
A Toolkit for Parallel Overset Grid Assembly
Targeting Large-Scale Moving Body
Aerodynamic Simulations

George Zagaris1, Michael T.Campbell1, Daniel J. Bodony1, Eric Shaffer1,
and Mark D. Brandyberry2

1 University of Illinois at Urbana-Champaign, IL, 61801, USA
{gzagaris,mtcampbe,bodony,shaffer1}@illinois.edu

2 IllinoisRocstar LLC, IL, 61801, USA mdbrandy@illinoisrocstar.com

Summary. The Overset (Chimera) Grid approach has many practical benefits for
unsteady moving grid simulations. However, an inherent requirement and challenge
is the need to establish the inter-grid communication and donor-receiver pairs where
the solution must be exchanged between overlapping grids via a process formally
known as overset grid assembly. Furthermore, in the context of large-scale unsteady
simulations, grid assembly is performed at each time-step and typically must operate
on a set of already distributed grids. We call this problem the distributed overset
grid assembly problem. The implementation of techniques to efficiently handle the
distributed overset grid assembly problem is the primary topic of this paper. In par-
ticular, this paper makes the following technical contributions. First, we formulate
the distributed overset grid assembly problem and present its challenges. Second,
we present techniques that can handle both 2-D and 3-D, structured, unstructured,
or mixed element, distributed, overset grids. Finally, we present preliminary perfor-
mance results using a Wing-Store Separation configuration.

1 Introduction

The simulation of aerodynamically driven, moving body problems, such
as, store separation, fluid-structure interaction, aircraft maneuvering and
flapping-wing flight dynamics, to name a few, are some of the current chal-
lenges facing Computational Fluid Dynamic (CFD) practitioners. The Overset
(Chimera) grid approach provides additional flexibility for such problems by
allowing the moving and non-moving parts of the domain to be meshed sep-
arately. This enables motion to occur more naturally without the otherwise
required, grid stretching and re-meshing. However, an inherent requirement
and challenge is that at each time-step the composite grid system must be pro-
cessed to form the donor-receiver pairs where the solution is exchanged from
one grid to another. This step is formally known as overset grid assembly and
is one of the primary focus points of the paper.

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo
kgruda
Rectangle



2 Zagaris et al.

This paper builds on top of our previous work [16] wherein the feasibility
of our approach was demonstrated using a 2-D linear cascade model of the
NASA Glenn Source Diagnostic Test fan (SDT) consisting of a rotor-stator
system at realistic flow conditions. Here, we present recent enhancements to
our algorithms with an emphasis on aspects of parallel overset grid assembly.

Modern flow solvers typically partition the composite grid system and dis-
tribute the work to several processors to take advantage of all the available
computing resources. Static problems have no motion and thus overset grid
assembly is performed only as pre-processing step. For moving body simula-
tions however, overset grid assembly is an integral part of the solution process
and must be performed at each time-step. This complicates further the over-
set grid assembly process by requiring the handling of a distributed composite
grid system. To distinguish from the typical overset grid assembly step, we
call this problem the distributed overset grid assembly problem and its solu-
tion constitutes the main contribution of this paper and unique aspects of this
work.

The technical contributions of this paper are the following. First, we for-
mulate the distributed overset grid assembly problem and the associated re-
quirements and challenges. Second, we present techniques to efficiently han-
dle a distributed composite grid system that can consist of structured, un-
structured, and mixed element grids in both 2-D and 3-D. Finally, we show
preliminary parallel performance results of our approach using a wing-store
separation configuration.

The remainder of this paper is organized as follows. Section 2 formulates
the distributed overset grid assembly problem and presents the associated
challenges and requirements. Section 3 presents a brief survey of related work
on parallel overset grid assembly. Our algorithms and techniques for parallel
overset grid assembly are presented in Section 4 and preliminary performance
results using the Wing-Store Separation example are shown in Section 5. Fi-
nally, we conclude in Section 6 with final remarks and future directions.

