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Summary. This paper presents the development of a parallel adaptive mesh control
procedure designed to operate with high-order finite element analysis packages to en-
able large scale automated simulations on massively parallel computers. The curved
mesh adaptation procedure uses curved entity mesh modification operations. Appli-
cations of the curved mesh adaptation procedure have been developed to support the
parallel automated adaptive accelerator simulations at SLAC National Accelerator
Laboratory.

1 Introduction

High-order finite element methods have the advantage of achieving exponen-
tial rates of convergence to problems of interest [21]. In order to fully realize
the benefits of the methods over general 3D domains with curved boundary
geometry, techniques must be developed to construct valid meshes with prop-
erly curved elements that approximate the curved domain geometry to the
correct order. For simulations that require the numerical solutions to have ex-
tremely high resolution in certain critical regions, meshes with substantially
large amount of entities are needed. Such meshes can only be created using
distributed parallel computing systems, which requires effective parallel mesh
generation and adaptation techniques [2].

There have been extensive studies in the area of automatic mesh gener-
ation and adaptation techniques. The majority of the efforts have been fo-
cused on dealing with conventional meshes with all straight-sided elements.
To support large scale simulations, parallel mesh generation and adaptation
on distributed computers has been under development, and the primary focus
has been on the linear straight-sided meshes as well. To date there has been
limited effort devoted to studying meshing techniques for fully unstructured
curved meshes [4, 7, 8, 18], not to mention curved meshes in parallel. The work
presented in this paper tackles the challenges of developing effective adaptive
mesh control procedures for distributed curved meshes to support large scale
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parallel simulations using high-order finite elements. The paper is organized
as follows. Section 2 presents the parallel curved mesh adaptation procedures
from the aspects of specific local mesh modification operations and general
curved mesh adaptation strategies. Section 3 introduces a prototype adaptive
simulation loop which utilizes the developed parallel curved mesh adaptation
technique. A couple of application examples are presented to demonstrate the
effectiveness of the adaptive loop. Section 4 gives the closing remarks and
points out the potential future developments.

2 Mesh Modification of Curved Mesh Entities

Automated adaptive finite element simulations using unstructured 3D meshes
rely largely on the capability of mesh adaptation which alters the connectivity
and/or the geometry of the mesh dictated by a mesh size field produced by a
posteriori error estimation and correction indication procedures. An effective
approach to obtain such an adapted mesh with the desired element sizes is to
apply local mesh modification operations to selected groups of mesh entities
referred to as mesh cavities. Specific mesh modification operations have been
designed and implemented to deal with curved mesh entities.

2.1 A General Entity Shape Measure

Given a straight-sided tetrahedral element, its geometric shape is uniquely
defined by the positions of its four vertices. It is straight-forward to calculate
various geometric quantities to evaluate the shape of the element, such as
edge length, solid angle. Plenty of shape measures for straight-sided elements
have been proposed that are based upon such geometric quantities. Several
commonly used measures are reviewed in the following papers [9, 12]. There
are relatively less geometric shape measures proposed for curved elements
largely due to the complexities involved in calculating the geometric quantities
such as length of a curved edge, area of a curved surface or volume of a
curved region. One popular shape measure for curved tetrahedron evaluates
the shape of a curved mesh entity by calculating the scaled variations of the
determinant of Jacobian over the element domain [4, 8, 14, 18]. The shape
measure is defined as:

_ mingege det(J(£)) (1)
maxge oe det(J(€))

This measure gives important information about how distorted the specific
tetrahedron is in the physical space with respect to the reference tetrahedron
in the parametric space. However it does not take into account the shape of
the underlying straight-sided frame of the curved element. For straight-sided
elements, this shape measure g, always reports the optimal value: 1, regardless
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of whether the element is highly anisotropic or close to being degenerated.
Therefore, g. can not serve as a general shape measure for a mesh that has
both straight-sided and curved elements.

In order to find a general shape measure that overcomes the aforemen-
tioned issue, a multiplicative element shape measure is defined which com-
bines a straight-sided entity shape measure and a curved mesh entity shape
measure as follows:

Qsc =(qs X (¢ (2)

where ¢ is a selected normalized shape measure for straight-sided elements [9,
12] and g, for curved elements.

