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Abstract: The ability to effectively adapt a mesh is a very important feature
of high fidelity finite element modeling. In a finite element analysis, a relatively
high node density is desired in areas of the model where there are high error
estimates from an initial analysis. Providing a higher node density in such
areas improves the accuracy of the model and reduces the computational time
compared to having a high node density over the entire model. Node densities
can be determined for any model using the sizing functions based on the
geometry of the model or the error estimates from a finite element analysis.
Robust methods for mesh adaptation using sizing functions are available for
refining triangular, tetrahedral, and quadrilateral elements. However, little
work has been published for adaptively refining all hexahedral meshes using
sizing functions. This paper describes a new approach to drive hexahedral
refinement based upon an error sizing function and a mechanism to compare
the sizes of the node after refinement.

Keywords: hexahedral, meshing, adaptation, refinement, sizing func-
tion, error estimates

1 Introduction

Mesh adaptation based on a sizing function is not a new topic. Procedures
that incorporate quadrilateral, triangular, and tetrahedral mesh adaptation
that rely on error-based sizing functions are available in the literature[1, 2]. In
addition, there are a few techniques that generate an initial hexahedral mesh
using the geometry features of the model[3]. However, conformal hexahedral
mesh refinement, relying on an error-based sizing function, is a topic of current
interest.

Traditional hexahedral meshing methods have not effectively used a sizing
function because of connectivity restrictions imposed by traditional generation
techniques[4, 5, 6]. This paper presents a method for a conformal hexahedral
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mesh refinement procedure based upon a sizing function. We incorporate the
hexahedral mesh refinement techniques developed by Parrish[7] with a sizing
function to drive refinement. The Parrish technique uses a set of seven tran-
sition templates and incorporates a special treatment for concave regions to
ensure conformal and local mesh refinement. The sizing function used is de-
veloped from computed error estimates. However, criteria such as feature size
or user specifications could also be included in the sizing function. To validate
the method, comparisons between the actual refined node size and the ideal
target node size are presented.

2 Background

The accuracy of finite element solutions can be improved by adapting the
mesh. For example, meshes can be smoothed - known as r-adaptation - to
improve quality. In addition, p-adaptation, which involves increasing the de-
gree of the basis functions of the elements in the mesh, and h-adaptation,
which involves increasing the number of elements, are traditional adaptation
approaches. In addition, coarsening[8] can be used to reduce the number of
elements. Although coarsening, r adaptation, and p adaptation are valid meth-
ods, this paper focuses specifically on h-adaptation i.e. refining by increasing
the number of elements locally, to increase accuracy.

2.1 Refinement

As shown in Figure 1, 3-refinement[7] splits and exsiting hex three times along
an edge, and 2-refinement splits an exisitng hex two times along and edge.
3-refinement is simple to implement but often can over refine a region of
interest. 2- refinement[9] has more constraints on it’s implementation but can
often provide more gradual and controlled refined regions. The work reported
here is based on 3- refinement, but can be easily adapted for 2- refinement.

 

Fig. 1. 2 refinement and 3 refinement
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Another common approach for adapting hexahedral meshes involves intro-
duction of hanging nodes at edge centers as shown in Figure 2. This approach
is straightforward to implement, and no transition elements to surrounding
hexahedra are required. However, for this work we only consider conformal
refinement techniques and do not introduce hanging nodes.

                                

Fig. 2. Refinement with hanging nodes compared to conformal refinement

2.2 Current Methods

We note that a mesh can be adapted before any analysis is run if an a priori
knowledge of the physics and geometry of problem is known. However, a fully
automatic sizing function based all-hexahedral mesh adaptation procedure,
including both refinement and coarsening, based on computed error is the
central motivation of this research.