2 The Distributed Overset Grid Assembly Problem

The overset grid approach has inherent coarse-level parallelism since the do-
main of interest, Ω, is defined by a composite grid system, S(Ω) =

⋃N
i=0(Gi),

consisting of N independent grids, Gi, with N ≥ 2, that can be distributed
to N processors. However, this coarse level decomposition is not sufficient
for two main reasons. First, there is not enough parallelism to harness all
of the compute resources available in modern production settings; and sec-
ond, viable solutions to the current CFD challenges generally require more
parallelism than what is inherently offered by the overset grid approach. Typ-
ically, each grid, Gi ∈ S(Ω), is distributed to P processors by first partitioning
into Mi smaller sub-grids, g(i,j), where i ∈ {0, N} denotes the global grid ID



Parallel Overset Grid Assembly 3

and j ∈ {0,Mi} denotes the partition ID. In this context, we formulate the
distributed overset grid assembly problem as follows:

Definition 1. Given a distributed composite grid system which discretizes
the domain of interest, Ω, defined as the super-set, Ŝ(Ω) = {Ĝ0, Ĝ1...ĜN},
where, ∀Ĝi ∈ Ŝ(Ω), Ĝi = {g(i,0), g(i,1), ..., g(i,Mi)} determine the set of donor-
receiver pairs (r ∈ g(i,k),d ∈ g(j,m)) within the overlapping region Rj,mi,k =
g(i,k)

⋂
g(j,m), where i, j ∈ {0, N}, i 6= j and k ∈ {0,Mi},m ∈ {0,Mj}.

Techniques to handle the distributed overset grid assembly problem as
stated above are necessary for moving body simulations. In addition, there
are also three more general requirements which we enumerate below:

R1 Fully automated: the complexity of unsteady problems typically requires
many iterations and the execution times are on the order of days or weeks.
Thus, grid assembly must be fully automated for the method to be viable.

R2 Robust solution transfer: accumulation of errors in the interpolation of the
solution to the receiver points can degrade the quality of the simulation
and often leads to a fatal state. Thus, interpolation accuracy is crucial.

R3 Efficiency: the overset grid assembly is a processing step necessary for
the flow-computation at each timestep, hence, its performance must not
deteriorate the parallel performance of the flow-solver.

Given the above formulation of the distributed grid assembly problem, and
the general requirements, the primary challenges for a parallel methodology to
the solution of the distributed overset grid assembly problem are the following:

C1 Algorithms must account for the internal boundaries or separators ∂Si of
the distributed composite grid system.

C2 Heuristics for dealing with regions where multiple grids overlap and han-
dling of orphan points are not always clear.

C3 Load balancing is difficult for three main reasons:
1. Overset grid assembly is a multi-phase algorithm. At each phase, the

workload is characterized differently. Therefore, it is difficult to deter-
mine a strategy for distributing the load.

2. Load-balancing is rarely optimal since the partitioning is done with
respect to the flow-solver parameters.

3. As the grids are moving the load is dynamically changing which may
negatively affect the performance.

Addressing these challenges and satisfying these requirements are on-
going, long-term goals of this work. In this paper, we present our current
progress towards that goal and our preliminary performance results.

3 Related Work

A number of grid assembly codes are currently available. PEGASUS[15, 14]
is the seminal grid assembly code and has a demonstrated track record



4 Zagaris et al.

of robustness and flexibility. PEGASUS has been applied to moving grid
simulations[5, 13], with data exchange between the fluid solver and PEGASUS
occuring through the file-system. While these simulations were successful, re-
liance of file IO for communication, which entails high overhead, is less than
ideal for moving grid simulations due to the repeated communication require-
ments. Recall, overset grid assembly is invoked at each time-step as the grids
are moving.

SUGGAR[7] provides a general overset grid assembly capability that sup-
ports both node-based and cell-centered structured or unstructured flow-
solvers and has been employed to solve moving grid problems where the grid
motion is known a priori[7], or prescribed by a 6DOF library as demonstrated
in [2]. Moreover, SUGGAR++ [8], the successor of SUGGAR, features im-
proved automation and efficiency. However, like PEGASUS, the SUGGAR++
mechanism for integrating with an existing flow-solver is currently out-of-core,
for example [2, 9], which entails further overheads per time-step.

Overset capability has also been successfully added directly within a flow-
solver. Notably, Overflow[6] and Beggar[1] are perhaps among the most pop-
ular examples. The benefit of this approach is that it is easier to hide the
latencies of the overset grid assembly with the flow solver computation using
function overlapping as indicated by Prewit et al. [10]. However, this capa-
bility is not easily accessible to third party flow-solvers and so this approach
does not provide a general-pupose solution to the grid assembly problem.