In the case of a straight-sided element where g, = 1, Qs. = ¢s measures
the element shape. For a curved element, ¢. will be computed and contributes
equally to Q. with the underlying straight-sided shape ¢,. This general shape
measure is adopted to serve as the basis to support the curved mesh modifica-
tion operations and the mesh quality improvement stages of the curved mesh
adaptation algorithm which will be presented in the later sections.

2.2 Curved Mesh Validity Checks

A valid curved mesh is essential to the successful execution of high-order finite
element simulations. To verify a valid curved tetrahedral element independent
of the numerical integration scheme being used, it is necessary to ensure the
determinant of the Jacobian is positive throughout the domain of the element.
One effective method to address this evaluation is to evaluate lower bound for
the determinant of Jacobian.

By applying the Bézier polynomial based entity representation to a high-
order curved tetrahedron, the determinant of the Jacobian det(J) can be
represented as a scalar Bézier polynomial of order 3(p — 1) defined over the
element domain, where p is the order of the vector Bézier polynomial repre-
senting the element itself. According to the convex hull property [5] the det(J)
is bounded by the maximum and minimum values evaluated at the control
points of the order 3(p — 1) Bézier polynomial. In the case of a quadratic
tetrahedral element, the following inequality holds:

. 3 3
min{P} < det(J) < max{P]} (3)
where Pl(fli) represents the scalar value at the ith control point. Natu-
rally, a sufficient condition to ensure positive determinant of Jacobian for

a pth order curved tetrahedron is that the minimum value of all control
P(3(1)—

i
dron: min{P‘({?)} >0

The uniform validity check algorithm [14] is based on the above condition
by checking all the control points of the Bézier polynomial of det(J). In the

points min{ 1))} is positive. More specifically for a quadratic tetrahe-



4 Qiukai Lu, Mark S. Shephard, Saurabh Tendulkar and Mark W. Beall

case of a quadratic tetrahedral element, the total number of control points
is 20. This algorithm is computationally efficient and is independent of the
numerical integration schemes. However, since it uses a sufficient condition
that’s based on the lower bound of det(J) in the Bézier form, there can be
overly-conservative situations where the lower bound is not tight. In such
cases, the actual value of min{det(J)} could be positive over the element
domain whereas min{P‘(;l)’)} is negative and leads to false negative report by
the uniform validity check.

Although the uniform validity check is sometimes overly-conservative, it
is nevertheless an effective method to determine the candidate mesh entities
with which the potential invalidity is associated. Depending on which control
point exhibits the negative lower bound, a specific set of mesh edges corre-
sponding to that control point are identified. Specifically, if the control point
is associated with a mesh vertex M?, the edges connected to the vertex are
the candidate entities M?{M'}. If the control point is associated with a mesh
edge M!, that particular edge M' is the candidate entity. If the control point
is associated with a mesh face M2, the edges that bound the face are candi-
dates M?{M1'} [14]. Once the candidate mesh entities are identified, one of
the following approximation improvement methods is applied to obtain tighter
bounds for det(J).

Adaptive Validity Check By Degree Elevation

The degree elevation algorithm increases the total number of control points of
a Bézier polynomial by elevating the polynomial degree, making the control
polygon converge to the actual polynomial as the number of control points
approaches infinity [5]. It can be applied to the key entity to refine its control
polygon of its Bézier representation to give a tighter lower bound. For example,
if min{P‘(ﬁ(p 71)} < 0 is reported at an edge control point, the degree elevation
check will elevate the degree of the polynomial representing that edge based on
all the control points associated with it. For a quadratic curved element, the
original representation of det(.J) is a 3rd-order Bézier polynomial, therefore 4

control points are associated with an edge, denoted by P|§330)00|7 P‘(Qggm‘, .P‘(130)02|,
P|(030)03|. The control points after one step of degree elevation from order 3 to

order 4 can be calculated by [5]:

@ _ p@® 4 _ p®)
P|4000| - P|3000|’ P|0004| - P|0003|
4 _1pB) 3 p(3) @ _3pB) 1 p(3)
P|3001| - ZP|3000| + ZP|2001|7 P|1003| - ZP\1002| + Zp\ooozs\
4 _1pB) 1p3)
P|2002| - §P\2001\ + §P\1002\ (4)

This can be generalized to obtain control points of any degree n elevated
from degree n — 1. As the polynomial degree gets elevated step by step, the
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(a) Degree Elevation of a Cubic Bézier Curve. (b) Repeated degree elevation.

