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Summary. Indirect methods recombine the elements of triangular meshes to pro-
duce quadrilaterals. The resulting quadrilaterals are usually randomly oriented,
which is not desirable. However, by aligning the vertices of the initial triangular
mesh, precisely oriented quads can be produced. Levy’s algorithm is a non-linear
optimization procedure that can align points according to a locally defined metric.
It minimizes an energy functional based on the Lp distance in the local metric. The
triangulation of a set of vertices smoothed with Levy’s algorithm is mainly composed
of right-angled triangles, which is ideal for quad recombination. An implementation
of Levy’s algorithm for the purpose of finite element computation has been devel-
oped. The implementation can create quads of desired size and orientation. The
algorithm has been tested on two-dimensional geometries as well as parametrized
curved surfaces. The results show an improvement of the quads alignment.

Keywords: centroidal Voronoi tessellations, non-linear optimization, quad mesh
generation

1 Introduction

For finite element analysis, quad meshes are advantageous compared to trian-
gular meshes [1]. For example, in computational fluid mechanics, they acceler-
ate grid convergence [2][3][4] and they capture boundary layers with a higher
precision [5]. They are also very useful in structural mechanics. They are not
subject to numerical locking [6] and they allow schemes to remain stable un-
der inexact integration [7][8][9]. In the context of high order methods, quad
meshes can be curved more robustly [10].

However, quad mesh generation techniques are not as mature as triangular
ones. The indirect approach looks like a promising solution. It consists of com-
bining two by two the elements of a triangular mesh in order to create quads.
Triangular mesh generators are usually designed to produce near-equilateral
triangles. Combining these triangles yields randomly oriented quads, which
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is not ideal. However, if the vertices of the initial triangular mesh are well
aligned, an indirect algorithm like Blossom-Quad [11] can create high quality,
precisely oriented quads. Blossom-Quad optimizes the mean quality of the
resulting quads. Unlike triangles, quads are always oriented. It is desirable to
prescribe this orientation.

Levy and Liu developed a method based on centroidal Voronoi tessella-
tions in Lp norm for aligning points in a rectangular manner [12]. The method
minimizes an energy functional equal to the sum of the Lp moment of inertia
of the Voronoi cells. The Lp distances are measured with respect to a locally
defined metric. This metric field controls the orientation of the quads. Levy’s
algorithm uses the limited-memory Broyden-Fletcher-Goldfarb-Shanno opti-
mization procedure (LBFGS) to minimize the energy functional. LBFGS has
the advantage of only requiring the value of the functional and its gradient.
Low energy solutions are sets of points having rectangular Voronoi cells. When
the Voronoi cells are rectangular, the points are also aligned in a rectangular
way. In other words, Levy’s algorithm optimizes the shape of the Voronoi cells.
This process is illustrated on Fig. 1 and 2. Fig. 1(a) is the initial triangular
mesh and Fig. 1(b) is the Voronoi diagram of the vertices. Fig. 2(a) is the final
quad mesh obtained with Levy’s and Blossom-Quad algorithms. Fig. 2(b) is
the corresponding Voronoi diagram.

(a) (b)

Fig. 1. The initial triangular mesh (a) and its corresponding Voronoi diagram (b).
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(a) (b)

Fig. 2. The final quad mesh (a) and its corresponding Voronoi diagram (b) (A
Laplacian smoothing has been applied, which explain the slight differences between
the two sets of vertices).

A two-dimensional implementation of Levy’s algorithm adapted to the
field of finite element computation is presented in this paper. It can take
into input metric and density fields. These metric and density fields define
the orientation and the size of the quads. By using a parametrization, the
algorithm can be applied to curved surfaces. The energy and the gradient are
computed with Gauss integration techniques. The Alglib library1 is used for
the LBFGS optimization part.

2 Levy’s algorithm

The implementation of Levy’s algorithm described in this article can only find
local minimums. It cannot find global minimums even for simple geometries
such as squares and rectangles. It can nevertheless align points in a very
satisfactory manner.

The clipped Voronoi diagram is the part of the Voronoi diagram that is
inside the domain, as shown in Fig. 1(b) and 2(b). It is an essential part of
Levy’s algorithm [12]. Without it, computing accurate values for the energy
and the gradient is impossible. The method used here is inspired from [13].

