted in Figure 4(b). Similar to unstructured vertex
projection to the curved boundary, layer vertex movement through simple
repositioning is not always possible as it may introduce inverted elements,
in which case local mesh modification operations are applied to the interior
volume mesh to make the way for repositioning to be successful. After the
repositioning is completed for the top most vertices, the rest of the growth
curve vertices are moved to their target locations vt

i resulting in originating
vertex being placed on its target location on the curve boundary.

2.5 Procedure of anisotropic mesh adaptation with boundary
layers

The mesh adaptation is executed in three stages: mesh coarsening, iterative
mesh refinement, and shape correction [10, 12]. The first two stages are con-
trolled by mesh edge length analysis in the transformed space, whereas the
third stage is dictated by both element quality and mesh edge length control.

The coarsening stage eliminates the majority of edges which are shorter
than requested by the local mesh size field. An advantage to applying the
coarsening first is that it makes the traversals required during mesh adaptation
faster and limits the peak memory usage.

The second stage refines mesh regions based on splitting mesh edges if
they are longer when measured in the transformed space. It also places newly
created boundary vertices on the model boundary and coarsens any new short
mesh edges introduced.

Shape correction routines improve the shape of poorly shaped entities in
the transformed space. Those entities are modified using swap / collapse /
vertex reposition and compound operators [10] to obtain the best possible
element quality while preserving the correct edge length in the metric space.

Since each pyramid is easily decomposed into two tetrahedra, the mean
ratio [28] is used to measure the quality of unstructured regions in the trans-
formed space, namely:

η′ = 15552
V ′

2(∑6
i=1 l

′2
i

)3 , (3)

with V ′ and l′
2
i being the volume and edge length square of a tetrahedron in

the transformed space. For the boundary layer part of the mesh, layer face
quality control is performed, where each layer face is measured as follows:

S′ = 48
A′

2(∑3
i=1 l

′2
i

)2 , (4)

where A′ is the layer edge face area in the transformed space.



Parallel Adaptive Boundary Layer Meshing for CFD Analysis 9

3 Parallel implementation

3.1 Distributed mesh representation

The execution of parallel mesh adaptation is based on the fact that a single
mesh is distributed [29–31] to a number of parts that consist of a set of mesh
entities assigned to the corresponding processor. Each part is treated as a
serial mesh with the addition of mesh part boundaries to describe groups of
mesh entities that are on inter-part boundaries.

The implementation of parallel boundary layer mesh adaptation is aided
by requiring all mesh entities in a stack to be on the same part. This process is
supported by employing the entity set concept [32] in which the mesh regions
in a stack are put in a single set that must be properly maintained during
mesh modification and migration [33]. To provide proper partitioning the set
is represented as one weighted node during graph partitioning.

The direct consideration of cavities on the part boundary for such mesh
modification operations as collapse and swap is a complex and expensive pro-
cedure since it leads to a number of communication steps to properly update
the parts with the mesh modification decisions carried out. Thus, regions from
such cavities are localized on one processor. To support cavity localization, a
mesh migration is used, where all regions and stacks of regions involved in the
mesh modification operation are migrated onto a single part [20,29].

The Flexible Distributed Mesh Data Base [29] is used to support the
needed mesh-based parallel operations on distributed meshes including part
boundary management and mesh migration. The Zoltan library [34] is used
for dynamic load balancing. The Inter-Processor Communication Manager is
used [35] for efficient parallel communications between processors.

3.2 Refinement and vertex reposition to geometrical boundaries

Mesh edges and their adjacent mesh faces on part boundaries are subdivided
the same way as it is done in serial since replicated faces across part boundaries
have their bounding edges and vertices in the same order such that the entities
properly match [20, 36]. Note that triangular faces can be split using any
combination of edges tagged for refinement, whereas quadrilateral faces as
part of the boundary layer stack, are limited to be bisected in a layer surface
direction only, without subdivision of growth curve edges.

Each subdivision of an entity on the part boundary is matched with the
same subdivision on the part the entity is shared with. The inter-part links be-
tween newly created mesh entities are appropriately updated across the part
boundary [36]. The algorithm involves the same logic of updating inter-part
links for both boundary layer and unstructured parts of the mesh. The only
difference for the boundary layer procedure is that once the stack of quadri-
lateral faces exposed to the part boundary is split, each has to be completely
updated with the pair or copy on another part.



10 Aleksandr Ovcharenko et al.

After refinement is completed, each part holds a list of mesh vertices that-
need to be projected onto the solid model boundaries [20]. For the boundary
layer part of the mesh, the newly created originating vertices are projected
onto the solid model surfaces with the help of the movement vector as de-
scribed in Section 2.4. In parallel, the migration might be involved, to com-
plete the local mesh modification procedures in order to move the vertices in
the corresponding stacks for the correct vertex adjustment.