Fig. 1. Convergence of Degree Elevation [20]

number of control points increases and the control polygon becomes closer to
the actual curve, and therefore gives tighter lower and upper bounds. Accord-
ing to [16, 19], the authors showed that the convergence rate is O(2), where
v is the polynomial order. Fig 1 illustrates the convergence process of degree
elevation to a 2D Bézier curve [20].

Adaptive Validity Check By Subdivision

In addition to the degree elevation algorithm, polynomial subdivision algo-
rithm also yields more control points and tighter control polygon for a Bézier
polynomial. Thus it can also be applied to the key entity to improve the lower
bound [13]. Take an edge as the example entity again, one step of the subdi-
vision algorithm divides the original 3rd-order Bézier polynomial associated
with the edge into two 3rd-order polynomials by applying the de Casteljau
algorithm [5] as follows:

1 p(3) 1p3) 1_ 1pB) 1 p(3) 1_1p®) 1 p(3)
§P\3000\ + §P\2001\7Pl - §P\2001\ + §P|1002|7P2 - §P|1002| + §P|0003|7
Pf= LR} + 1P}, PP=1P| 1 LP},

By = 43+ L ®)

P} =

The new sets of Control points for the two polynomials are then: {1—7‘(330)0(”,

P, P2, P3} and {P§, P2, Ps, 1—"|(030)03|}. Note that P! is not used as a new
control point. A recent paper by George et al also has discussions regarding
this topic [7].

It is straight-forward to obtain more control points if one keeps doing
subdivision recursively. And it is obvious that the control polygon gets closer
to the polynomial itself as the subdivision steps continue. According to [16, 19],
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the control polygon converges to the curve with the rate of convergence O(%),
where ¢ is the number of subdivision steps. Fig 2 gives an example of a 2D
Bézier curve and its control polygons after several steps of subdivision [20].

AN

1 curve 2 curves 4 curves 8 curves

Fig. 2. Convergence of polynomial subdivision [20]

Stopping Criteria for the Adaptive Validity Checks

After applying either of the adaptive validity check algorithms, if min{Pl(iT)}
is found to be positive, the element is valid. On the other hand, the element
is invalid if negative min{PlgT)} is found at any control point that is interpo-
lating the value of det(J). In both cases, the algorithm will stop accordingly.
However if negative min{P‘(iTll)} appears at a non-interpolating control point
while positive values are found at all interpolating control points during finite
steps, it is also necessary to terminate the algorithm without doing infinite
loops of checking and refinement. The stopping criterion used is to evaluate
the increment of the lower bound Amin{Pl(iT)} after each step. If negative

min{Pl(Z.T)} is still reported after Amin{P‘(iT)} < ¢, where € is a prescribed
tolerance, then the element is regarded as invalid and the algorithm stops at
the current step.

It is worth noting that the subdivision algorithm gives more interpolation
points in addition to the vertex control points. This property could serve as an
addition to the stopping criterion. If any of the newly-computed interpolating
control points after a subdivision step has negative value, it indicates that
det(J) at this point is negative and the adaptive check stops and reports the
element as invalid.

2.3 Curved Entity Geometry Modification Operations

A set of entity level geometry modification operations have been designed and
implemented to work with curved mesh elements. These operations are dif-
ferent from the local mesh modification operations for straight-sided elements
introduced in [11] in that they involve purely geometric shape modifications
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while keeping the local mesh connectivity unchanged. An entity geometry
modification operation is often used to increase geometric approximation ac-
curacy to the curved model domain, eliminate mesh invalidity, or improve
mesh shape quality.

Mesh Curving Operation for Surface Entities Classified on Model
Boundaries

A mesh curving operation converts a linear straight-sided mesh entity to a
high-order curved entity by introducing high-order nodes. For mesh entities
classified on curved model boundaries, those nodes are snapped to the curved
geometry to ensure geometric approximation accuracy. Dey et al presented a
mesh curving algorithm in [4], which interacts directly with the underlying
CAD modeling engine to obtain the proper geometric location of the high-
order nodes on the model boundaries based on parametric interrogations.

G,

1 h
M, M,

(a) (b) (c)

Fig. 3. Curving interior mesh edges to resolve the invalidity caused by curving
boundary edges

Only curving the boundary mesh entities may cause self-intersecting mesh
entities which leads to invalid elements. In such occasions, interior mesh en-
tities are selected to be curved to correct the invalidity. For example in a 2D
case shown in Fig 3, mesh edges M} and M] are curved to model edge G§.
However elements Mg and M} become invalid (Fig 3(b)). In this case, the in-
terior edges M3 and M3 can be curved (Fig 3(c)) to ensure element validity.
The procedures for such element curving are referred to as entity reshaping
operations, which are discussed in the following section.