Subsections 2.1 and 2.2 introduce the energy functional and the gradient.
Subsection 2.3 shows how the domain is divided into triangular elements. Sub-
section 2.4 explains how to compute the energy and the gradient with Gauss

1ALGLIB (www.alglib.net), Sergey Bochkanov and Vladimir Bystritsky
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integration techniques. The addition of a metric and a density is discussed in
subsection 2.5.

The main difference between Levy’s implementation and the one described
in this article is the way of computing the energy and the gradient. Like it was
said before, the present implementation uses Gauss integration techniques,
while Levy employs analytical formulas.

2.1 Energy functional

The energy functional minimized by Levy’s algorithm uses the Lp distance
defined here [12]:

||y − x||pp = |y1 − x1|p + |y2 − x2|p (1)

Each curve on Fig. 3 contains a set of points equidistant to the origin
according to its particular Lp distance. The curves become more and more
rectangular as p increases. For any p higher than two, the Lp distance become
anisotropic.
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Fig. 3. Unit circles in various Lp distances.

The energy functional is defined as [12]:

F (x1,x2, ...,xN ) =

N∑
i=1

∫
Ri

||y − xi||ppdy︸ ︷︷ ︸
IRi (xi)

(2)
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The index i runs over all mesh vertices xi. Ri is the domain corresponding
to the i-th voronoi cell generated by mesh vertex xi. Evidently, the Voronoi
diagram is computed with the L2 metric. In what follows, the energy integral
will be denoted by IRi(xi).

2.2 Energy gradient

The energy gradient is the total derivative of F with respect to the position
of each non-boundary mesh vertex [12]. Boundary vertices are considered un-
movable. It is assumed that x1, x2,..., xn are non-boundary vertices and that
xn+1, xn+2,..., xN are boundary vertices. The energy gradient is given by:

d

dxk
F (x1,x2, ...,xN ) =

d

dxk

N∑
i=1

IRi(xi) =

N∑
i=1

dIRi(xi)

dxk
k = 1, ..., n

The total derivative on the right hand side can be rewritten in terms of
partial derivatives.

d

dxk
F (x1,x2, ...,xN ) =

N∑
i=1

∂IRi(xi)

∂xk
+

N∑
i=1

∂IRi(xi)

∂Ri

dRi

dxk

The partial derivative of IRi(xi) with respect to xk is non-null only when
i = k.

d

dxk
F (x1,x2, ...,xN ) =

∂IRk(xk)

∂xk
+

N∑
i=1

∂IRi(xi)

∂Ri

dRi

dxk

Ri can be expressed in terms of the Voronoi vertices Ci1, Ci2,...,CiMi
of

the i-th Voronoi cell. All Voronoi cells do not have the same number of vertices
Mi. Fig. 4 shows a Voronoi cell with six Voronoi vertices.

The gradient can be rewritten in terms of the position of the Voronoi
vertices.

d

dxk
F (x1,x2, ...,xN ) =

∂IRk(xk)

∂xk
+

N∑
i=1

Mi∑
j=1

∂IRi(xi)

∂Cij

dCij

dxk
(3)

Most of the terms
dCij

dxk
are null. They are non-null only when the mesh

vertex is very close to the Voronoi vertex, as detailed in the next section.
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2.3 Gradient assembly

In order to evaluate the integrals with Gauss techniques, the Voronoi cells are
divided into triangular elements. Each triangular element is composed of a
mesh vertex and two successive Voronoi vertices, as shown in Fig. 4. In Fig. 4
to 7, the black dots are assumed to be mesh vertices and the hollow dots are
assumed to be Voronoi vertices. The dotted segments are Delaunay edges.
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Fig. 4. A Voronoi cell divided into triangular elements.

Most of the terms inside the double summation found in equation (3)
vanish. By considering the relationship between the mesh vertices and the
Voronoi vertices, the relevant contributions can be identified. Each Voronoi
vertex falls into one of three categories.

1. A Voronoi vertex can be the center of the circle circumscribing a Delaunay
element. Voronoi vertex C1 from Fig. 5 belongs to this category. As long
as the displacements are infinitesimal, C1 depends only on x0, x1 and x2.
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Fig. 5. C1 is the center of the circle circumscribing the Delaunay element x0-x1-x2.

2. A Voronoi vertex can be the intersection point between a Voronoi facet
and a boundary line segment. Voronoi vertex C2 from Fig. 6 belongs to
this category. Again, as long as the displacements are infinitesimal, C2

depends only on x0, x2 and the boundary line segment.
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Fig. 6. C2 is the intersection point between the bisector of the Delaunay edge x0-x2

and the boundary line segment x0-x3.