A unique aspect of the work presented herein is the development toward
a solution to the distributed overset grid assembly problem as formulated in
Section 2. While tools like SUGGAR and PEGASUS provide parallel overset
grid assembly capability, their use within a moving body simulation frame-
work is primarily out-of-core and so requires a merge-and-repartition step at
each time-step. Algorithms for handling an already distributed composite grid
system are needed to alleviate this overhead. Motivated by the application to
moving body simulations, we developed algorithms for parallel overset grid
assembly that can handle arbitrarily partitioned and distributed grids. Our
algorithms are in library-form which enables an in-core and tightly-coupled
integration with the flow-solver.

4 Techniques for Parallel Overset Grid Assembly

The first step in processing a distributed composite grid system is computing
the set of overlapping regions < = {R0,R1, ...Rk}. Each overlapping region
Ri ∈ < is associated with a pair of overlapping sub-grids, such that, Ri =
Rj,mi,k = g(i,k)

⋂
g(j,m). Fig. 1 illustrates this step using two overlapping airfoils.

The overlapping region, Ri serves two main purposes. First, it provides
the auxiliary data-structure used in establishing the inter-process and inter-
grid communication links; and second, it defines the search region wherein



Parallel Overset Grid Assembly 5

Fig. 1. The overlap region Ri, shown with a boldface black wireframe, for the two
overlapping airfoils.

the donor-receiver pairs are identified and the solution is exchanged. In this
context, we summarize our parallel overset grid assembly algorithm for the
solution to the distributed overset grid assembly problem in the following four
main steps:

1. Compute < by overset collision detection: The enclosing bounding boxes
of each sub-grid are used as auxiliary data-structures to detect collisions.
When collisions are detected, the resulting bounding box intersection is
used to approximate the overlap region and form Ri.

2. Hole-Cutting: WithinRi the mesh points of a component sub-grid that are
within a solid body, e.g., a store, are identified and marked for exclusion
from the flow-solver calculations and data-transfer operations.

3. Donor-Search: Identifies the donor-receiver pairs and forms the interpola-
tion stencil for exchanging the solution between overlapping grids.

4. Interpolation: Interpolates data to a receiver point, in one sub-grid, from
the corresponding donor interpolation stencil members and weights of in
the overlapping donor grid.

The first step is a straightforward pairwise bounding-box collision of the
bounding boxes of all the sub-grids. The bounding boxes are distributed to all
processes using a collective operation and each process computes its inter-grid
and inter-process communication links independently. There are two types of
communication links that we distinguish: (a) local, for sub-grids that reside on
the same process, and (b) remote, for links that reside on different processes
and require additional data communication.

The two most crucial and time-consuming operations of the algorithm
are the hole-cutting and donor-receiver search operations. Both operations



6 Zagaris et al.

rely heavily on searching the donor grid for the cell that contains a receiver
point and they are best described by first presenting the underlying searching
operations followed by their application to the hole-cutting and donor-receiver
search procedures respectively.

4.1 Rapid Point-Searching Procedure on Arbitrary Grids

Given a grid G, and the region of interest Ri, we want to find the cell C ∈ G
that contains the query point q = (x, y, z). Grid G can be either structured,
unstructured or a mixed element grid. Therefore, a generalized methodology
for checking whether point q is inside the cell C is required. The Natural Co-
ordinate System which, is used extensively in the Finite Element Method [3],
provides a mathematically sound foundation that enables the implementation
of such a generalized procedure for basic mesh element shapes, e.g., quadri-
laterals and triangles in R2, and terahedra, hexahedra, prisms and pyramids in
R3.

Natural Coordinates

For a cell C =
⋃k
i=1 pi, where k is the total number of nodes of the cell and pi =

(xi, yi, zi), i ∈ [1, k], the natural coordinates define a local coordinate system,
Φ = (ξ, η, ζ) with respect to the given cell with the following properties:

1. The coordinate range within the element is [0, 1].
2. One particular coordinate, φi, has unit value at one cell node, pi, and zero

value at all other nodes.
3. The variation between nodes is linear.

Based on these properties, an exterior/interior relationship for a query point
q and a cell C can be defined as follows.

Definition 2. Given a query point q = (x, y, z) and the corresponding natural
coordinates Φq = (ξq, ηq, ζq) with respect to a cell C, q is in the cell C if and
only if the relationship (0 − ε) ≤ φi ≤ (1 + ε) ∀φi ∈ {ξq, ηq, ζq} holds, where
ε is a prescribed geometric tolerance.