There are several methods that use sizing functions to refine the nodes
or to adjust the node densities at the time of the initial mesh generation.
Quadros, et al.[10], and Zhang and Zhao[11] have introduced mesh refinement
using a sizing function based on geometric features of the model, however,
they do not discuss hexahedral mesh refinement based on the error estimates.
Anderson et al.[1] developed a refining and coarsening technique that uses
error estimates as the sizing function, however this method is limited to all
quadrilateral elements and does not consider the hexahedral mesh. Zhang
and Bajaj[12] introduce hexahedral mesh refinement using volumetric data,
but do not consider converting the error estimate from the finite element
analysis into a mesh size for refinement. Wada et. al[13] discuss adaptation of
hexahedral meshes using local refinement and error estimates, however their
method does not compare the refined size of the mesh to the target size from
the error estimates.

As mentioned by Anderson[1], most of the adaptation techniques are lim-
ited to triangular and tetrahedral elements. In 2010 Kamenski[14] presented
mesh adaptation using the error estimates but his method is limited to tri-
angular elements. De Cougny and Shephard[15], discuss tetrahedral mesh
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adaptation but they do not consider a hexahedral technique. Kallinderis and
Vijayan[2] also discuss tetrahedral and triangular mesh refinement and coars-
ening but do not consider hexahedral elements. Babuska et. al[16] have pre-
sented a refinement technique based on a sizing function derived from error
estimates, however their method is limited to non conformal rectangular ele-
ments with hanging nodes.

A hexahedral, when compared to a tetrahedral, mesh can provide more
accurate results and, as mentioned in the introduction, is often the choice
of an analyst. However, hexahedral adaptation techniques are not common.
Hexahedral adaptation is a time consuming process, and requires knowledge
of physics of the problem so that the generated mesh produces an acceptable
error estimate from the finite element analysis. This paper presents unique
and simple criteria to refine a hexahedral mesh using a sizing function and
compares the refined size of the mesh with the target mesh size.

2.3 Sierra Mechanics Refinement Technique

In practice, rather than using a sizing function to drive the refinement, the
error measures themselves are often utilized. For example, Sierra[17], a po-
tential application for the work of this paper, is an advanced suite of analysis
tools and provides three main approaches for driving refinement based upon
an error measure. Although these techniques are currently used for tetrahe-
dral and hanging node refinement, they could also be applicable for driving
conformal hexahedral refinement in an adaptive analysis. For each of the three
approaches, an error metric is computed for each element in the mesh, and the
elements are ordered Mi=1..N from minimum to maximum error. The three
approaches are:

1. Percent of Elements: A threshold, a, which represents a percentage of the
total number of elements N in the mesh that will be refined is specified.
Starting from the element in M with the highest error and working towards
the smallest error, a percent of the elements in the list are identified for
refinement.

2. Percent of Max: A percentage threshold, b that represents the percentage
of maximum error in the mesh that will be identified for refinement is
specified. For example, if the maximum error of all elements in Mi=1..N

was 50 percent with b = 90 percent, then all elements with error > 5
percent would be identified for refinement.

3. Percent of Total Error: A percentage threshold, g, which represents a
percent of the total error in the mesh that will be identified for refinement
is specified. For example if we represent the total error of all elements in
Mi=1..N as:

||e||total =
∑N

i=0 ||e||i
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Starting from the element in M with the highest error and working to the
smallest error, those elements that contribute to a total error of g. ||e||total
would be identified for refinement.

Sierra refinement is performed based upon one of the above approaches,
followed by subsequent analysis iteration. After each iteration, elements can be
again identified for refinement. This procedure continues until a convergence
or error threshold has been achieved.

For the work presented in this paper, rather than using the error measure
directly, a sizing function is developed from calculated error estimates. This
provides the opportunity to utilize the sizing function as a general field to
drive meshing or refinement. It also provides a field for which we can vali-
date the resulting refinement operations to determine the effectiveness of the
refinement algorithms at reaching the desired size.

3 Hexahedral Mesh Refinement

It is desired to have the size of a mesh be as close as possible to the sizes
provided by the sizing function in order to obtain high computational accuracy
in the results without significantly increasing the computation time.

3.1 Sizing Functions

Sizing functions are used as the mechanism for refining a mesh. There are
several ways to generate sizing functions. Error estimates can be used to define
a sizing function. Geometric characteristics, curvature, and sharp features in
the model can also be used to define a sizing function [10]. Other bases for
sizing functions include: the stress or strain gradients, change in the material
properties, points of application of loading, and the location of boundary
conditions.