3. A Voronoi vertex can be the median point between two boundary mesh
vertices. Voronoi vertex C2 from Fig. 7 belongs to this category. It depends
only on x0 and x2.
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Fig. 7. C2 is the median point between x0 and x2.

The following formulas were derived from equation (3). They apply to Fig.
5. It is assumed that x0, x1, x2 and x3 are non-boundary mesh vertices. A
+= sign is used because there will be contributions from other elements as
well.

dF

dx0
+=

∂IE(x0)

∂x0
+
∂IE(x0)

∂C1

dC1

dx0
+
∂IE(x0)

∂C2

dC2

dx0
(4)

dF

dx1
+=

∂IE(x0)

∂C1

dC1

dx1
(5)

dF

dx2
+=

∂IE(x0)

∂C1

dC1

dx2
+
∂IE(x0)

∂C2

dC2

dx2
(6)

dF

dx3
+=

∂IE(x0)

∂C2

dC2

dx3
(7)

2.4 Gauss integration

The terms inside equations (4) to (7) are integrals on the element E. A linear
transformation T will be used in order to go from the reference triangle E′ to
the triangle E, as shown in Fig. 8. It will then become possible to evaluate
the various integrals with Gauss techniques.
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y = T (u, v) = x0(1− u− v) + C1u+ C2v

E
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Fig. 8. The linear transformation T .

Equation (2) defines IE(x0) as the energy contribution of element E. J is
the Jacobian of the transformation T :

IE(x0) =

∫
E

||y − x0||ppdy =

∫
E′
||T (u, v)− x0||ppJdudv

The partial derivative of IE(x0) with respect to the position of mesh vertex
x0 can be written as:

∂IE(x0)

∂x0
=

∂

∂x0

∫
E

||y − x0||ppdy =

∫
E′

∂||T (u, v)− x0||pp
∂x0

Jdudv

The partial derivative of IE(x0) with respect to the position of Voronoi
vertex C1 is given by:

∂IE(x0)

∂C1
=

∂

∂C1

∫
E

||y − x0||ppdy =
∂

∂C1

∫
E′
||T (u, v)− x0||ppJdudv

=

∫
E′

∂||T (u, v)− x0||pp
∂T (u, v)

∂T (u, v)

∂C1
J + ||T (u, v)− x0||pp

∂J

∂C1
dudv

A Voronoi vertex can sometimes depend on three mesh vertices, as in Fig.
5. The following matrix is the derivative of Voronoi vertex C1 with respect to
mesh vertex x0 [12]. The derivatives of C1 with respect to mesh vertices x1

and x2 can be obtained by replacing x0 with x1 or x2.
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dC1

dx0
=

[
(x1 − x0)T

(x2 − x0)T

]−1 [
(C1 − x0)T

(C1 − x0)T

]
A Voronoi vertex can instead depend on two mesh vertices and one bound-

ary line segment, as in Fig. 6. The following matrix needs to be used in this
situation [12]. The derivative of C1 with respect to mesh vertex x1 can be
obtained by replacing x0 with x1. N is the normal vector to the boundary
line segment. It can be multiplied by any non-zero constant without affecting
the value of the derivative.

dC1

dx0
=

[
(x1 − x0)T

NT

]−1 [
(C1 − x0)T

0

]
More details about the procedure used to obtain these matrices can be

found in Levy’s article [12]. It is important to recall that it is only the deriva-
tives with respect to non-boundary mesh vertices that need to be calculated.

2.5 Non-uniform metric and density

The addition of a metric M and a density ρ allows varying orientation and
quad sizes. The following energy functional takes into account these two pa-
rameters [12][14].

F (x1,x2, ...,xN ) =

N∑
i=1

∫
Ri

ρ(y)||M(y − xi)||ppdy

The following formula illustrates the relationship between the density ρ
and the mesh size h. The procedure that has been used to obtain it is similar
to the one described in another article [14].

ρ ∼ 1

hp+2

The metric can be considered constant by element. It is preferable to use
a continuous density however.

3 Results

In this section, different examples will be presented in order to show that
Levy’s algorithm can create high quality quad surface meshes that have well
defined orientations.

Five steps are necessary to produce quad meshes :
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1. Compute a conformal mapping that maps the 3D surface to a 2D para-
metric space [15].

2. Create a triangular mesh in the parametric space using a 2D mesh gener-
ator.

3. Use this mesh to compute an alignment direction. The alignment direction
is already known at the boundary. By using the heat transfer equation, it
can be obtained everywhere else inside the domain [16].