To use the above definition a coordinate transformation from the cartesian
coordinates of point q to the natural coordinates Φq with respect to the
given cell C is required. The local coordinates are mapped to global cartesian
coordinates using the following transformation:

F(ξ, η, ζ) =

 x̂(ξ, η, ζ)
ŷ(ξ, η, ζ)
ẑ(ξ, η, ζ)

 =
k∑
i=1

Ni(ξ, η, ζ)pi (1)

where, Ni are the shape functions for the cell C from finite element anal-
ysis, e.g., the Lagrange interpolation functions. The inverse transformation,



Parallel Overset Grid Assembly 7

i.e., from the cartesian coordinates q to the natural coordinates Φq, requires
solving the system of interpolation functions, Ni, for the natural coordinates
Φq. For some elements the interpolation functions are linear and therefore
the system can be solved analytically. However, in other cases, e.g., for quads
or hexahedra elements, the interpolation functions are non-linear and thus,
numerical techniques must be employed. A simple and common technique
for solving the non-linear system is the Newton-Raphson method [3]. In this
context, equation 1, yields the jacobian matrix, J for the cell C shown below:

J =
(
∂F
∂ξ

∂F
∂η

∂F
∂ζ

)
=


∂x̂
∂ξ

∂x̂
∂η

∂x̂
∂ζ

∂ŷ
∂ξ

∂ŷ
∂η

∂ŷ
∂ζ

∂ẑ
∂ξ

∂ẑ
∂η

∂ẑ
∂ζ

 (2)

From Eqs. 1 and 2 a general iteration to solve for the natural coordinates Φq

corresponding to point q, i.e., to minimize F(Φq)− q, can be formulated as
follows:

Φm+1
q = Φm

q − [Jm]−1 F(Φm
q ) (3)

where, m is the Newton iteration counter. The Newton-Raphson method con-
verges quadratically but, requires a good initial guess. The parametric center
Φc = (ξc, ηc, ζc) of the cell C provides a reasonable starting point, hence,
Φ0
q = Φc. Table 1 summarizes the values of Φc for common mesh elements.

Cell Type ξc ηc ζc

Quad 0.5 0.5 N/A

Triangle 0.33 0.33 N/A

Tetrahedron 0.25 0.25 0.25

Hexahedron 0.5 0.5 0.5

Prism(6-node) 0.33 0.5 0.5

Pyramid 0.4 0.4 0.2

Table 1. Listing of initial guesses for the Newton-Raphson method for common
mesh elements

Virtual Grid

The naive approach of visiting each cell of grid G within the region of interest
Ri and checking if the query point q is inside the cell can become prohibitively
expensive. Instead, accelerated searching techniques are employed which are
based on spatial decomposition. The main idea is to minimize the search space
of the algorithm by further subdividing the space of Ri such that for a given
point query q only a subset of the cells is visited. This is achieved using spatial
data-structures such as an oct-tree [11, 12], used in an earlier implementation
[16], or a virtual grid. An example of a virtual grid is shown in Fig. 2.



8 Zagaris et al.

(a) (b)

Fig. 2. Virtual Grid example. (a) Topology of the Virtual Grid in 2-D (b) Virtual
Grid in 3-D enclosing of a store grid

A Virtual Grid, V(Ri) =
⋃k
i=1 bi, is essentially a 2-D or 3-D hash table

which divides the space of Ri in several buckets, bi. It is virtual in the sense
that a grid is not actually constructed in practice. Instead, it is given by:

1. its bounds, Cmin = (xmin, ymin, zmin) and Cmax = (xmax, ymax, zmax),
which are provided by Ri, and

2. the sampling step-size ∆ = (δx, δy, δz) defined as a factor of the largest
edge-length within region Ri

The dimensions of V(Ri), denoted by (∆x, ∆y, ∆z), can be computed as fol-
lows:

∆x =
⌈
xmax − xmin

δx

⌉
, ∆y =

⌈
ymax−ymin

δy

⌉
, ∆z =

⌈
zmax − zmin

δz

⌉
(4)

Given this implicit definition and a query point q = (x, y, z) the corresponding
structured coordinates, (i, j, k) are computed using the following transforma-
tions:

i =
⌊
x− xmin

δx

⌋
, j =

⌊
y−ymin

δy

⌋
, k =

⌊
z − zmin

δz

⌋
(5)

Then, a hashing function, H(i, j, k), is used to compute the linear bucket
index, i, which is used as an entry point into an abbreviated list of cells of
grid G, within the bucket bi.

