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Summary. In this paper, we describe a way to compute accurate bounds on Jaco-
bians of curvilinear finite elements of all kinds. Our condition enables to guarantee
that an element is geometrically valid, i.e., that its Jacobian is strictly positive ev-
erywhere in its reference domain. It also provides an efficient way to measure the
distortion of curvilinear elements. The key feature of the method is to expand the
Jacobian using a polynomial basis, built using Bézier functions, that has both prop-
erties of boundedness and positivity. Numerical results show the sharpness of our
estimates.
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Bézier functions

1 Introduction

There is a growing consensus in the Finite Element community that higher-
order discretization methods will replace at some point the solvers of today, at
least for part of their applications. These high-order methods require a good
accuracy of the geometrical discretization to be accurate—in other words, such
methods will critically depend on the availability of high-quality curvilinear
meshes.

The usual way of building such curvilinear meshes is to first generate a
straight sided mesh. Then, mesh entities that are classified on the curved
boundaries of the domain are curved accordingly [1, 2, 3]. Some internal mesh
entities may be curved as well. If we assume that the straight sided mesh
is composed of well shaped elements, curving elements introduces a “shape
distortion” that should be controlled so that the final curvilinear mesh is also
composed of well shaped elements. The optimization of the shape distortion is
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a computationally expensive operation, especially when applied globally over
the full mesh. It is thus crucial to be able to get fast and accurate bounds on
the distortion in order to 1) evaluate the quality of the elements during the
optimization process; and 2) reduce the sets of elements to be optimized, so
that the optimization can be applied locally, i.e., only where it is necessary.

In this paper we present a method to analyze curvilinear meshes in terms
of their elementary Jacobians. The method does not deal with the actual gen-
eration/optimization of the high order mesh. Instead, it provides an efficient
way to guarantee that each curvilinear element is geometrically valid, i.e.,
that its Jacobian is strictly positive everywhere in its reference domain. It
also provides a way to measure the distortion of the curvilinear element. The
key feature of the method is to adaptively expand the elementary Jacobians
in a polynomial basis that has both properties of boundedness and positivity.
Bézier functions are used to generate these bases in a recursive manner. The
proposed method can be either used to check the validity and the distortion of
an existing curvilinear mesh, or embedded in the curvilinear mesh generation
procedure to assess the validity and the quality of the elements on the fly. The
algorithm described in this paper has been implemented in the open source
mesh generator Gmsh [4], where it is used in both ways.

2 Curvilinear Meshes, Distortion and Jacobian Bounds

Let us consider a mesh that consists of a set of straight-sided elements of order
p. Each element is defined geometrically through its nodes xi, i = 1, . . . , Np

and a set of Lagrange shape functions L
(p)
i (ξ), i = 1, . . . , Np. The Lagrange

shape functions (of order p) are based on the nodes xi and allow to map a
reference unit element onto the real one:

x(ξ) =

Np�

i=1

L
(p)
i (ξ) xi. (1)

The mapping x(ξ) should be bijective, which means that it should admit an
inverse. This implies that the Jacobian detx,ξ has to be strictly positive. In all
what follows we will always assume that the straight-sided mesh is composed
of well-shaped elements, so that the positivity of detx,ξ is guaranteed. This
standard setting is presented on Figure 1 for the quadratic triangle.

Let us now consider a curved element obtained after application of the
curvilinear meshing procedure, i.e., after moving some or all of the nodes of
the straight-sided element. The nodes of the deformed element are called Xi,
i = 1 . . . Np, and we have

X(ξ) =

Np�

i=1

L
(p)
i (ξ) Xi. (2)
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Fig. 1. Reference unit triangle in local coordinates ξ = (ξ, η) and the mappings
x(ξ), X(ξ) and X(x).

Again, the deformed element is valid if the Jacobian J(ξ) := detX,ξ is strictly
positive everywhere over the ξ reference domain. The Jacobian J , however, is
not constant over the reference domain, and computing Jmin := minξ J(ξ) is
necessary to ensure positivity.

The approach that is commonly used is to sample the Jacobian on a very
large number of points. Such a technique is however both expensive and not
fully robust since we only get a necessary condition. In this paper we follow
a different approach: because the Jacobian J is a polynomial in ξ, J can
be interpolated exactly as a linear combination of specific polynomial basis
function over the element. We would then like to obtain provable bounds on
Jmin by using the properties of these basis functions.