4. Use Levy’s algorithm to optimize the location of the mesh vertices. L6 is
a good compromise between speed and squareness.

5. Apply the Blossom-Quad algorithm described in [11] to combine the tri-
angles into quads. Blossom-Quad uses the well-known Blossom algorithm
in order to find a perfect matching between triangles. The matching also
optimizes the mean quality of the quads.

Fig. 9 illustrates the different steps of the global process. (1) is the trian-
gular mesh of the geometry in the three-dimensional space. (2) is the trian-
gular mesh of the geometry in the parametric space. (3) shows the cross-field
determining the orientation of the quads. (4) is the triangular mesh in the
parametric space after the application of Levy’s algorithm. (5) is the final
quad mesh.
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(1) (2)

(3) (4)

(5)

Fig. 9. The different steps necessary to produce quad meshes.

A car hood is depicted on Fig. 10. (A) is the triangular mesh obtained
with the mesh adapt algorithm from Gmsh [17]. It contains 1740 triangles.
(AB) is the quad mesh obtained by applying Blossom-Quad directly on (A).
(AB) contains randomly oriented quads. (ABL) is the quad mesh obtained by
applying Levy’s algorithm before the recombination. Most of the quads are
now oriented in the specified direction.
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(A) (AB) (ABL)

Fig. 10. Different meshes of a car hood. (A) is a triangular mesh, (AB) is a quad
mesh created only with Blossom-Quad algorithm and (ABL) is a quad mesh created
with both Levy’s and Blossom-Quad algorithms.

The (AB) mesh has a mean quality of η̄ = 0.79. The (ABL) mesh has a
mean quality of η̄ = 0.88. The quality of a quadrilateral η(q) is defined by the
values of its four angles αk, k = 1, 2, 3, 4 [11]:

η(q) = max

(
1− 2

π
max

k

(∣∣∣π
2
− αk

∣∣∣), 0)
If the element is a perfect square, η(q) is equal to one.
In an ideal quad mesh, each non-boundary mesh vertex is connected to

four neighbors. In (AB), 62% of the non-boundary mesh vertices are 4-valent.
In (ABL), this number reaches 77%.

Fig. 11 shows the decrease of the energy in function of the number of
iterations for the car hood problem. Voronoi diagrams at various steps of the
optimization process are also shown. As the number of iteration increases, the
Voronoi cells become more and more rectangular.
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Fig. 11. Convergence curve of the car hood problem. The Voronoi diagrams in the
parametric space for three different iterations (12, 26, 106) are shown.

Fig. 12 shows another car body part. Again, it compares two quad meshes,
one created with Levy’s algorithm and one without. Both meshes contain 9954
quads. It took 6 minutes and 22 seconds to perform the 202 iterations of Levy’s
algorithm on a standard 2010 laptop.
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(AB) (ABL)

Fig. 12. (AB) is a quad mesh created only with Blossom-Quad algorithm and (ABL)
is a quad mesh created with both Levy’s and Blossom-Quad algorithms.

(AB) has a mean quality of η̄ = 0.79 and (ABL) has a mean quality of
η̄ = 0.90. The percentage of 4-valent vertices is equal to 71% in (AB). It is
equal to 89% in (ABL).

4 Conclusion

A two-dimensional implementation of Levy’s algorithm has been described
in this article. When used in combination with an indirect algorithm like
Blossom-Quad, it is able to create well-oriented quads of varying size. By
taking advantage of parametrization techniques, curved surfaces can also be
meshed. The only apparent drawback of this method is the execution time.
It is much more complex than the traditional Lloyd’s algorithm. Optimizing
large meshes can take very long.

Indirect methods can also be used to create hexahedra. However, in or-
der to create good quality hex meshes aligned in precise directions, a three-
dimensional version of Levy’s algorithm would be necessary. The implemen-
tation described in this article can be used as a starting point. Computing
the energy and the gradient would not be particularly more difficult in three-
dimension. Nevertheless, clipping a Voronoi diagram in three-dimension would
be much more complex, but feasible.

Acknowledgement. This work has been partially supported by the Bel-
gian Walloon Region under WIST grants ONELAB 1017086 and DOMHEX
1017074.



16 T. Carrier Baudouin, J.-F. Remacle, E. Marchandise, and J. Lambrechts

References

1. Remacle J.-F., Marchandise E., Geuzaine C., and Béchet E. The domhex pro-
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