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Summary. Nuclear reactor cores are constructed as rectangular or hex-

agonal lattices of assemblies, where each assembly is itself a lattice of fuel, 

control, and instrumentation pins, surrounded by water or other material 

that moderates neutron energy and carries away fission heat. We describe a 

system for generating geometry and mesh for these systems. The method 

takes advantage of information about repeated structures in both assembly 

and core lattices to simplify the overall process. The system allows tar-

geted user intervention midway through the process, enabling modification 

and manipulation of models for meshing or other purposes. Starting from 

text files describing assemblies and core, the tool can generate geometry 

and mesh for these models automatically as well. Simple and complex ex-

amples of tool operation are given, with the latter demonstrating genera-

tion of meshes with 12 million hexahedral elements in less than 30 minutes 

on a desktop workstation, using about 4 GB of memory. The tool is re-

leased as open source software as part of the MeshKit mesh generation li-

brary. 
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1  Introduction 

Reactor cores can be described as a two-level hierarchy of lattices; the first 

level of the hierarchy corresponds to fuel assemblies, formed as a lattice of 

cylindrical pins, while in the second level assemblies of various types are 

arranged in a lattice to form the reactor core. Generation of geometry and 

mesh models for reactor cores can be a difficult process. While the struc-
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ture inherent in this two-level hierarchy could be used to automate parts of 

this generation process, experience shows that user interaction is often re-

quired at key points of this process as well. The ideal geometry and mesh 

generation process for these models would balance both lattice-guided au-

tomation and opportunities for user interaction at key points in the process. 

This paper describes a system for generating reactor core geometry and 

mesh models that balances automation and user interaction in this way. 

Nuclear reactor cores are formed by arranging cylindrical pins in a lat-

tice of surrounding material. Pins contain uranium-based fuel, absorbing 

material for controlling the nuclear chain reaction, or instrumentation. The 

surrounding material functions as coolant or neutron energy moderator. 

These materials can be arranged in either a rectangular lattice, used in wa-

ter-cooled reactors, or a hexagonal lattice, more common in sodium- and 

gas-cooled reactors. Assemblies vary by degree of uranium enrichment in 

the fuel material, type of control rod material or function, or other parame-

ters. Assemblies are arranged in a lattice to form the reactor core, either 

filling space (typical in water- and gas-cooled reactors) or with an inters-

tices material (common in sodium-cooled reactors). Examples of typical 

assembly and core types are shown later in this paper. 

Domain-specific mesh generation tools have been described for various 

application areas; a few are mentioned here for comparison. The CUBIT 

meshing toolkit has been used to design tire-specific meshing systems for 

tire design [1]. Designers are permitted to enter a prescribed list of parame-

ters describing tire and tread model, after which the geometry and mesh 

are generated automatically. Using external tools such as Distmesh, an 

open source mesh generator, Fung et al. [2] reported a similar system for 

electrical impedance tomography. Tools to generate finite element meshes 

suitable for CFD calculations of blood flow in arteries have been demon-

strated by Cebral et al. [3]. Several systems for grid generation for turbo-

machinery configurations have been reported [4][5]. Some other domain-

specific mesh generation tools can be found at the mesh software website 

[6]. These systems all follow the general idea reported here, where a sys-

tem allows limited variations in prescribed parameters, from which a geo-

metry and mesh are generated for a specific type of analysis. However, rel-

atively little advantage is taken of repeated structures in the geometric 

model or of the automation possible through the repeated structures. 

In lattice-based model generation, two specific works are similar to our 

approach: the PSG2 code, which allows specification of model geometry 

using a unit cell-based approach [7], and the Sabrina and Moritz tools, de-

veloped to support radiation transport calculations [8]. However, the mod-

els constructed from these descriptions are limited in that they support only 

a CSG-based representation of the domain, used solely to perform ray trac-
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ing for Monte Carlo–based radiation transport calculations. We assert that 

this general approach has far broader applications, not only in geometry 

construction but also to support mesh generation. 

Hansen and Owen [9] present a general overview of the challenges and 

opportunities in meshing reactor cores. They mention the need to “develop 

the tools that are easier to use keeping the user informed about what is oc-

curring inside the tool.” They study the current state of meshing and ex-

amine various requirements for generating high-quality reactor meshes. 

They also discuss issues and considerations for creating meshes for multi-

physics simulations.  However, there is no mention of taking advantage of 

lattice-type configurations found in most reactor cores. 