In addition to guaranteeing the geometrical validity of the curvilinear el-
ement, we are also interested in quantifying the distortion of the curvilin-
ear element, i.e., the deformation induced by the curving. To this end, let
us consider the transformation X(x) that maps straight sided elements onto
curvilinear elements. It is possible to write this determinant in terms of the ξ
coordinates as:

detX,x =
detX,ξ

detx,ξ
=

J(ξ)

detx,ξ
. (3)

We call X(x) the distortion mapping and its determinant δ(ξ) := detX,x the
distorsion. The distorsion δ should be as close to δ = 1 as possible in order
not to degrade the quality of the straight sided element. Elements that have
negative distorsions are of course invalid but elements that have distorsions
δ � 1 or δ � 1 lead to some alteration of the conditioning of the finite element
problem. In order to guarantee a reasonable distortion it is thus necessary to
find a reliable bound on Jmin and Jmax := maxξ J(ξ) over the whole element.
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Note that many different quality measures can be defined based on the
Jacobian J . For example, one could look at the Jacobian divided by its average
over the element instead of looking at the distortion. In any case, we see that
obtaining bounds on Jmin and Jmax is still the main underlying challenge.

3 Jacobian Bounds for Second Order Planar Triangles

We start our analysis with the particular case of second order triangles for
which a direct computation of Jmin is relatively easy. The determinant J(ξ) =
J(ξ, η) for a planar triangle at order p is a polynomial in ξ and η of order at
most 2 (p − 1). For quadratic planar triangles, J(ξ, η) is therefore quadratic
at most in ξ and η.

The geometry of the six-node quadratic triangle is shown in Figure 1.
Inspection reveals two types of nodes: corners (1, 2 and 3) and midside nodes
(4, 5 and 6). If Ji is defined as J(ξ, η) evaluated at node i, it is possible to
write the Jacobian exactly as a finite element expansion whose coefficients are
the Jacobian at the nodes:

J(ξ, η) = J1 (1− ξ − η)(1− 2ξ − 2η)� �� �
L(2)

1 (ξ,η)

+ J2 ξ(2ξ − 1)� �� �
L(2)

2 (ξ,η)

+ J3 η(2η − 1)� �� �
L(2)

3 (ξ,η)

+

J4 4(1− ξ − η)ξ� �� �
L(2)

4 (ξ,η)

+ J5 4ξη����
L(2)

5 (ξ,η)

+ J6 4(1− ξ − η)η� �� �
L(2)

6 (ξ,η)

. (4)

In equation (4), the functions L(2)
i (ξ, η) are the equidistant quadratic Lagrange

shape functions that are commonly used in the finite element community [5].
We first show how to compute the exact minimal Jacobian Jmin. Then

we examine different bounds that can be provided on Jmin by exploiting the
properties of the basis used in the Jacobian expansion.

3.1 Exact Computation of Jmin

From equation (4), the stationnary point of J can be computed by solving

∂J

∂ξ
=

∂J

∂η
= 0, (5)

which leads to the following linear system of two equations and two unknowns
ξsta and ηsta:
�
4(J1 + J2 − 2J4) 4(J1 − J4 + J5 − J6)
4(J1 − J4 + J5 − J6) 4(J1 + J3 − 2J6)

��
ξsta
ηsta

�
=

�
−(−3J1 − J2 + 4J4)
−(−3J1 − J3 + 4J6)

�
.

(6)
Algorithm 1 allows to compute the minimal Jacobian over one quadratic pla-
nar element exactly. If the minimum of the function is outside of the element,
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it computes the minimum on its border assuming a function MINQ(a, b, c)
that computes

MINQ(a, b, c) = min
x∈[0,1]

a x2 + b x+ c. (7)

Algorithm 1: Exact computation of Jmin over a quadratic triangle

compute nodal Jacobians Ji, i = 1, . . . , 6;1

compute ξsta, ηsta as in equation (6);2

if ηsta > 0 and ξsta > 0 and 1− ξsta − ηsta > 0 then3

Jmin = min(J(ξsta, ηsta), J1, J2, J3);4

else5

m1 = MINQ(2(J1 + J2 − 2J4), −3J1 − J2 + 4J4, J1);6

m2 = MINQ(2(J1 + J3 − 2J6), −3J1 − J3 + 4J6, J1);7

m3 = MINQ(2(J2 + J3 − 2J5), −3J2 − J3 + 4J5, J2);8

Jmin = min (m1, m2, m3);9

return Jmin;10

Although Algorithm 1 is quite simple, applying similar techniques for
higher order elements would become extremely expensive computationally.
Instead of trying to evaluate Jmin directly, we should try to compute (the
sharpest possible) bounds in a computationally efficient manner.