For this paper, developing a sizing function based on the error estimate of
an initial calculation will be used. The error estimate should be robust enough
to ensure the increase in accuracy of the results, and also steer the adaptation
only in the desired area of the model. The generation of the error estimate
is an important area of study. For this work, error estimates are obtained
from the existing finite element code. Physical phenomenon in engineering and
sciences can be modeled using partial differential equations. However, complex
mathematical models using the partial differential equations might not have
an analytical solution. Fortunately, finite element analysis can provide an
approximate solution to these complex models[18]. As these solutions are an
approximation to the analytical solution, there are several sources of error.

As cited by Grastch and Bathe[18], the computation of error estimates
and using it as criteria for subsequently refining the region where error es-
timates are high should be computationally cheaper than refining the entire
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model. The error estimates should be accurate enough to closely represent
the unknown actual error. The goal of the error estimates is to steer the
mesh adaptation. For this work, the built in error estimates produced by the
simulation code, ADINA[19] are used.

3.2 Tools and Requirements

The error estimates from the finite element analysis approximate the expected
error produced from the numerical model. Our refinement process is driven
by a sizing function generated from error estimates. The error estimates from
the finite element solvers are converted into an Exodus II[20] file, a random
access, machine independent, binary file, that is used as a sizing function by
the mesh generating toolkit, CUBIT[21]. The Exodus file format stores all the
information about the initial mesh. It can be used for input and output of
results and can also be used for post-processing of results. The Application
Programming Interface (API) to create the exodus file is available in the public
domain and a manual to create such file is also available. An example to create
an Exodus file to drive the refinement process can be found in Reference[22].

3.3 Algorithm

Our proposed algorithm refines a hexahedral mesh locally based on the gen-
erated sizing function. The main goal of this algorithm is to complete the
refinement process without the need for a user intervention. The error esti-
mate, used to define the sizing function, determines whether a node should be
considered for refinement or not. Often, after the mesh has been refined, the
quality of the elements degrade. The degradation is usually a result of inser-
tion of templates in the transition zones between the refined and non-refined
regions. Hence, smoothing is performed on the elements within and near the
refinement region to improve the element quality. A flowchart of the algorithm
is given in Figure 3.

3.4 Algorithm Example

This section outlines the input, refinement criteria, and comparison of target
and current sizes, of the algorithm. An example is used to explain the steps
outlined in the algorithm. For simplicity, the algorithm example section is fur-
ther divided into three sub-sections: input, refinement criteria and comparison
of current size and target size.

3.5 Input

For this example, a quarter piston modeled with a load on its base plate is
used. Initially, a coarse mesh, as shown in Figure 4, is generated using an all
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Fig. 3. Algorithm Flowchart

hexahedral meshing technique[21]. Next, the appropriate boundary conditions
and loading, are applied. The initial mesh and boundary conditions are then
exported to ADINA[19] to perform the finite element analysis. Error estimates
are generated as a part of the ADINA analysis and the band plot of the error
estimate is shown in Figure 4. The error estimate from the finite element
analysis is then written in Exodus II, a binary file format, and is used to
compute the sizing function to drive the refinement process.

3.6 Refinement Criteria

After each node is assigned a scalar error estimate, it is compared with the
minimum specified threshold allowable error, g, for the particular problem.
Normally the value for g and the error estimates are scalar values between 0
and 100, representing a percent error. Nodes with error estimates greater than
the allowable user defined error are identified for further refinement. Nodes
with error estimates lower than g are not refined but may be subsequently
smoothed to improve the mesh quality. In this section the specific criteria
is presented, based on the sizing function computed from error estimate, to
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Fig. 4. Initial coarse mesh and Band plot of error estimate

identify the nodes needed for refinement. The terms basic to this technique
are defined below.