 Before embarking on the effort reported here, we explored generation 

of reactor core geometry and mesh using the more general CUBIT mesh-

ing tool. However, these efforts met challenges in multiple areas. Various 

methods were explored. In the first method tried, constructing the whole 

reactor core geometry and meshing it afterwards required a great deal of 

user interaction to fine-tune the mesh scheme and intervals in the various 

assembly types. The process was also brittle: small changes to meshing pa-

rameters caused the overall meshing process to fail or generate unexpected 

results. Generating geometry and mesh for individual assemblies, 

copy/moving them into the overall core model, and then merging geometry 

and mesh for the whole collection proved more robust; however, this ap-

proach also required large amounts of memory (6 GB for a model of < 1 

million hexahedral elements) and execution time (several hours on a desk-

top Linux-based workstation). From this experience, we conclude that 

while it might be possible to use tools such as CUBIT for this type of prob-

lem, we can probably do better by considering the inherent structure of the 

hierarchy of lattices present in reactor core models. We believe that the re-

sults later in this paper show this to be the case. 

In this paper, we describe a three-stage process for generating core lat-

tice geometry and mesh. First, assembly models of various types are gen-

erated, based on input describing the content of unit cells, the arrangement 

of unit cells in the lattice, and the extent of the lattice and any surrounding 

material. This stage also outputs two CUBIT journal files that can be used 

to automatically mesh the assembly model. Second, the assembly geome-

try is meshed with CUBIT, either automatically based on the journal files 

output in the first stage, or after interactive modifications of that meshing 

procedure. The first two stages are repeated for each assembly type in the 

core model. Third, after all assembly meshes have been constructed, they 

are arranged in a core model using a copy/move/merge process operating 

on the mesh only. The resulting mesh has material assignments and boun-

dary condition groupings that can be used in typical reactor core analysis. 
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In many cases, the three-stage process described here is fully automatic, 

resulting in a meshed core model (the most significant barrier to automa-

tion is reliable meshing of the cross section of each assembly; this is dis-

cussed Section 3.2). At the same time, the user has several opportunities 

for making targeted adjustments to the process, while being able to execute 

the process as before for unmodified parts. In this way, both automation 

and the opportunity for interactivity are balanced. This approach offers 

several advantages to the analyst: (1) the time required to update the model 

parameters and create a new model is considerably lower compared to tra-

ditional approaches; (2) creation of different meshes for sensitivity analy-

sis is very easy; (3) some non-lattice-based features are incorporated in this 

methodology to support specific needs in rectangular and hexagonal core 

geometries; (4) the same set of tools can be used to accommodate different 

types of reactors; and (5) the process can be automatically re-executed by a 

makefile automatically created by the tools described in this paper, regene-

rating only those parts of the model depending on the specific changes.  

The primary contribution of this paper is the demonstration of a method 

for constructing geometry and mesh models for problems appearing as a 

two-level hierarchy of lattices. Using the lattice information simplifies in-

put, improves automation, and is more efficient in both time and memory. 

Our implementation of this method maintains a careful balance between 

automation and interactivity. Moreover, the method used to propagate ma-

terial and boundary condition information through the copy/move process, 

based on the entity set abstraction used to access mesh, is a demonstration 

of how to handle application-specific metadata abstractly; this approach 

will prove useful in other meshing contexts, for example, adaptive mesh 

refinement and topological mesh improvement. 

The remainder of this paper is organized as follows. Section 2 describes 

the types of lattices addressed by the tools in this paper. Section 3 de-

scribes in detail the tools for generating assembly geometry and core 

meshes. Section 4 gives implementation details. Section 5 describes the 

propagation of mesh metadata during the core mesh generation stage. Sec-

tion 6 describes example core models created using these tools, along with 

performance data. Section 7 discusses our conclusions.  

2  Reactor Core Lattices 

The term “lattice” refers to a collection of shapes arranged in some regular 

pattern. The shapes composing the lattice are called unit cells; in this work 

we also refer to these as pin cells. In the fully general case, a lattice can be 



Creating Geometry and Mesh Models for Nuclear Reactor Core          5 

formed from unit cells of varying shape; for example, the surface of a soc-

cer ball is formed from a collection of pentagons and hexagons. Here, we 

restrict ourselves to lattices with a single unit cell shape. The internal 

structure of unit cells is allowed to vary, however, resulting in assem-

bly/core models composed of multiple unit cell/assembly types, respective-

ly.  