H(i, j, k) = (k − 1)∆x∆y + (j − 1)∆x + i (6)

The cells of Grid G within region Ri are first mapped to the corresponding
buckets using Eqs. 5, 6. Similarly, each query qi is mapped to the correspond-
ing bucket bi in constant time. Then, within each bucket bi, the abbreviated
list of cells of Grid G is searched for the cell C containing q using the Natural
Coordinate transformation described earlier.



Parallel Overset Grid Assembly 9

Spatial Sorting of Query Points and Caching

Usually, multiple donor-receiver queries are required for a given problem. One
strategy to improve the performance for multiple queries is to exploit the
problem’s spatial locality. This can be accomplished by pre-fetching the results
for the next query, qi+1, in a cache which can yield faster access times.

Remark 1. By observation, it is easy to see, that for query points that are
geometrically close, their respective enclosing cells are also close.

In this context, once a cell Ci is encountered, its neighbors are inserted
into a cache for the next query, qi+1. Then, the search for the cell containing
qi+1 starts from the cache and reverts to the virtual grid if there is a cache
miss, i.e., the cell was not found in the cache.

Remark 2. This strategy works best with datasets consisting of spatially ordered
query points qi. In the context of overset grid assembly the receiver points are
extracted from a grid which allows for extracting the points such that two
points close in order are also close geometrically.

The present cache implementation employs a Least-Recently-Used (LRU)
cell insertion/eviction policy implemented using a doubly linked-list. New
cache entries are always placed in the beginning of the cache. Moreover, if
there is a cache hit, it is moved to the beginning of the cache. By this ap-
proach, the most recently encountered cells and their neighbors are always in
the beginning of the cache. Using a doubly linked-list as the underlying data-
structure enables the use of pointers to implement in constant time all cache
insertion and eviction operations. However, searching the cache is currently
an O(N) operation and care must be taken in choosing the cache size.

(a) (b) (c)

Fig. 3. Sample results from the Wing-Store separation moving grid configuration.
(a) Initial state of the Wing-Store configuration (b) Wing-Store after two iterations.
(c) Wing-Store after four iterations.

The performance benefits from caching are illustrated using a three-grid
system of the Wing-Store configuration, shown in Fig. 3. The store undergoes
vertical motion in the negative-z direction relative to the wing. The total



10 Zagaris et al.

0	  

20	  

40	  

60	  

80	  

100	  

120	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  

Ex
ec
u1

on
	  T
im

e(
s)
	  

Itera1ons	  

No	  Caching	  

Cache	  Size	  0.0025*N	  

Cache	  Size	  0.0015*N	  

(a) (b)

Fig. 4. Performance plots illustrating the benefits of caching. (a) Graph of execution
times per iteration. The red, the blue and orange curves indicate the execution
times for each iteration when the algorithm is executed with no caching, a cache-
size-factor: 0.0025 and a cache-size-factor: 0.00015 respectively. (b) Comparative
bar-plot depicting the ratio of cache hits versus cache misses with respect to the
total number of queries.

number of iterations was 10. A plot of the execution time to find cells con-
taining the points in the outer-boundary of the store grid, for each iteration,
is show in Fig. 4(a). When no caching is employed the execution time in-
creases at each iteration since no previous history is used and more cells are
searched. Notably, the execution time only decreases when the store moves to
the coarser regions of the background grid, in the last couple of iterations. In
contrast, when caching is employed, the performance is drastically improved
even for the first iteration and for consecutive iterations it is drastically re-
duced. Moreover, as it is shown in Fig. 4(b) almost every query is a cache-hit
and a very low miss-ratio is observed.

4.2 Hole-Cutting for Distributed Grids

Each grid in the composite grid system Gi ∈ S is classified as either a back-
ground grid or a feature grid. Feature grids consist of solid boundaries that
cut a background grid. The cells of a background grid that are within or in-
tersecting with the solid boundaries of a feature grid need to be marked as
invalid. This process is formally known as hole-cutting.

Definition 3. More precisely, let Σ denote the cutting surface of a solid
boundary and let Gi =

⋃Mi

k=1 g(i,k) be a a background grid distributed to P
processors. Then, hole-cutting identifies all the cells ci ∈ g(i,k)∀k ∈ {1,Mi}
that are enclosed in Σ.