The size of a node, ha, is computed using Equation 1. ha is the average of
the lengths of edges attached to the node.

ha =
1

n

n∑
i=1

li (1)

where:

ha = size of a node

li = length of ith edge

n = number of edges attached to the node

The relationship between error and mesh size can be approximated, for
elasticity and heat problems, from the Poisson heat equation[23] as:

|e| = Ch2 (2)

where:

C = a constant

h = the element edge length

If the error and the element edge length for a node in the mesh are known,
then Cn for that node can be computed as:

Cn =
en
h2
a

(3)
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where:

Cn a constant for the node

en error estimate at the node

ha = size of a node as defined in Equation (1)

The user provides a threshold error measure for the entire mesh, |e| = g at
which below g is acceptable. For this work, the target size is computed from
the error measure but it can also be computed from the geometric feature or
size provided by the user. Then, a target size from the above equation at the
node is computed as:

ts =

√
g

Cn
(4)

where

ts = target node size

g = minimum allowable error provided by user

Cn = a constant computed from Equation 3

The size ratio, Sr, is defined in Equation 5 as the ratio of the target size
of the node, ts, determined using the error estimates, to the actual size of the
node, ha.

Sr =
ha

ts
(5)

where:

Sr = node size ratio

ha = actual node size as defined in Equation (1)

ts = desired node size determined from the error measure

The terms defined in Equations 1 through 5 are used to identify the nodes
that require refinement. It is assumed that the nodes with a size ratio of
less than or equal to one are acceptable and need no refinement. Similarly,
if the size ratio at the node approaches 3, then it indicates that at least one
refinement operation should be performed. The value of 3 is assigned because
3-refinement is used as the mechanism for refinement. It is assumed that when
the refinement is performed the size of a node will decrease by a factor of three
and hence a size ratio of one is obtained after the refinement is performed.
Since each split operation will reduce the local element size by a factor of 3, as
the size ratio approaches 9, the node will be marked for two split operations.
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Likewise, a size ratio that approaches 27 will be marked for three splits. For
this work, using an average of powers of three for the thresholds seemed to
provide acceptable results. Table 1 summarizes the approach.

Table 1. Size ratio range and number split operation

Size Ratio Range Number of
refinement split operations

0 - 2 0
2 - 6 1
6 - 18 2
> 18 3

If the size ratio is below the allowable threshold, g, then no refinement
is performed on the node. It is assumed that it is perfect size or it is over
refined. The nodes with the size ratio between 2.0 and 6 are identified for
the first level of refinement. These nodes are identified for the first level of
refinement because they have size ratio near 3 and less than 9. Hence, after the
refinement their size ratio should come close to 1. Similarly, the nodes with
size ratio between 6 and 18 are identified for the second level of refinement
based on the fact that these nodes have size ratio near 9 and less than 27.
Hence, when they are refined the new size ratio should be close to 1. The nodes
with size ratios greater than 18 are identified for three levels of refinement.
This criteria for refinement is continued until less than 10 percent of total
nodes meet the size ratio criteria. This 10 percent is chosen to ensure that
computation time is not wasted performing a refinement that will not gain a
significant level of accuracy in the finite element solution. This criteria serves
as the exit criteria for the refinement process. Figure 5 shows the refined mesh
of the quarter piston with load on its base.

3.7 Comparison of Current and Target Size

One of the means to determine if the algorithm is performing adequately to
achieve the desired accuracy in the results is to compare the refined size of
node to the target size of the node. The node size ratio, Sr, is used as the
criteria to compare the efficiency of the algorithm. It is assumed that the al-
gorithm should perform such that the size ratio of all the nodes should be less
than or equal to 1.0. If a coarsening algorithm were to be implemented, size
ratios less than 1 would be minimized and all the size ratios would be close to
1.0. It is recognized that an exact match everywhere where Sr = 1 is impos-
sible, however the approach presented here can be validated by statistically
examining how close final mesh matches the intended sizing function.