3.3 Coarsening and surface optimization

Layer edge collapse operation is performed on the on-part localized cavity. The
vicinity of boundary layer stacks sharing vertices of the same growth curve
from a specific originating vertex M0

d to its associated top most growth curve
vertex M0

dtop
and their adjacent layer edges shorter than the desired size in a

metric space are checked for the layer edge collapse. If neither of the stack of
layer edges adjacent to M0

d ..M
0
dtop

can be collapsed locally, the boundary layer
coarsening procedure migrates all the boundary layers and interface regions
adjacent to growth curve vertices from M0

d to M0
dtop

to one part and checks
for the possibility of layer edge collapse operation with the full local cavity.

Figure 5 shows the example of layer edge collapse operation requesting
mesh migration. It can be seen from the picture that the top-most vertex
M0

dtop
for surrounding boundary layers is located on the part boundary and

layer edge collapse for its adjacent edges cannot be evaluated. Thus, M0
dtop

requests all the adjacent boundary layer stacks and interface regions to be
migrated onto the part P2 such that the layer edge collapse operation can be
executed. Different line colors indicate shared entities between specific parts.

At the end of mesh adaptation, the boundary layer surface optimization
step is provided [12]. The logic for the optimization operation on the part
boundary is similar to the layer edge collapse one as it acquires the cavity
associated with the operation locally on the part. The difference for the surface
optimization compared to coarsening is that the procedure calculates shapes of
layer faces (see Eq. (4)) and determines which operation should be applied to
the adjacent layer edges in order to improve the boundary layer faces quality.

4 Application results

The capabilities of the parallel anisotropic mesh adaptation with boundary
layers developed in this work are demonstrated with two CFD applications.
In the first case, simulations were performed on a heat transfer manifold and
mesh convergence was studied in terms of pressure drops between inlet and
multiple outlets. The other case involves a scramjet simulation of the NASA
CIAM [37] scramjet geometry. In the heat transfer manifold problem domain
the CFD analysis is performed by PHASTA [38]. The scramjet geometry was
simulated with FUN3D [39] solver.
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Fig. 5. Example of parallel layer edge collapse operation involving mesh migration

The studies have been executed on Hopper Cray XE6 [40] at National
Energy Research Scientific Computing Center. It is configured with 2 twelve-
core AMD 2.1 GHz processors per node, with separate L3 caches and memory
controllers, 32 GB or 64 GB DDR3 SDRAM per node. Hopper has Gemini
interconnect with 3D torus topology. The 3D torus topology provides powerful
bisection and global bandwidth characteristics as well as support for dynamic
routing of messages.

4.1 Parallel anisotropic boundary layer adaptivity on a heat
transfer manifold case

The heat transfer manifold consists of a large diameter cylindrical pipe for the
inflow, a plate and twenty small outflow pipes (see Figure 6). Flow compu-
tations are done using steady, incompressible RANS equations along with
Spalart-Allmaras turbulence model. No-slip boundary conditions are pre-
scribed on viscous surfaces and a natural pressure is assumed at outflows.
Hessian matrix field based on computed solution [11] is used to form the
mesh metric size field in order to drive mesh adaptation procedures.

The adaptive simulation consists of a flow solve and adaptation, and is
carried out twice with the flow solve started from previous solution. Each
cycle was divided into 1000 time steps with a constant time step size of 0.1s.
The initial mesh consists of 3M regions, the first adapted boundary layer
mesh has 16M regions, and the second adapted mesh results in 81M regions.
The initial, first and second adapted inflow pipe mesh cuts with the pressure
distribution are shown on Figure 7.
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The initial mesh is too coarse and the figures demonstrate its inability to
capture the flow phenomena accurately. The stagnation point and the fillets
of the inflow pipe are refined which reflects in smoother and more accurate
adaptive solution results. The walls of the manifold, especially the wall closest
to the inflow pipe, are refined to a higher degree. With adaptivity, accurate
predictions are obtained.

Fig. 6. Initial mesh for the heat
transfer manifold test case

To measure the parallel performance re-
sults with the strong scaling studies, a sec-
ond cycle mesh adaptation tests were ex-
ecuted on 256 to 4,096 processors. The
scaling is based on the execution time on
256 processors and defined as (nproc−base ∗
timebase)/(nproc−test ∗ timetest). All avail-
able cores per node were requested during
the adaptation runs. Table 1 gives the scal-
ing of second cycle mesh adaptation run
times with the initial mesh of 16M regions,
and the final one consisting of 81M regions.

The analysis part of a simulation defines
the number of cores the particular problem
is being executed on. It makes sense to run
mesh adaptation routines on the same num-

ber of cores since bringing the mesh and size field to a smaller number of cores
and repartition it again to a bigger number after mesh adaptation is done is
an expensive procedure. Meanwhile, in order to guarantee faster simulation
time, mesh modification routines should perform a reasonable scaling.