In this context, a suitable definition of the cutting surface Σ is required
to satisfy geometric queries. The present implementation employs a discrete,
explicit, representation of Σ, that can be automatically extracted from the
feature grids based on boundary condition information, or alternatively, sup-
plied by the user during the problem setup stage for handling more complex
cases. Under this scenario, hole-cutting is a three-stage process:



Parallel Overset Grid Assembly 11

1. Extract and distribute the cutting surface Σ to all connecting processes.
2. Outline the cutting surface Σ on the background grid. This step essentially

flags all the cells that intersect the cutting surface by employing rapid
point searching techniques described earlier.

3. Flood/Fill the interior of the outline by marking all the cells for exclusion.

Remark 3. A water-tight representation of the cutting surface Σ is required on
all overlapping processes to ensure the flood/fill process does not leak out.

Remark 4. Recall, that since the background grid is distributed, the outline of
the hole could span several processors. Consequently, the flood/fill process must
also account for the partition interface boundaries when detecting if a point is
in the interior of the hole.

Definition 4. A point p is in the interior of a hole, if it is surrounded by
either cells that are marked as the hole outline or a partition boundary.

(a) (b)

(c) (d)

Fig. 5. Sample results from distributed hole-cutting using the Cylinder-In-Box
configuration. (a) Cutting surface overlayed on partition 1 of the background rect-
angular grid. (b) Planar-cut along the x-direction and view of the IBLANK field on
partition 1. (c) Cutting surface overlayed on partition 2 of the background rectan-
gular grid. (d) Planar-cut along the y-direction and view of the IBLANK field on
partition 2.

Results for a Cylinder-In-Box configuration are shown to illustrate the
functionality of the present implementation for 3-D configurations under a



12 Zagaris et al.

distributed setting where the grid(s) are further partitioned.The results after
the hole-cutting process are shown in Fig. 5 where the background grid is
distributed in two processes. The cutting surface, Σ (e.g., Figs. 5(a) and 5(c)),
is distributed to all processes that own a background grid. Figs. 5(b) and 5(d)
illustrate the results after hole-cutting is complete on both processes.

4.3 Donor-Receiver Search

After all hole-points are excluded, the next step is to identify the donor-
receiver pairs, r ∈ g(i,k) and d ∈ g(j,m), within the associated overlapping
region Ri. The process begins by extracting the candidate receiver points in
grid g(i,k) and the candidate donor cells in grid g(j,m). Further, if the overlap-
ping grids do not reside on the same process, the candidate receiver points
are sent to the process that owns the donor grid.

Definition 5. A candidate receiver point r ∈ g(i,k) is any point that is within
a user-supplied fringe distance, δf , from the outer-boundary or a hole-outline
identified during hole-cutting.

Definition 6. A candidate donor cell d ∈ g(j,m) is any cell that is within the
overlap region Ri that does not have any hole-points.

Let R,D denote the candidate receiver and candidate donor lists respec-
tively. For every receiver r ∈ R the list of donors D is searched to identify the
cell, d, that contains r. Searching the donor list employs spatial decomposi-
tion techniques and caching, as described earlier, to improve the performance
of this operation.

The present implementation targets node-centered flow solvers, hence after
the cell d is identified, the nodes of d and the flow data associated with them
form the interpolation stencil members required for interpolating the solution
to the receiver r. Extension, to cell-centered schemes or higher-order stencil
can be accomplished by encompassing the neighbors of the cell d, denoted by
N (d).

Remark 5. For higher order, or cell-centered schemes, forming the interpola-
tion stencil based on N (d) may require further communication if d is on a
partition boundary.

Once, the stencil is formed, the grids that own the receiver points ri are
updated to indicate to the flow-solver that these points are receivers, and the
solution at these points will be interpolated from another grid.

4.4 Interpolation

Finally, after the donor-receiver pairs are identified and the interpolation sten-
cil is formed, interpolation of the solution to the receiver point is a straight-
forward linear combination. The stencil information provides the following
information:



Parallel Overset Grid Assembly 13

1. the data values at each of the donor stencil members, fi, and
2. the corresponding interpolation functions, Wi(ξ, η, ζ), that relate the

donor values fi to the enclosed receiver point r.

Then, the interpolated value finterp can be expressed as the result of a
weighted average of the data values at each stencil member as follows:

finterp =
N∑
i=1

Wifi, (7)

where, N , denotes the total number of points in the stencil. Lagrange interpo-
lation is used in the current implementation to define the interpolation weight
functions Wi.