3.2 The Principle for Computing Bounds on Jmin

It is obvious that a necessary condition for having J(ξ, η) > 0 everywhere is
that Ji > 0, i = 1, . . . , 6. Yet, this condition is not sufficient. The expression
(4) does not give more information because the quadratic Lagrange shape

functions L
(2)
i (ξ, η) change sign on the reference triangle. What polynomial

basis should we chose to obtain usable bounds?
The first idea is to expand (4) into monomials, which gives:

J(ξ, η) = J1 + (−3J1 − J2 + 4J4)ξ + (−3J1 − J3 + 4J6)η+

4(J1 − J4 + J5 − J6)ξη + 2(J1 + J2 − 2J4)ξ
2 + 2(J1 + J3 − 2J6)η

2. (8)

Every monomial being positive on the reference triangle, we have now a set
of sufficient conditions that can be written as

4J4 ≥ 3J1+J2, 4J6 ≥ 3J1+J3, J1+J5 ≥ J4+J6, J1+J2 ≥ 2J4, J1+J3 ≥ 2J6.

However these constraints do not provide a usable bound on Jmin and break
the symmetry of the expression with respect to a rotation of corner nodes.

A second idea is to expand (4) in terms of the second order hierarchical
basis functions ψi(ξ, η), i = 1, . . . , 6, which are also positive on the triangle
[6]:



6 A. Johnen, J.-F. Remacle, and C. Geuzaine

J(ξ, η) = J1 (1− ξ − η)� �� �
ψ1(ξ,η)

+J2 ξ����
ψ2(ξ,η)

+J3 η����
ψ3(ξ,η)

+(4J4−2J1−2J2) (1− ξ − η)ξ� �� �
ψ4(ξ,η)

+

(4J5 − 2J3 − 2J2) ξη����
ψ5(ξ,η)

+(4J6 − 2J1 − 2J3) (1− ξ − η)η� �� �
ψ6(ξ,η)

. (9)

This last expression has the right symmetry, and leads to the following validity
conditions:

J1 ≥ 0, J2 ≥ 0, J3 ≥ 0, 4J4 ≥ 2J1+2J2, 4J5 ≥ 2J2+2J3, 4J6 ≥ 2J3+2J1.
(10)

Writing J(ξ, η) :=
�6

i=1 ψi(ξ, η)Ki, we have

min
ξ,η

J(ξ, η) = min
ξ,η

�
�

i

ψi(ξ, η)Ki

�
≥ min

ξ,η

�
�

i

ψi(ξ, η)

�
min
i

Ki = min
i

Ki,

because
�

i ψi = 1 + ξ + η − ξ2 − η2 − ξη has its minimum on the corner
vertices (where its value is equal to 1). And since Ki, i = 1, . . . , 3 are values
of the Jacobian, they form an upper bound on it. Thus, expansion (9) leads
to the following estimate for the minimum of the Jacobian over the triangle:

Jmin ≥ min{J1, J2, J3, 4J4 − 2J1 − 2J2, 4J5 − 2J2 − 2J3, 4J6 − 2J3 − 2J1}

≤ min{J1, J2, J3}. (11)

It is easy to see that the estimate is however of very poor quality: for an
element that has a constant and positive J , (11) simply tells us that Jmin ≥ 0.