Entity Reshaping Operation for Interior Mesh Entities

For a linear straight-sided element, the shapes of its edges and faces are
uniquely defined by the end vertices. In this case one can only reshape a
straight-sided mesh entity by repositioning its end vertices. There have been
extensive efforts devoted to developing various algorithms for the vertex repo-
sition or smoothing operations [3, 6, 9, 11]. For a high-order curved mesh, the
shape of the curved mesh edges and faces depend not only on the position of
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the end vertices, but also the high-order nodes associated with the mesh enti-
ties or other entity shape parameters. Therefore the developed curved element
reshaping algorithm considers curved shape parameters.

Input to this algorithm is a curved tetrahedral element whose shape qual-
ity is evaluated by shape measure in Eq 2. The algorithm computes the shape
measures ¢s and g, respectively. The entity reshaping operation works inde-
pendently with the specific selection of shape measure for evaluating ¢, and
q. as long as the selected shape measure is normalized to range from 0 to 1
with 0 being the limit of an invalid element and 1 being an optimally shaped
element.

The algorithm compares ¢; and ¢. with an application-specified shape
quality threshold gimi: (0.1 used in the examples presented in this paper)
and deals with the following cases:

Case 1: If qs < Quimit and e > Qrimit

In this case, it indicates the straight-sided shape quality g5 is not acceptable.
Thus a higher priority is given to improve g, firstly for the current element.
Such a tetrahedron will be processed by the shape improvement algorithm for
straight-sided elements. Refer to [3, 11] for details. It will be removed from
the current list and put into another list of tetrahedrons for a straight-sided
element shape improvement procedure.

Case 2: If 5 > Qimit and e < Quimit

The straight-sided shape component of this region g5 is acceptable to the
application. Thus considerations are given to improving the curved component
of the shape quality g.. The algorithm proceeds with the following 3 steps:

Step 1: Choose the candidate mesh entities to be reshaped. As being defined
by Eq. 1, ¢. can be improved by increasing min{det(.J)}. Therefore the can-
didate mesh entities chosen to be reshaped are the ones directly associated
with the minimum value of det(.J). The selection criterion is the same as used
in the curved validity check as discussed in Section 2.2.

Step 2: Determine the line of motion. As discussed in Section 2.1, the optimal
value of ¢, is reached when a given tetrahedron is straight-sided, i.e. det(J) is
constant over the element domain. Thus, it is a useful choice to reshape the
curved entities back to be straight-sided assuming they can all move toward
straight-sided (Fig 4(a)). On the other hand, certain curved entities may have
specific geometric constraints that prevent them from being straightened, e.g.
curved edges and/or faces classified on curved geometric model boundaries
(M{ in Fig 4(b)). In such cases, curving other less constrained entities along
in a direction that improves g. must be applied. The current algorithm limits
the direction to move a high-order node of a curved edge to be along a straight
line, referred to as Line of Motion (LOM). Fig 4(b) gives such an example in
which M is classified on model boundary, therefore it is curved to conform to
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the boundary geometry. M} and M3 are interior edges. If M is straightened
in this case, the element becomes invalid due to self-intersection. Therefore it
has to be curved to resolve the invalidity and improve g.. This is achieved by
moving the edge high-order node along the LOM defined by P and P’, which
are the positions of the high-order nodes associated with M} and its straight-
edged counterpart. The optimal location P” where M{ should be curved is
determined by the next step.

(@

Fig. 4. Two cases of 2D mesh edge reshaping. (a) without further geometric con-
straints, (b) one additional edge classified on model boundary G*

Step 8: Search the interval of uncertainty for the local optimal location. As
reshaping the curved entity, the shape quality of the neighboring elements
changes and may drop as well. When the reshaped entity reaches a position
that intersects with another mesh entity, invalidity occurs. To avoid invalidity,
the non-intersecting segment of the line of motion is considered as the search
interval, referred to as interval of uncertainty, for the local optimal position.
For instance, the dash-dot line in Fig 4(b) is the interval of uncertainty for P
to move. In the meantime, to avoid deteriorating the overall shape quality of
the affected elements while reshaping the target entity, the objective for the
local optimal search is set to maximize the minimum shape quality among
all the affected elements. Therefore the local optimal location for the entity
to be reshaped is where the overall shape quality of the elements in the local
cavity is improved to the highest possible value. A golden section algorithm
is adopted here to perform the search [3].