5 Wing-Store Separation

In this section we report our current performance results using a Wing-Store
configuration. The composite overset grid system consisted of three grids. A
background structured grid and two unstructured feature grids for the wing
and the store. A summary of the respective grid sizes is given in Table 2. The
two feature grids are moving relative to each other by applying translation
and rotation to each of the feature grids at each iteration. Table 3 gives a
summary of the displacement vector and rotation angles used.

Grid Grid Type Number of Nodes Number of Cells

Background Structured 1.69M 1.64M

Wing Unstructured 4.8K 9.5K

Store Unstructured 4.4K 8.8K

Table 2. Summary of grid sizes for the Wing-Store composite, overset grid system

Grid Displacement (dx, dy, dz) Rotation Angle Rotation Axis

Wing (−2.5, 0.0, 1.0) 2◦ Y

Store (−3.0, 0,−0.5) −2◦ Y

Table 3. Summary of the displacement vector and rotation angles applied to the
Wing and Store grids at each timestep

For our evaluation, we performed 10 iterations and measured the execu-
tion time of the donor search using P ∈ [1, 64] processes on a linux based
cluster. Each cluster node is equipped with two quad-core Intel XEON CPUs
@2.50 GHz and 16GB of shared memory. The background grid was partitioned



14 Zagaris et al.

using Recursive Bisection and METIS [4] was used for partitioning the two
unstructured, feature grids. A sample partitioning of the composite grid sys-
tem is illustrated in Fig. 6. The overlapping grid partitions were distributed
to the number of processes using a simple cyclic-mapping strategy such that
each process has at least one partition of each of the three grids.

Fig. 6. Partitioned composite grid system of the Wing-Store configuration. The
background grid was partitioned using recursive bisection and the store and wing
grids were partitioned using METIS. Each grid was partitioned in 32 partitions.

We measure the execution time for three levels of decomposition ∀P ∈
[1, 64] processors:

• coarse-grain: Each grid was partitioned to M = P partitions.
• mid-grain: Each grid was partitioned to M = 2× P partitions.
• fine-grain: Each grid was partitioned to M = 4× P partitions.

Figure 7 shows plots of the execution times for each level of decomposition
and quantitative performance data are summarized in Table 4.

As the number of processors increases the overall parallel efficiency, given
by Eq. 8,

Ep =
T1

P × Tp
(8)

decreases. This significant scalability issue is attributed to the severe load
imbalance of the problem. The load distribution for 8 processors, depicted
in Fig. 8, shows that only processes {2, 4, 7} do work while the rest of the
processes are IDLE waiting for the donor-search to complete. This happens
because the background grid partition on process 4 is the only partition that
overlaps with most of the feature grid partitions. In an attempt to address this
issue we tried to apply over-decomposition. Although mid-grain decomposition
generally appears to help fine-grain decomposition made the problem worst.



Parallel Overset Grid Assembly 15

Fig. 7. The overlap region Ri, shown with a boldface black wireframe, for the two
overlapping airfoils.

Execution Time Tp (s) Speedup T1/Tp

P Coarse Mid Fine Coarse Mid Fine

1 554 491 561 N/A N/A N/A

2 410 342 459 1.35 1.43 1.22

4 317 315 367 1.74 1.55 1.53

8 308 289 364 1.8 1.69 1.54

16 223 239 248 2.48 2.05 2.26

32 201 211 229 2.75 2.32 2.44

64 196 182 224 2.82 2.69 2.51

Table 4. Summary of the execution times and corresponding speedup for each level
of decomposition, coarse-grain, mid-grain, fine-grain using up to 64 processors.

A better partitioning strategy, such as the Cartesian Spatial Decomposi-
tion Volume, employed in SUGGAR++ [8] can achieve a much better load
balancing but, does not solve the problem entirely due to the inherent com-
plications of overset grid assembly that we outline in Section 2, item C3. Fur-
thermore, since the grids are already arbitrarily partitioned and distributed,
this would necessarily require some sort of dynamic re-partitioning. Efficient
load-balancing in dynamic simulations is a long-standing and still active re-
search area. Further research on how dynamic re-partitioning can be employed
to improve the performance is a promising direction for future work. In ad-
dition, exploiting the locality of the problem by caching and pre-fetching the



16 Zagaris et al.

Fig. 8. Workload distribution on 8 processors for a single iteration

grid assembly results across different time-steps is a promising strategy. In the
present implementation caching algorithms only benefit the searching opera-
tions within a single time-step. However, a similar argument for caching can
be made for the grid assembly results across iterations. Typically, the flow-
solver time-step, dt, is small. Consequently, the grid assembly results do not
drastically change in comparison to the previous iteration. Development of a
caching algorithm to exploit this feature of overset grid assembly is currently
in progress.