In order to find a sharper estimate, instead of the hierarchical quadratic
functions ψi(ξ, η), we can use the quadratic triangular Bézier functions

B
(2)
2 (ξ, η) [7]:

J(ξ, η) = J1 (1− ξ − η)2� �� �
B(2)

1 (ξ,η)

+J2 ξ2����
B(2)

2 (ξ,η)

+J3 η2����
B(2)

3 (ξ,η)

+

�
2J4 −

1

2
(J2 + J1)

�
2 ξ (1− ξ − η)� �� �

B(2)
4 (ξ,η)

+

�
2J5 −

1

2
(J3 + J2)

�
2 ξη����

B(2)
5 (ξ,η)

+

�
2J6 −

1

2
(J1 + J3)

�
2 η (1− ξ − η)� �� �

B(2)
6 (ξ,η)

. (12)

Since
�6

i=1 B
(2)
i (ξ, η) = 1, we obtain the following estimate

Jmin ≥ min

�
J1, J2, J3, 2J4 −

J1 + J2
2

, 2J5 −
J2 + J3

2
, 2J6 −

J3 + J1
2

�

≤ min {J1, J2, J3} . (13)
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One can show that this estimate is always better than the one using
the hierarchical basis. It provides two conditions on the geometrical valid-
ity of the triangle: a sufficient condition (if min{J1, J2, J3, 2J4 −

J1+J2
2 , 2J5 −

J2+J3
2 , 2J6 −

J3+J1
2 } > 0, the element is valid) and a necessary condition (if

min{J1, J2, J3} < 0, the element is invalid). However, these two conditions are
sometimes insufficient to determine the validity of the element, as the bound
(13) is often not sharp enough (having min{2J4 −

J1+J2
2 , 2J5 −

J2+J3
2 , 2J6 −

J3+J1
2 } < 0 does not imply that the element is invalid).
A sharp necessary and sufficient condition on the geometrical validity of

an element can be achieved in a general way by refining the Bézier estimate
adaptively so as to achieve any prescribed tolerance—and thus provide bounds
as sharp as necessary for a given application.

4 Adaptive Jacobian Bounds for Arbitrary Curvilinear

Finite Elements

In order to explain the adaptive bound computation let us first focus on
the one-dimensional case, for “line” finite elements. Since Bézier functions
can be generated for all types of common elements (triangles, quadrangles,
tetrehedra, hexahedra and prisms), the generalization to 2D and 3D elements
will be straightforward.

4.1 The One-Dimensional Case

In 1D the Bézier functions are the Bernstein polynomials:

B
(n)
k (ξ) =

�
n

k

�
(1− ξ)n−k ξk (ξ ∈ [0, 1] ; k = 0, ..., n) (14)

where
�n
k

�
= n!

n!(n−k)! is the binomial coefficient. The Bézier interpolation
requires n+ 1 control values bi. We have

J(ξ) =
Nn�

k=0

B
(n)
k (ξ) bk. (15)

Bernstein-Bézier functions have the nice following properties : (i) they form a

partition of unity which means that
�n

k=0 B
(n)
k (ξ) = 1 for all ξ ∈ [0, 1] and (ii)

they are positive which means that B(n)
k (ξ) ≥ 0 for all ξ ∈ [0, 1]. This leads to

the well known property of Bézier interpolations:

min
ξ∈[0,1]

J(ξ) ≥ bmin = min
i

bi and max
ξ∈[0,1]

J(ξ) ≤ bmax = max
i

bi. (16)

Moreover, they always present control values that are values of the interpo-
lated function. Let assume they are ordered at the Kf first indices, we have
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min
ξ∈[0,1]

J(ξ) ≤ min
i<Kf

bi and max
ξ∈[0,1]

J(ξ) ≥ max
i<Kf

bi. (17)

Since Lagrangian and Bézier functions span the same function space, com-
putation of the Bézier values bi from the nodal values Ji (and convertly) is

done by a transformation matrix. The tranformation matrix T (n)
B→L, which

computes nodal values from control values, is created by evaluating Bézier
functions at sampling points:

T (n)
B→L =





B
(n)
0 (ξ0) . . . B

(n)
n (ξ0)

B
(n)
0 (ξ1) . . . B

(n)
n (ξ1)

...
. . .

...

B
(n)
0 (ξn) . . . B

(n)
n (ξn)




.

The inverse transformation is T (n)
L→B = T (n)

B→L
−1

and from the expression of
the interpolation of the Jacobian (15), we can write

J = T (n)
B→L B

B = T (n)
L→B J , (18)

where B and J are the vectors containing respectively the bi’s and the Ji’s.