Nuclear reactor cores have been designed with a wide variety of fuel pin 

and assembly arrangements. Two lattice types are most common: rectan-

gular and hexagonal lattices. Rectangular or square lattices are used mostly 

in light water reactor designs, while hexagonal lattices are most common 

in gas- and sodium-cooled reactors. 

The geometry of a lattice can be fully described by three types of para-

meters: the unit cell shape or lattice shape; the lattice pitch, which is the 

distance between unit cell centers in the pattern determined by the lattice 

shape; and the lattice dimension, which is a measure of the extent of the 

lattice, or how many unit cells form the lattice. The description of rectan-

gular and hexagonal lattices in terms of these parameters is discussed in 

the following sections. 

2.1 Rectangular Lattice 

In a rectangular lattice, both the unit cells and the graph formed by joining 

unit cell centers with straight lines are rectangular. There are two lattice 

pitches, Px and Py, one each in the logical X and Y directions. The extent 

of a rectangular lattice is given by the number of unit cells in the X and Y 

directions, Nx and Ny. The total number of unit cells in a rectangular lattice 

is NxNy. The specification of unit cell types is as a vector of integer types; 

by convention, these integers identify unit cell types starting at the top left 

and proceeding right and down in the lattice. We place the origin of a rec-

tangular lattice at the centroid of the bottom left cell. Fig. 2 shows an ex-

ample specification of a rectangular lattice in these terms, defining its 

pitches, dimensions, and unit cell types. This method for specifying rec-

tangular lattices is used as input to the tools described Section 3. 

 



6       Timothy. J. Tautges and Rajeev Jain 

 

Fig. 1. Rectangular lattice with three unit cell parameters required for its 

specification. 

2.2 Hexagonal Lattice 

In a hexagonal lattice, the unit cells are hexagonal, while the lines joining 

unit cell centers form triangles. We restrict ourselves to a single hexagonal 

lattice pitch, P. The dimension of a hexagonal lattice is indicated by the 

number of rings, Nr, formed around a central unit cell, with the central cell 

identified as the first ring. The number of unit cells in a hexagonal lattice 

of Nr rings is 3(Nr)(Nr-1) + 1. By convention, the central unit cell hexagon 

is oriented such that two of its vertices are placed on the +y and –y axes, 

and the +x and –x axes intersect two edges or “flats” of the unit cell. The 

unit cell types for a full hexagonal lattice can be specified similar to the 

specification of a rectangular lattice, starting with the top left unit cell and 

proceeding right and down. Fig. 3 shows an example specification for a 

hexagonal lattice.  
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Fig. 2. Full hexagonal lattice with three unit cell parameters required for its 

specification. 

 

For hexagonal lattices, a “full” lattice specifies a full 360 degrees; par-

tial lattices can also be defined, where some whole-number division of 360 



Creating Geometry and Mesh Models for Nuclear Reactor Core          7 

degrees is defined. We refer to these as “symmetry=x” lattices, where x is 

the number of divisions of the 360-degree lattice into the partial lattices.  

Both 60-degree (symmetry=6) and 30-degree (symmetry=12) partial lattic-

es are supported. These are the two common types often used in reactor 

core simulations. 

Two symmetric 60-degree sections can be described for a hexagonal lat-

tice, depending on the orientation of the central unit cell.  A “HexFlat” 

type has the central unit cell oriented in the conventional manner, with the 

+x axis bisecting a hexagon edge, while in a “HexVertex” type lattice a 

vertex of the central unit cell falls on the +x axis.  HexFlat and HexVertex 

type lattices are shown in Figs. 4 and 5, respectively. The two types differ 

in the number of unit cells appearing in the partial lattice and in their ar-

rangement around the central unit cell. For partial lattices, unit cell types 

are more easily specified by ring, starting from +360/x to zero degrees, 

from the central unit cell outward. Therefore, the unit cells for the lattice in 

Fig. 3 are specified in order of increasing letter.  
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Fig. 3. HexFlat lattice type and specification. 
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Fig. 4. HexVertex lattice type and specification. 

 



8       Timothy. J. Tautges and Rajeev Jain 

      
 2

, 12

/ 2 %2

2 / 4 %2

..

i

TOT

HexFlat Symmetry

N i i

N N N N

Celltypes ABC



 

  



 

Fig. 5. HexFlat type describing a 30-degree (symmetry=12) lattice type and    spe-

cification. 