Case 3: If q5 < Qimit and e < Qimit

Of course there is the possible case of both ¢ and g, are not acceptable. In such
a case, the algorithm chooses to improve the straight-sided shape quality first
as in Case 1. Such a preference is set by considering of the cost-effectiveness
of the algorithm since the explicit search algorithm required in Step 3 of Case
2 is often very computational intensive [3].
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3 Parallel Adaptive Simulation Loop

The desired workflow for an adaptive simulation starts with a definition of
the problem domain of interest. In computer-aided design and engineering,
the domain definition is typically a solid model constructed in a CAD system.
The various analysis attributes (loads, boundary conditions, material proper-
ties) are best specified with respect to the solid model. Initial mesh control
attributes that guide the mesh generation process can also be specified with
respect to the solid model. Based on the attributes, an initial mesh can be
generated with desired geometric approximation accuracy to the model. In
the case of parallel simulations, load balancing is performed to maintain bal-
anced distribution of workloads among the multiple processes thus ensuring
the efficiency of the workflow. The finite element analysis procedure com-
putes the solution fields of interest. To adaptively improve solution accuracy,
error estimation/indication procedures are used to calculate a mesh size field,
which is used to drive the mesh adaptation procedure to obtain an adapted
mesh. After dynamically balancing the work loads in parallel, the finite el-
ement analysis procedures can be performed again with the adapted mesh
and a new set of solution fields can be obtained with improved resolution
and accuracy. The adaptive simulation loop continues until the desired so-
lution accuracy is achieved. Finally the results of the solution fields can be
post-processed and visualized.

3.1 Modifications to Straight-sided Parallel Mesh Operations

This section discusses the parallelization of a set of local mesh modification
operations for distributed curved meshes such as split, collapse and swap op-
erations. The primary complexities introduced by curved mesh geometry in
parallel is to properly determine appropriate geometric shapes for the new
mesh entities created during those operations among multiple mesh parts.
Technical modifications are made to the parallel straight-sided mesh modifi-
cation operations [1, 2, 10].

Splitting curved mesh entities in parallel

In the case of splitting a curved mesh entity, the resultant entities created by
subdividing the target entity have to be curved as well. When an entity to be
split is at the partition boundary of multiple mesh parts, only the owner of
the target entity can carry out the split operations and must inform copies of
the curved mesh entity shape information of affected entities.

Take the example of a quadratic curved edge shared by two mesh parts Py
and Pj. If a split operation is to be performed by inserting a new vertex at
the mid-point location of the edge in the parametric space, the process can
be summarized in the following steps:
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(a) (b} (c)

P1 /\ Remote copy //.\
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=

(d) (e)

Fig. 5. Curved edge split operation and Synchronization of curved entities on par-
tition boundary: (a) curved element to be split, (b) split the element uniformly and
treat the newly created edges as straight-sided, (c) curve the new edges which are
classified on curved geometric model boundary, (d) before sync, owner determines
the target location of edge middle point. (e) after sync, remote copies receive data
from owner and update their local copy

1. Calculate the x,y,z coordinates of the edge middle point for the new vertex
to be introduced. See Fig 5(a).

2. Create a new vertex at the target location, two new edges connecting the
new vertex and the other two existing vertices, and other new sub-faces.
This is done for the owner and all the remote copies. See Fig 5(b).

3. For the owner copy, attach high-order nodes to the new edges and place
the nodes properly based on the geometric model or the mesh geometry.
See Fig 5(c).

4. Synchronize the remote copies with the owner across the parts to update
the high-order node information. See Fig 5(d) and (e).

Collapsing or Swapping curved mesh entities in parallel

If any of the entities to be eliminated by a collapse or swap operation is on
a mesh partition boundary, the local mesh cavity is distributed on more than
one mesh part. In order to avoid communication overheads, the entities of
the cavity will be migrated to a single mesh part first as in the straight edge
case [1, 2]. In the curved mesh entity case the migration process must also
migrate the curved mesh entity shape information. The idea of extending the
edge swap operation to deal with parallel curved meshes is essentially the same
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as for the edge collapse operator in the sense that (i) geometric approximation
accuracy needs to be considered when curving newly created entities, and (ii)
curved entity migrations will be needed for the cases that the cavity is across
partition boundaries. The process for parallel curved edge collapse or swap
operations can be summarized as the following steps:

1. Determine if the operator is performable by topology and geometry checks.

2. If the local mesh cavity is across part boundary, migrate the entities to a
single part by curved mesh migration operations.