4.2 Adaptive Subdivision

Let assume that the domain is divided into Q parts and that the qth of them
interpolates the Jacobian on [a, b] (a < b). Then, the variable ξ varies in this
interval while the new one varies from 0 to 1 and the new interpolation must
verify

J [q](ξ[q]) =
Nn�

k=0

B
(n)
k (ξ[q]) b[q]k =

Nn�

k=0

B
(n)
k (ξ(ξ[q])) bk (ξ[q] ∈ [0, 1]), (19)

with ξ(ξ[q]) = a + (b − a) ξ[q]. Considering the nodes ξ[q]k such that ξ[q]k =
ξk (k = 0, . . . , n) (i.e., such that they are ordered like the sampling points),
the expression (19) reads

T (n)
B→L B[q] =





B
(n)
0 (a+ (b− a) ξ0) . . . B

(n)
n (a+ (b− a) ξ0)

B
(n)
0 (a+ (b− a) ξ1) . . . B

(n)
n (a+ (b− a) ξ1)

...
. . .

...

B
(n)
0 (a+ (b− a) ξn) . . . B

(n)
n (a+ (b− a) ξn)




B = T (n)

B→L
[q]

B,

where B[q] is the vector containing control values of the related subdomain.
This implies that
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B[q] =

�
T (n)

L→B T (n)
B→L

[q]
�
B = M[q]B. (20)

Each set of new control values bounds the Jacobian on its own subdomain
and we have:

b�min = min
i,q

b[q]i ≤ Jmin ≤ min
i<Kf ,q

b[q]i (21)

and
max

i<Kf ,q
b[q]i ≤ Jmax ≤ b�max = max

i,q
b[q]i . (22)

If an estimate is not sufficiently sharp, we can thus simply subdivide the
appropriate parts of the element. This leads to a simple adaptive algorithm,
exemplified in Figure 2. In this particular case the original estimate (16)-(17)
is not sharp enough (Jmin ∈ [−2.5, 1]). After one subdivision, the Jacobian
is proved to be positive on the second subdomain. The first subdomain is
thus subdivided once more, which proves the validity. In practice, as will be
seen in Section 5, a few levels of refinement lead to the desired accuracy. The
convergence of the subdivision can be proven to be quadratic [8, 9].
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Fig. 2. Top left: One-dimensional element mapping x(ξ). Top right: Exact Jacobian
J(ξ) (solid green), control values on the original control points (dashed green) and
two adaptive subdivisions (blue and red). Bottom: Estimates of Jmin at each step
in the adaptive subdivision process.
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4.3 Extension to Higher Dimensions

The extension of the method to higher dimensions is straightforward, pro-
vided that Bézier functions can be generated and that a subdivision scheme
is available: Jacobians J are polynomials of ξ, η in 2D and of ξ, η, ζ in 3D.

For high order triangles, the Bézier triangular polynomials are defined as

T
(p)
i,j (ξ, η) =

�
p

i

��
p− i

j

�
ξi ηj (1− ξ − η)p−i−j (i+ j ≤ p).

It is possible to interpolate any polynomial function of order at most p on the
unit triangle ξ > 0, η > 0, ξ + η < 1 as an expansion into Bézier triangular
polynomials. Recalling that, for a triangle at order p, its Jacobian J(ξ, η) is a
polynomial in ξ and η at order at most n = 2(p− 1), we can write

J(ξ, η) =
�

i+j≤n

bijT
(n)
i,j (ξ, η).

It is indeed possible to compute J in terms of Lagrange polynomials

J(ξ, η) =
�

i

JiL
(n)
i (ξ, η)

where the Ji are the Jacobians calculated at Lagrange points. It is then easy
to find a transformation matrix Tn

LB such that

B = Tn
LBJ,

where B and J are the vectors containing respectively the control values of
the Jacobian bij and the Ji’s. As an example, for quadratic triangles we obtain

T 2
LB =





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

−1/2 −1/2 0 2 0 0
0 −1/2 −1/2 0 2 0

−1/2 0 −1/2 0 0 2




, (23)

which directly provides the estimate (13).
Other element shapes can be treated similarly. For quadrangles, tetrahe-

dra, prisms and hexahedra, the Bézier are functions respectively:

Q
(p)
i,j (ξ, η) = B

(p)
i (ξ) B(p)

j (η) (i ≤ p, j ≤ p),

T
(p)
i,j,k(ξ, η, ζ) =

�
p

i

��
p− i

j

��
p− i− j

k

�
ξi ηj ζk (1− ξ − η − ζ)p−i−j−k

(i+ j + k ≤ p),
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P
(p)
i,j,k(ξ, η, ζ) = T

(p)
i,j (ξ, η) B(p)

k (ζ) (i+ j ≤ p, k ≤ p)

and

H
(p)
i,j,k(ξ, η, ζ) = B

(p)
i (ξ) B(p)

j (η) B(p)
k (ζ) (i ≤ p, j ≤ p, k ≤ p).