Based on Equation 5, a size ratio for the node before the refinement and af-
ter the refinement is computed. Theoretically, there should not be any change
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Fig. 5. Refined mesh of quarter piston

in the volume of elements with nodes having size ratios below 1.0 and the
volume of elements with nodes having size ratios greater 3 should be reduced
significantly after the refinement. Also, there should be less than 10 percent
of the volume that fall in the size ratio greater than 2.0. The plot in Figure
6, shows that for this problem, there is not much change in the volume for
size ratios below 1.0 and in additon, there was not much initial volume with
size ratio greater than 3. Although there is some volume greater than 2.0, this
condition prevails because the refinement is deemed complete if there are less
than 10 percent of nodes that require refinement. In Figure 7, the change in
the percentage of volume falling in the particular size ratio before and after
refinement is shown. Note that that most of the change is around size ratio
1.0 and there is negative change in volume for size ratio greater than 2.0.
This shows that most of the nodes have size ratio 1.0 after the refinement and
refinement is taking place in the node with size ratio greater than 2.0.

4 Example

This section gives a complete example of all hexahedral sizing based refine-
ment. Shown are the initial coarse mesh, the band plot of the stress error
provided by the finite element analysis, the refined mesh, a histogram show-
ing the results of refinement, and the analysis using the refined mesh. All
initial meshes were generated with CUBIT[21] and the finite element analysis
was performed using ADINA[19].

Since, when a node is refined and three nodes are created, it is difficult to
get size ratio exactly 1.0. Also, addition of templates in the transition zones
tends to over refine the mesh. The goal is therefore is to get most of the nodes
with size ratio close to 1.0 and 2.0.

In this example, a gear rotating about its axis is modeled. A torque is
applied at the center of the gear and three teeth are constrained. Figure 8
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Fig. 6. Plot of size ratio and percentage of total volume before and after refinement

   

 

Fig. 7. Plot of size ratio and percentage of total volume before and after refinement
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shows the initial mesh and the band plot of error estimates. For this example
the minimum threshold error used is 8 percent.

 

Fig. 8. Initial Mesh and Error band plot of gear example

Figure 9 shows the refined mesh. Note that refinement is implemented
around the constrained teeth where there is a high error estimate. Figure 10
is a plot of the volume before and after the refinement vs. size ratio. Notice
that most of the volume is below a size ratio of 2.0. Also note that there is
little change in volume for size ratios less than 1.0. In Figure 11, the change
in the percentage of volume falling in the particular size ratio before and after
refinement is shown. Notice that most of the change is around a size ratio
of 1.0 and there is negative change in volume for size ratio greater than 2.0.
This shows that most of the nodes have a size ratio of 1.0 after the refinement
and that refinement is taking place in the volume where the size ratio greater
than 2.0. Also, it should be considered that when the coarsening algorithm
is implemented the volumes should come close to the size ratio 1.0, the ideal
element size ratio. Figure 12 shows the error estimate of an analysis on the
refined mesh.

5 Conclusions and Future Work

This paper presents a sizing function algorithm that selects the nodes in all
hexahedral meshes for refinement and then generates a refined all conformal
hexahedral mesh for subsequent finite element analysis. The sizing function is
developed from error estimates from an intial analysis of the problem. Only
elements in the volumes indicated size changes are modified. As a result,
the locally refined mesh is able to capture the physics of the problem more



14 Paudel, Owen, Benzley

 

Fig. 9. Refined Mesh of gear example

 

Fig. 10. Plot of percentage of total volume and size ratio before and after refinement
for gear model
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Fig. 11. Plot of size ratio and change in volume in percentage

 

Fig. 12. Band plot of error on the refined gear mesh
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accurately, with a minimum increase in the computation time thus providing
high efficiency and accruacy in the finite element solution. The results from
the examples shown in this paper are promising but improvements can be
done on this technique to work more efficiently.

This work provides a platform for the total adaptation of hexahedral el-
ements. Only refinement was considered here, but coarsening[8] could be in-
cluded. Including coarsening would provide a method to fully adaptive hexa-
hedral meshes.

Currently, this method uses 3-refinement which often over refines the mesh
and does not provide good gradation between refined and coarsened volumns.
When this technique is used with the 2-refinement technique developed by
Edgel et al. [9] it should provide more gradation in the refinement.

In this work, sizing function is developed using computed error estimates.
However, other criteria such as feature size or user specified field function
could be included in the sizing function.
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