3. Perform topological modifications: collapse/swap the target entity and
modify the connectivity of the cavity.

4. Perform geometric modifications if the original cavity has high-order
curved entities. Properly curve the newly created entities based on the
geometric model information or the mesh geometry.

G‘],
A )

(d)

Fig. 6. A 2D example of parallel mesh curving and curved edge swap operation
(a) an initial straight-sided 2D mesh, (b) the mesh is distributed to two parts, (c)
boundary mesh edges Mg, My, M3 are curved to the model edge G}, interior edge
M3 is curved to avoid element invalidity, (d) the remote copy of Mj is synchronized
by its owner to also be curved, and to improve the mesh quality, M4 is to be swapped,
(e) the distributed mesh entities are migrated to form a local cavity on a single part,
(f) M3 is swapped and the new edge M has been curved accordingly

Fig 6 demonstrates a 2D example of a combination of parallel mesh curving
and curved edge swap operations. Note that the collapse/swap operation is
in essence local, the full cavity of all the to-be-affected mesh regions is known
before applying the operation. There is no need to expand the cavity during
a single collapse/swap operation.

3.2 Parallel SPR Based Error Estimation

In a parallel adaptive finite element simulation, a posteriori error estimation
and correction indication is an important component. A parallel error esti-
mation procedure has been developed based on the Superconvergent Patch
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Recovery (SPR) scheme [22]. In the error estimation procedure, a C° contin-
uous gradient field is recovered from the original C~! discontinuous field, and
the error is defined as the difference between the recovered and original fields.

A key step of the recovery of a given nodal degree of freedom (associ-
ated with a mesh vertex, M?) employs a local least-square fitting scheme
over the patch of elements (mesh regions {M?{M?3}}) surrounding the node
(or the mesh vertex MY). Therefore, the complete field information of the
nodal patch is required. In the context of a parallel analysis based upon a
distributed mesh, a set of mesh vertices is characterized as being located on
mesh partition boundaries. Consequently, the corresponding nodal patch of
such a vertex is distributed among several mesh partitions, thus not complete
within a local part. In order to form a complete patch on a local mesh part,
and in the meantime, to avoid extensive communication cost between mesh
parts, the parallel SPR based error estimator has been developed to take ad-
vantage of the ghosting functionality supported by the Flexible distributed
Mesh DataBase (FMDB) [17].

3.3 Parallel Curved Mesh Adaptation with Mesh Size Field

Given an initial curved mesh in parallel and a desired mesh size field, curved
mesh adaptation in parallel produces a distributed curved mesh that satisfies
the size field and preserves the geometric approximation to the right order.
The procedure consists of three stages: 1) curved mesh invalidity correction,
2) coarsening and iterative refinement, and 3) shape quality improvement.
After the mesh adaptation, a load-balancing step is performed by using either
Zoltan or ParMETIS.

Invalidity Correction for the Initial Curved Mesh

This stage eliminates all invalid elements prior to performing mesh modifica-
tions, since invalidity undermines the proper execution of the mesh modifi-
cation operations. The invalidity correction algorithm detects the invalid ele-
ments by the validity checks introduced in Section 2.2. It chooses the proper
local mesh modification and entity reshape operations to correct the invalidity
of the curved elements. Details of the specific invalidity correction algorithm
can be found in [14, 13].

Coarsening and Refinement

The coarsening process eliminates the mesh edges that are shorter than the
desired length specified by the size field [11]. It is accomplished by perform-
ing entity collapse operations on the identified short edges. Serial (on-part)
curved entity collapse operation are introduced in [14]. Its parallelization is
discussed in Section 3.1. When collapsing curved mesh entities classified on
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curved geometric model boundary, it is necessary to curve the new entities to
conform to the boundary after collapsing. Curving the new entity may lead to
intersection with another existing mesh entity which causes element invalidity.
To identify such cases, curved mesh validity checks (refer to Section 2.2) are
always applied after a collapse operation. Invalidity is then resolved by the
invalidity correction algorithm [14, 13] as discussed in the previous stage of
this section.