Matrices of change of coordinates can then be computed inline for every poly-
nomial order, and bounds of Jacobians computed accordingly. In all cases the
subdivision scheme works exactly in the same way as for lines.

4.4 Implementation

As mentioned in Section 2, the Jacobian bounds can be used to either make
the distinction between valid and invalid elements with respect to a condition
on Jmin, or to measure the quality of the elements by systematically computing
Jmin and Jmax with a defined precision.

In both cases the same operations are executed on each element. First,
the Jacobian is sampled on a determined number of points Ns, equal to the
dimension of the Jacobian space, and so to the number of Bézier functions.
Second, Bézier values are computed. Then adaptive subdivision is executed if
necessary. Algorithm 2 shows in pseudo-code the algorithm used to determine
whether the Jacobian of the element is everywhere positive or not.

Algorithm 2: Check if an element is valid or invalid
Input: a pointer to an element.
Output: true if the element is valid, false if the element is invalid

set sampling points Pi, i = 1, . . . , Ns;1

compute Jacobians Ji at points Pi;2

for i = 1 to Ns do3

if Ji <= 0 then return false;4

compute Bézier coefficients bi, i = 1, . . . , Ns using (18);5

i = 1;6

while i ≤ Ns and bi > 0 do7

i = i+ 1;8

if i > Ns then return true;9

call algorithm 3 with bi as arguments and return its output;10

Algorithm 3 can be further improved by optimzing the loop on line 5, by
first selecting q for which we have the best chance to have a negative Jacobian
(line 4, algo 3). However, in practice, this improvement is not significant since
the only case for which we can save calculation is for invalid elements—and the
proportion of them which require subdivision in order to be detected is usually
small. Note that we may also want to find, for example, all the elements for



12 A. Johnen, J.-F. Remacle, and C. Geuzaine

Algorithm 3: Compute the control values of the subdivisions
Input: Bézier coefficients bi, i = 1, . . . , Ns

Output: true if the Jacobian on the domain is everywhere positive, false if
not

compute new Bézier coefficients b[q]i , q = 1, . . . , Q as in equation (20);1

for q = 1 to Q do2

for i = 1 to Kf do3

if b[q]i <= 0 then return false;4

for q = 1 to Q do5

i = 1;6

while i ≤ Ns and b[q]i > 0 do7

i = i+ 1;8

if i ≤ Ns then9

call algorithm 3 with b[q]i as arguments and store output;10

if output = false then return false;11

return true;12

which the Jacobian is somewhere smaller than 20% of its average. We then
just have to compute this average and replace the related lines (4 and 7 for
algorithm 2).

Another possible improvement is to relax the condition of rejection. We
could accept elements for which all control values are positive but reject an
element as soon as we find a Jacobian value smaller than a defined percent
of the average Jacobian. The computational gain can be significant, since
elements that were classified as good and which needed a lot of subdivisions
(and have a Jacobian close to zero) will be instead rapidly be detected as
invalid.

More interestingly, the computation of sampled Jacobians and the com-
putation of Bézier control values in algorithm 2 can easily be executed for
a whole groups of elements at the same time. This allows to use efficient
BLAS 3 (matrix-matrix product) functions, which significantly speeds up the
computations.

The algorithm using the BLAS3 approach is implemented in the open
source mesh generator Gmsh [4] as a the AnalyseCurvedMesh plugin, and
was used for all the tests presented in the next section.

5 Numerical Results

We start by comparing the new adaptive computation of Jacobian bounds
with the brute-force sampling of the Jacobian for the detection of invalid
high-order triangles.
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The points at which we sample the Jacobian for the brute-force method
are taken as the nodes of an element of order k. We started the test for k=1
and we incremented k until the brute-force approach detected all the invalid
elements. We still executed the algorithm 10 times (while incrementing k) so
as to plot the change in the number of invalid element detected. In order to
make the comparison as fair as possible, we have implemented the brute-force
computation as efficiently as possible, i.e., for k (> n) sufficiently large we
sample the Jacobian on the points computed for an element at order n (the
order of the Jacobian) and then compute the desired Jacobian values by a
matrix-vector product, just like in our own adaptive method.