Only one symmetric 30-degree section can be described for a hexagonal 

lattice. Both the HexFlat and HexVertex schemes result in the same model 

with rotational symmetry. The HexFlat lattice type is used to describe a 

30-degree or 1/12th symmetry of hexagonal lattice. Ni represents the num-

ber of unit cells in the ith ring. Unit cell types are specified from +30 to ze-

ro degrees, from the central unit cell outwards. Unit cells are specified as 

before, in order of increasing letter for the lattice in Fig. 5.  

3  Generation of Assembly and Core Models 

A mesh of a reactor core is produced by generating assembly geometry 

and mesh models for each unique assembly type, then copying/moving 

these assembly meshes into place in a core lattice. Our approach uses a se-

quence of tools to accomplish these tasks, so that the user can manually 

adjust output of one tool and input of the next tool at each stage of the 

process. The workflow for running these tools is depicted in Figs. 6 and 7. 

The first stage of this process uses the AssyGen tool, which generates an 

assembly geometry based on an assembly input file. This file describes the 

assembly as a lattice of cylindrical pins, annular regions surrounding each 

pin (e.g., for pin cladding), and overall assembly dimensions and surround-

ing duct wall characteristics. AssyGen also generates a meshing script for 

meshing the assembly. 
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Fig. 6. First two stages of the geometry/mesh process, where AssyGen and CUBIT 

are executed for each assembly type. 

In the second stage of execution, the meshing script and geometry out-

put from AssyGen are used by CUBIT to generate a mesh for that assem-

bly type. In many cases, this process is automatic, requiring no further in-

put from the user. If users desire custom modifications to the mesh or if the 

geometry cannot be meshed automatically, the user can modify the mesh 

script to tailor the mesh generation to their individual needs or substitute 

their own script for generating the assembly mesh. This approach may be 

desirable, for example, if the user wants more mesh concentrated around 

fuel pins with the mesh size transitioning to the coarser mesh on the as-

sembly boundary. The only explicit requirement on the resulting mesh is 

that the mesh on outer boundaries of the assembly match that of neighbor-

ing assemblies, or of the interstices material in cases where assemblies do 

not completely fill the core space.  

In the final stage, shown in Fig. 7, the CoreGen tool reads an input file 

describing the arrangement of assemblies in the core lattice and locations 

of meshes for each assembly type; this information is used to generate the 

overall core mesh. CoreGen also produces a makefile, which can be used 

to automatically rerun parts of the process affected by changes to any of 

the input files. 
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Fig. 7. Third stage of the geometry/mesh process, where CoreGen is executed. 

3.1 Generating Assembly Models 

A reactor core assembly is a lattice of unit cells. Each unit cell has zero 

or more concentric cylindrical layers of material, cut from a background 

material defined for each unit cell or for the assembly as a whole. The as-

sembly can be surrounded by one or more layers of duct wall material. In-

formation is input in a simple text-based language. An example input file 

for AssyGen is shown in Fig. 8. The lines with the GeometryType, Mate-

rials, and Dimensions keywords give the type and extent of the assembly 

and the material types used in unit cells. Multiple pincell types can be de-

fined, each with one or more concentric cylinders of material and a back-

ground material for the cell. Following pincell input, the Assembly key-

word line gives the overall lattice extents, followed by the pincell alias for 

each unit cell in that lattice. The overall assembly model can be modified 

based on the Center, Rotate, and Section keywords, and mesh sizes can be 

specified by using the RadialMeshSize and AxialMeshSize keywords. The 

top assembly in Fig. 7 was generated based on this input. For a full de-

scription of the AssyGen input language, see [10].  

A few other options allow variations in the assembly model. The Cell-

Material keyword results in unit cell boundaries being generated explicitly 

in the geometric model of the assembly; this allows finer control of the 

mesh in each unit cell. Cylinders input for individual pin cells can be larg-

er than the unit cell dimensions; these volumes will overlap neighboring 

pincell regions when present. The Intersect keyword can be used to request 

that pincell contents be intersected with the pincell region, such that they 

do not overlap neighboring regions. Empty pin cells can be specified in the 
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assembly lattice by using the X or XX pincell alias; these are useful in re-

gions neighboring those with overlapping contents. 