6 Conclusion & Future Work

Techniques for parallel overset grid assembly are presented. The methods pre-
sented herein are capable of handling arbitrarily partitioned and distributed
composite overset grid systems. To our knowledge, this is the first in-core,
parallel overset grid assembly implementation that deals with the distributed
overset grid assembly problem directly, as formulated in Section 2. Our pre-
liminary performance evaluation resulted in a better understanding of the
performance of parallel overset grid assembly in a distributed environment.
Future efforts will be focused on improving the performance by improved the
load balance and caching of previous results across iterations.

References

1. D. Belk and R. Maple. Automated assembly of structured grids for moving
body problems. In Proceedings of the 12th AIAA Computational Fluid Dynamics
Conference, 1995. AIAA Paper 1995-1680-CP.



Parallel Overset Grid Assembly 17

2. Robert T. Biedron and James L. Thomas. Recent enhancements to the fun3d
flow solver for moving-mesh applications. In Proceedings of the 47th AIAA
Aerospace Sciences Meeting, 2009. AIAA Paper 2009-1360.

3. Kenneth H. Huebner, Donal L. Dewhirst, and Douglas E. Smith. The Finite
Element Method For Engineers. Jon Wiley & Sons, 2001.

4. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for par-
titioning irregular graphs. SIAM Journal on Scientific Computing, 20:359–392,
1998.

5. R. L. Meakin and N. Suhs. Unsteady aerodynamic simulaton of multiple bod-
ies in relative motion. In Proceedings of the 9th AIAA Computational Fluid
Dynamics Conference, pages 643–657, June 1989. Buffalo, NY.

6. R. L. Meakin and Andrew M. Wissink. Unsteady aerodynamic simulation of
static and moving bodies using scalable computers. In 14th Computational Fluid
Dynamics Conference, June 28 - July 1 1999. AIAA paper 1999-3302.

7. Ralph W. Noack and David A. Boger. Improvements to suggar and dirtlib for
overset store separation simulations. In Proceedings of the 47th AIAA Aerospace
Science and Exhibit, January 2009. Orlando, FL.

8. Ralph W. Noack, David A. Boger, Rober F. Kunz, and Pablo M. Carrica. Sug-
gar++: An improved general overset grid assembly capability. In Proceedings
of the 47th AIAA Aerospace Science and Exhibit, January 2009. Orlando, FL.

9. Mohagna J. Pandya, Neal T. Fring, and Ralph W. Noack. Progress toward
overset-grid moving body capability for usm3d unstructured flow solver. In
Proceedings of the 17th AIAA Computational Fluid Dynamics Conference, June
2005. AIAA Paper 2005-5118.

10. Nathan C. Prewitt, Davy M. Belk, and Wei Shyy. Parallel computing of overset
grids for aerodynamic problems with moving objects. Progress in Aerospace
Sciences, 36:117–172, 2000.

11. Hanan Samet. The Design and Analysis of Spatial Data Structures. Addison-
Wesley, 1990.

12. Hanan Samet. Applications of Spatial Data Structures: Computer Graphics,
Image Processing, and GIS. Addison-Wesley, 1995.

13. W. L. Sickles, A. G. Denny, and R. H. Nichols. Time-accurate cfd predictions
for the jdam separation from an f-18c aircraft. In Proceedings of the 38th AIAA
Aerospace Science and Exhibit, January 2000. Reno, NV.

14. N. Suhs, S. Rogers, and W. Dietz. Pegasus 5: An automated pre-processor
for overset-grid cfd. American Institute of Aeronautics and Astronautics,
41(6):1037–1045, 2003.

15. N. Suhs and R. Tramel. Pegasus 4.0 user’s manual. Technical Report TR 91-8,
1991.

16. George Zagaris, Daniel J. Bodony, Mark D. Brandyberry, Michael T. Campbell,
Eric Shaffer, and Jonathan B. Freund. A collision detection approach to chimera
grid assembly for high fidelity simulations of turbofan noise. In Proceedings of
the 48th AIAA Aerospace Sciences Meeting, January 2010. Orlando, FL.