Table 1. Mesh adaptation run times and scaling for the manifold simulation

N/proc 256 512 1024 2048 4096

Time 1194.34 785.44 514.45 421.09 339.38
Scaling 1 0.76 0.58 0.36 0.22

As indicated in Table 1 the mesh adaptation times decrease with the in-
creased number of cores. Since there is little computation performed during
mesh adaptation relative to the substantial increase in communications re-
quired as the given mesh is distributed to more processors, the scaling de-
creases on high core counts (note that a strong scaling study is performed
and therefore, the problem size is the same). However, the analysis have been
shown to scale strongly with the similar amount of work load provided [21,41].
The fact that mesh modification routines are able to scale on bigger core count
with more entities involved into communication supports the statement that
it is likely to at a minimum provide the equivalent scaling with more work
load on the same number of parts.
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Note that the work required for mesh modifications in both unstructured
and boundary layer parts of the mesh is proportional, and the overall mesh
adaptation took 0.7% of the adaptation cycle time on 256 processors, which is
relatively small compared to time taken by the analysis step. Therefore, even
with the loss of strong scaling in mesh adaptation step, it is reasonable to run
it on the same number of processors together with the flow solver, delivering
the massively parallel adaptive boundary layer mesh simulation capabilities
to billions of elements.

Fig. 7. Initial (left), first (middle) and second (right) adapted meshes and pressure
distribution for the cut of the inflow pipe and the manifold

4.2 Parallel anisotropic boundary layer adaptivity on a scramjet
geometry

The NASA CIAM [37] scramjet case was run with a freestream Mach number
of 6.2, and a freestream reference temperature of 203.5 Kelvin. The initial
mesh has 2.86M regions and its slice is depicted in Figure 8. Hessian recon-
struction based on Mach number was used to get the mesh size field.

Three adaptation cycles were required. The first adapted mesh had 7.2M
regions, the second adapted mesh consisted of 16M regions, and the third
adapted mesh had 43M regions. Figure 9 presents first and second adapted
mesh zoomed at the tip of the scramjet geometry, whereas Figure 10 shows
the mesh and Mach number contour plots at the cowl lip on the inlet of the
combustor area for the initial and two adapted meshes.

The flow solution resolution is greatly improved through the use of
anisotropic mesh adaptation. The second adapted mesh captures the shock
far better as compared to the initial mesh. In the far field upstream of the
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shock, where flow is uniform and parallel, the mesh was appropriately coars-
ened. Expected mesh refinement was obtained at the tips, at the cowl lip,
within the combustor area, at the sharp edges of the combustor area liner,
and behind the engine. Mesh anisotropy followed the shock emanating from
the nose cone tip, with coarsening in the direction tangential to the shock.

Fig. 8. Slice of the whole (left) initial mesh and the zoom to its tip (right) for the
scramjet test case

Fig. 9. Scramjet tip during the first (left) and second (right) adaptation cycles

Table 2 provides timings and strong scaling values for the mesh adaptation
runs in the third adaptive cycle with input mesh of 16M regions, and the final
one consisting of 43M regions. The strong scaling studies were performed on
128 to 4,096 processors. The scaling is based on the execution time on 128
processors and is calculated the same way it is defined in the heat transfer
manifold test case.

Table 2. Mesh adaptation run times and scaling for the scramjet test case

N/proc 128 256 512 1024 2048 4096

Time 957.80 532.29 339.39 202.17 136.83 90.85
Scaling 1 0.9 0.7 0.59 0.44 0.33

Table 2 supports the observation that the mesh adaptation is able to de-
crease run times with the growing number of cores. Although the simulation
study experiences the fixed size problem phenomena on a bigger processor
count observed in the previous test case, the scalability factors show better
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parallel performance of the scramjet test case compared to the heat transfer
manifold one. Note that mesh adaptation took 1.2% of the adaptation cycle
time on 128 processors with relatively equal amount of computation needed
for mesh modifications in both unstructured and boundary layer parts of the
mesh, and therefore, is significantly small compared to time taken by analysis
step or flow solver. Again, a massively parallel boundary mesh adaptation
capability is able to perform efficient large-scale simulations.

Fig. 10. Initial (top), first (middle) and second (bottom) adapted meshes and Mach
number contour plots near the cowl lip and at the entry to the combustor region

5 Closing remarks

An adaptive parallel boundary layer meshing procedure was presented. The
approach described works with the distributed meshes and effectively supports
layered structure of the mesh. Mesh modification procedures were applied in
parallel using the anisotropic size field provided by the application. The par-
allelization of the anisotropic mesh adaptation routines with boundary layers
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based on local mesh modifications allows the procedure to be applied to large
and complex 3D problem cases which are usually attacked with remeshing
methods. At the same time, the approach provides the ability to perform a
very inexpensive solution transfer process which also allows solution not to
deteriorate over the mesh adaptation cycles.

It has been demonstrated that boundary layer mesh adaptation resulted
in an increase of the accuracy of key quantities of interest and helped resolve
critical areas of the flow to supply the analysis with better solution. During
the adaptation process, the approach was able to preserve layered elements
near the walls and effectively account for the mesh modification operations
carried out in the distributed environment for both boundary layer and un-
structured parts of the mesh, at the same time being capable of handling
curved geometries of interest with the required mesh resolution and element
quality control.

The method described scales while utilizing different mesh modification
operation types and not only simple refinement. The parallel performance re-
sults carried out on problem domains indicate that mesh adaptation is capable
of decreasing the simulation run times with higher number of cores.
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