AssyGen names the surfaces at the top, bottom, and sides of the assem-

bly. They are named by using the material name with “_top,” “_bot,” and 

“_side” suffixes. This naming can be useful to the analyst. For example, 

for an assembly with upward flow, surfaces whose names end in 

“_bot”/”_top” can be placed in groups for application of inlet/outlet boun-

dary conditions, respectively. Surfaces can be filtered by containing the 

volume using set Booleans, for example, to select fluid regions outside of 

cylindrical fuel pins.  

 

 

Fig. 8. Example AssyGen input file. 

3.2 Meshing Assembly Geometric Models 

In addition to generating the geometric model, AssyGen writes two mesh-

ing scripts. The first contains the basic commands necessary to mesh the 

assembly model and define various material groups and boundary condi-

tion sets. The second defines several parametric variables used in the first 

meshing file; parameters are defined for mesh sizes and various user-

selectable mesh schemes.  

In many cases, the user will need only to specify a mesh size in the As-

syGen input file, after which the meshing process for an assembly will be 

completely automatic. In other cases, for example, if a relatively coarse 

mesh size is requested or finer-grained control over mesh density or quali-

Geometry Volume 

GeometryType Rectangular 

Materials 3 PWR_FC_F_01 M1 Mat_Block G1 Mat_Coolant C1 

Dimensions 2 0.0 0.0 0 124.0 18.0 18.0 23.5 23.5  G1 C1  

Pincells 1  

! Standard fuel pin cell 

PWR_FC_01 FC 2 

Pitch  9.0 9.0 124.0  

Cylinder 1 0.0 0.0  0.0 124.0   3.0  M1 

! 

Assembly 2 2 

FC FC 

FC FC 

Center 

RadialMeshSize 2.0 

 

 

 

 

 

 

 

 

 

 

END                                                                                           
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ty is required, users can modify the meshing scripts file as necessary be-

fore running CUBIT on that file. The syntax used with these journal files 

can be found in [10]. 

This process of constructing assembly meshes, while somewhat auto-

mated, can be sensitive to mesh size input by the user. This problem is 

manifested particularly in the generation of unstructured quadrilateral 

meshes for the top surface in an assembly, which is cut by large numbers 

of cylindrical rods. The test problem input for the more complex example 

in this paper contains a carefully chosen radial mesh size that, if made 

larger (giving a coarser mesh), will cause mesh generation for that surface 

to fail. This situation is common in mesh generation technology, where 

mesh generation robustness grows worse for coarser meshes. This is one of 

the reasons for splitting the core mesh generation process into several 

steps: to allow user intervention midway through the process. The general 

solution for this type of failure would be either to make the mesh size finer 

(producing many more elements), or to perform geometry decomposition 

of the assembly top surface such that the resulting smaller, less-complex 

surfaces are meshable with more primitive algorithms. Because CUBIT is 

a closed-source code, efforts are being made to support lattice-type mesh 

generation with the MeshKit library described in Section 4. 

3.3 Generating Core Model 

A reactor core is formed by placing various assembly types in a lattice, 

possibly surrounded by material in the interstices regions. CoreGen sup-

ports construction of full rectangular, full hexagonal, 60-degree hexagonal, 

and 30-degree hexagonal lattices. Two 60-degree hexagonal variants, 

HexVertex and HexFlat, are supported; these lattice types are described in 

Section 2. 

Input for defining a core is similar to that of an assembly. An example 

input file for the CoreGen program is shown in Fig. 9. CoreGen uses 

Geometry and GeometryType to specify the dimension and the type of 

core model specified, respectively. The symmetry keyword is used to indi-

cate the desired symmetry. Assemblies and Lattice keywords provide in-

formation about the assembly meshes and dimensions and the arrangement 

of the assemblies forming the core, respectively. The CoreGen program al-

so generates a makefile. If AssyGen, CoreGen, and CUBIT are in the us-

er’s path, this makefile automates generation of the overall mesh; after 

making changes to either of the AssyGen or CoreGen input files, the user 

can rerun “make” to rebuild the entire core model.  We note here that Co-

reGen operates on mesh and makes no use of the geometric models pro-
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duced by AssyGen; those models are for the sole purpose of generating the 

mesh model for each assembly type. After the assembly meshes have been 

copied/moved into the core lattice, coincident nodes are merged, resulting 

in a contiguous mesh. Syntax and keywords used to specify input to Core-

Gen and the makefile can be found in the MeshKit repository [10].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Example CoreGen input file. 