After coarsening, the refinement algorithm incrementally reduces the edge
lengths that are longer than the desired size field by as many iterations as
needed to satisfy the local mesh metric. Entity split operations are applied to
achieve the goal [11, 14]. In the case that curved entities are to be refined, the
new entities should be curved properly as well. The shape of the new entities
are determined through parametric interrogations to the CAD modeler [4]
and/or by calculation in the parametric space using Bézier parameterization
of curved tetrahedrons [7, 14, 13]. Edge length is checked after each refinement
iteration. Edge collapse operations are performed to eliminate the shorter-
than-desired edges introduced by the refinement operations.

Curved Element Quality Improvement

After obtaining a satisfactory mesh with the desired size field, this stage is
conducted to further improve mesh quality by edge/face swap and/or curved
entity reshape operations [11, 14, 13]. Details of the parallel swap operation
is presented in Section 3.1. As mentioned in 2.3, the entity reshape operation
for curved elements is extremely demanding in terms of computation costs
due to the explicit search procedure. Thus, it is used in the end should the
swap operations fail to improve the curved element shape quality. Given a
pre-specified element quality threshold Qp, the elements whose shape quality
Qsc < Qqp, are collected to a list and are processed iteratively until either the
list is empty or no further local mesh modification operations can be applied
to improve the remaining elements in the list.

3.4 Parallel Adaptive Mesh Examples

The Advanced Computations Department (ACD) of the SLAC National Ac-
celerator Laboratory (SLAC) is developing a suite of high-order finite element
procedures (ACE3P) for accelerator simulations that have demonstrated the
ability to accurately model a variety of accelerator problems [14, 15]. The
level of discretization to obtain reliable predictions in ACE3P simulations of-
ten requires meshes with upwards of hundreds of millions of elements. To meet
the requirements, the Scientific Computation Research Center (SCOREC) at
RPI, in collaboration with Simmetrix Inc., is working with SLAC on providing
the full range of parallel curved mesh generation and adaptation tools needed
to work with the ACE3P simulation tools.
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Fig 7 gives an example of a distributed curved mesh generated over a
geometry of two linear accelerator cavities. The largest application so far has
been a partitioned curved mesh of 180 million tetrahedral elements generated
on 64 processors in less than 12 minutes (not counting I/0).

Fig. 7. Overview and close-ups of a partitioned curved mesh of linear accelerator
cavities

Fig 8 shows a small example of a parallel curved mesh refinement process.
The geometry is a linear accelerator cavity. The mesh to be refined on the
left is of a relatively coarse global mesh size with finer mesh being generated
locally at regions of large curvature. The parallel refinement focuses at the
coarse mesh regions and brings the global mesh to a finer size while keeping
the locally refined mesh regions unchanged.

-

Fig. 8. An example of parallel curved mesh refinement on a four part mesh

Fig 9 gives an example of an isotropic initial curved mesh adapted to an
anisotropic size field representing a planar shock.

Fig 10 gives a set of pictures: (a) initial mesh of 8 parts, (b) solution
field, (c) new size field and (d) 8-part adapted mesh of a pillbox model. (e)
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Fig. 9. An example of curved mesh adaptation with an anisotropic size field

and (f) are close-up views of the region where relatively small mesh sizes
are needed to get higher resolution and extensive curved mesh refinement is
applied. The pictures present a complete iteration of the developed parallel
adaptive loop. The initial mesh in this case has 22k elements and the mesh
after adaptation has 106k elements. The wall clock time of mesh adaptation
for this 8-part mesh in parallel is 6.73 seconds. The total time for the same
adaptation process in serial is 22.89 seconds. Both the serial and parallel cases
run on 2.3GHz Opteron processors.

4 Closing Remarks

A curved mesh adaptation procedure designed to operate on massively par-
allel computers was presented. The core of the procedure are two classes of
mesh modification: entity geometry modification and local mesh modification
for curved meshes. For the entity geometry modification, curved entity re-
shape operations that explicitly resolve element invalidity and improve the
shape quality of curved elements are presented. The local mesh modification
operations for curved meshes were extended from the operations for straight-
sided meshes with additional consideration and treatment of curve boundary
entities and selected curved interior entities. The parallel curved mesh adap-
tation technique is being used to support the automated adaptive accelerator
simulations at SLAC National Accelerator Laboratory.
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Fig. 10. Example of one iteration of the parallel adaptive loop
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