Fig. 3. Two-dimensional mesh with sixth order triangles; 23.6% of the elements are
curved. The straight element are in blue and the invalid are in dark red. The other
are colored in function of the distortion. They are green if they are nearly straight
(Jmin/Jmax � 1) and rather light red if really distorded (Jmin/Jmax � 0).

We consider the two-dimensional microstructure with circular holes de-
picted in Figure 3, meshed with 331,050 sixth-order triangles. In this mesh
78,180 triangles are curved, and 45,275 are invalid. The new algorithm success-
fully detects all the 45,275 invalid elements in 6.194s. Some elements needed
as much as 8 levels of subdivisions in order to be classified: see Table 1. The
brute-force approach required 666 sample points per triangle in order to detect
all the invalid elements, and took 4 times longer. But far worse, increasing
the number of sampling points beyond 666 can actually lead to a decreased
accuracy of the prcediction, as shown in Figure 4.

Let us now examine the use of the adaptive Jacobian bounds in the curvi-
linear meshing algorithms as implemented in Gmsh. We consider the mesh of
a rather coarse version of the world ocean. In our CAD model, shorelines are
described using cubic B-splines: for example, Europe and Asia are discretized
by only one B-spline with about 3,500 control points. The description of this
kind of meshing procedure is described in [10]. The quadratic triangular mesh
is generated as follows. We first generate a straight sided mesh (see Figure
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Valid curved elements Invalid curved elements
First stage 29303 44967

1 subdivision 2436 -
2 subdivisions 1119 299
3 subdivisions 23 -
4 subdivisions 10 4
5 subdivisions 9 2
6 subdivisions 5 -
7 subdivisions - 2
8 subdivisions - 1

Table 1. Number of elements detected as valid or invalid at each stage of the
adaptive algorithm; 5 % of the curved elements had to be subdivided adaptively.
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Fig. 4. Number of undetected invalid elements using brute-force sampling of the
Jacobian. The three data points not displayed correspond to the correct result, i.e.,
when no invalid triangle is left undetected.

5/(a)). Then, every mesh edge that is classified on a model edge is curved
by snapping its center vertex on the model edge. High order nodes are then
inserted in the middle of every edge that is classified on a model face (see
Figure 5/(b)). This simple procedure does not guarantee that the final mesh
is valid. In our case, 175 elements are invalid. Then, a global elasticity anal-
ogy is applied to the quadratic mesh that enables to reduce the number of
invalid elements to 70 (see Figure 5/(c)). Then local optimizations are per-
fomed to remove all invalid elements (see Figure 5/(d)). The final curvilinear
mesh contains about 30% of curved elements. During the meshing process,
the adaptive Jacobian bound computation allowed to detected all invalid el-
ements (the worst distorsion that was observed was δ = −4.49702). After
optimization, the final mesh is composed of elements that have a distortion
δ > 0.1.

Finally, the same procedure is applied to the meshing of the STEP model
of a rotor. After generating a first order mesh (Figure 6(a)) and snapping
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(a) Straight sided mesh (b) Raw curvilinear mesh

(c) After elastic analogy (d) Final mesh without invalid elements

Fig. 5. The four stages of the curvilinear mesh procedure for the world ocean,
meshed with second order triangles.

the high-order vertices on the geometrical model (Figure 6(b)), the adaptive
Jacobian bound computation allowed to pinpoint all the invalid elements. The
final, locally optimized mesh is displayed in Figure 6(c).

6 Conclusion

In this paper we presented a way to compute accurate bounds on Jacobians of
curvilinear finite elements, based on the efficient expansion of these Jacobians
in terms of Bézier functions. The proposed algorithm can either be used to
determine the validity or invalidity of curved elements, or provide an efficient
way to measure their distortion. Triangles, quadrangles, tetraheda, prisms and
hexahedra can be analyzed using the same algorithm, which is available in the
open source mesh generator Gmsh. Numerical tests show that the method is
robust, and a user-defined error tolerance permits to adjust the accuracy vs.
computational time ratio.
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(a) Straight sided mesh

(b) Raw curvilinear mesh

(c) After elastic analogy

Fig. 6. Curvilinear mesh of a rotor using fourth-order curved triangles.
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