4 Implementation 

The tools described in this paper rely on geometry and mesh libraries 

developed as part of the Interoperable Tools for Advanced Petascale Simu-

lations project. The Common Geometry Module (CGM) [11] provides 

functions for constructing, modifying, and querying geometric models in 

solid model-based and other formats. While CGM can evaluate geometry 

from several underlying geometry engines, this work relies mostly on 

ACIS [12], with an Open.Cascade-based [13] version under development. 

Finite-element mesh and mesh-related data are stored in the Mesh-

Oriented datABase (MOAB) [14]. MOAB provides query, construction, 

and modification of finite-element meshes, plus polygons and polyhedra. 

Mesh generation is performed by using a combination of tools. The 

CUBIT mesh generation toolkit [15] provides algorithms for both tetrahe-

dral and hexahedral mesh generation. MeshKit, an open-source mesh gen-

eration library under development at Argonne National Laboratory, pro-

vides efficient algorithms for mesh copy/move/merge [16]. CGM and 

MOAB are accessed through the ITAPS iGeom and iMesh interfaces, re-

spectively.  

Geometry Volume   

GeometryType Rectangular 

Symmetry 1  

Assemblies  2   23.5 23.5 

s1.cub S1  

s2.cub S2 

Lattice 3 3  

S2 S1 S2 & 

S1 S1 S1 & 

S2 S1 S2 

END 
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The iMesh concept of sets and tags is important to the implementation 

of these tools. A set is an arbitrary collection of entities and other sets; a 

tag is data annotating entities, sets, or the interface itself. The combination 

of sets and tags is a powerful mechanism used to describe boundary condi-

tions, material types, and other types of metadata commonly found with 

mesh. 

5 Metadata Handling 

Mesh files for any simulation contain boundary condition, material type 

and other user-specified information. When different assembly meshes are 

copied/moved to form the core, the metadata associated with individual as-

sembly meshes must be correctly propagated to the core model. For exam-

ple, if an assembly mesh defines materials for elements in the mesh, these 

definitions should be propagated with the copies of those elements.  

MeshKit abstracts the handling of metadata by using the concepts of 

“copy set” and “expand set.” For any set designated as a copy set, a copy 

of that set is made and populated with element copies whose original ele-

ment was in the original set. Any set designated as an expand set receives 

copies of original entities already in that set. Together, these abstractions 

simplify the implementation of meshing algorithms such as copy/move. 

The application just needs to identify characteristics used to identify each 

set type; the copy/move implementation then finds sets with those cha-

rac\teristics and acts accordingly. The abstraction enables this behavior 

without requiring the copy/move implementation to understand the seman-

tics of those sets, for example, what purpose a material set fills for an ap-

plication. The copy/expand set concept also could be used in other mesh-

ing applications, for example, adaptive mesh refinement or topological 

mesh improvement. 
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6  Examples 

In this section we present two examples; one a simple hexagonal assembly 
and the other a more complex core model. 

6.1 Single Hexagonal Assembly 

Our first example, a single Very High Temperature Reactor (VHTR) as-

sembly, has six pincell types, with three sizes of pins representing fuel, 

burnable poison, and coolant regions; a structure at the center describes a 

fuel handling hole, and a larger hole in the lower half of the assembly 

represents a control rod and guide tube. Empty pin cells are specified in 

cell positions surrounding these larger holes. The resulting geometric 

model is shown in Fig. 10 (left). We note that generating an all-hexagonal 

mesh for this model is difficult because of the many cylindrical pins cut 

out of the top surface of the block. A fine mesh can be generated without 

too much difficulty; however, generating a coarse mesh for this model 

would require substantial effort to make targeted modifications to the as-

sembly geometry and mesh parameters. The model generated by AssyGen 

was used as input to UNIC, a neutron transport code [17] developed at Ar-

gonne National Laboratory. Fig. 10 (right) shows the thermal neutron flux 

computed. The flux is much lower in the region of the large control rod 

and slightly lower around the six burnable poison pins (located at corners 

of the hexagonal assembly), as expected. Note that in this case a tetrahe-

dral mesh was used, which was generated by modifying input to the 

CUBIT journal file output by AssyGen.  

 
Fig. 10. Hexagonal assembly geometry and mesh constructed by AssyGen  

(left); thermal neutron flux computed by the UNIC neutron transport cal-

culation for this hexagonal assembly (right). 
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6.2 Complex Core Model 

Fig. 11 and Fig. 12 show a more complex example, a core model created 

using the three-stage process described in this paper. Fig. 11 shows four of 

the 11 assembly types used in this model. Keyword-based input files were 

used with AssyGen to generate the assembly geometry. CUBIT was then 

used to mesh the assemblies using the journal files created by AssyGen. 

The 1/6 core model in Fig. 12 was generated by CoreGen. This model has 

approximately 12 million hexahedral elements and 14 million mesh vertic-

es. The tools were run on a desktop Linux-based workstation with a clock 

speed of 2.5 GHz and 11.8 GB RAM. It took 4 minutes to generate the 

geometries, 5 minutes to create the assembly meshes, and 20 minutes to 

copy/move and merge the assemblies and create the core. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Four assembly types produced by AssyGen. 

 

 

 

 

 

 

 

 
 

Fig. 12. One sixth of a VHTR core model generated using CoreGen (left); a 

closeup of several assemblies in this model (right). 
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7  Conclusions  

An input-file-based methodology has been developed that can generate a 

lattice-based reactor core mesh with minimal user input.  The methodology 

operates in three stages. First, assembly models of various types are gener-

ated by the AssyGen tool, based on input describing the content of pin 

cells, the arrangement of pin cells in the lattice, and the extent of the lattice 

and any surrounding material. The assembly model or models then are 

meshed with the CUBIT mesh generation toolkit, optionally based on a 

journal file output by AssyGen. After one or more assembly model meshes 

have been constructed, they are arranged in a core model by using the Co-

reGen tool. Although this approach is ideally suited for lattice-based core 

geometries, it also offers flexibility to incorporate non-lattice-based fea-

tures. 

ACKNOWLEDGMENTS 

We thank M. A. Smith, A. Wollaber, and J. H. Thomas in the Nuclear En-

gineering Division at Argonne National Laboratory for helpful discussions 

and feedback for creating the input file language used in these tools. We 

also thank the Fathom group at Argonne, who maintain the libraries re-

quired by this tool. This work is sponsored by the U.S. Dept. of Energy 

Office of Nuclear Energy GenIV Program; by the U.S. Dept. of Energy 

Office of Scientific Computing Research, Office of Science, and by the US 

Department of Energy’s Scientific Discovery through Advanced Compu-

ting program, under Contract DE-AC02-06CH11357. 

REFERENCES 

1. Sandia news notes (2005) 

http://www.cs.sandia.gov/newsnotes/2005newsnotes.html#Goodyear 

2. S. Fung, A. Adler, and A. D. C. Chan (2010) “Using Dismesh as a mesh gene-

rating tool for EIT,” Journal of Physics, Conference Series.  

3. J. R. Cebral and R. Lohner (1999) “From medical images to CFD meshes,” in 

Proc. 8th International Meshing Rountable, pp. 321-331. 

4. B. K. Sony and M. H. Shih (1991) “TIGER: Turbomachinery Interactive Grid 

GenERation,” in Proc. Third International Conference of Numerical Grid Gen-

eration in CFD, Barcelona, Spain.  

http://www.cs.sandia.gov/newsnotes/2005newsnotes.html#Goodyear


18       Timothy. J. Tautges and Rajeev Jain 

5. R. V. Chima (2008) TCGRID website, 

http://www.grc.nasa.gov/WWW/5810/rvc/tcgrid.htm 

6. List of meshing software website  

http://www-users.informatik.rwth-aachen.de/~roberts/software.html  

7. PSG2 / Serpent website (2010) http://montecarlo.vtt.fi/  

8. K.A. V. Riper (1993) “SABRINA: Three-dimensional geometry visualization 

code system,” PSR-242, ORNL-RSICC, Oak Ridge, TN.  

9. G. Hansen and S. Owen (2008) “Mesh generation technology for nuclear reac-

tor simulation; Barriers and opportunities,” Journal of Nuclear Engineering and 

Design. pp. 2590-2605.  

10. MeshKit README website (2010) 

http://trac.mcs.anl.gov/projects/fathom/browser/MeshKit/trunk/rgg/README  

11. T. J. Tautges (2005) “CGM: A geometry interface for mesh generation, analy-

sis and other applications,” Engineering with Computers, 17, pp. 486-490.  

12. Spatial website (2010) http://www.spatial.com/  

13. Open CASCADE Technology website (2000-2010) 

 http://www.opencascade.org.  

14. C. Ollivier-Gooch, L. F. Diachin, M. S. Shephard, and T. Tautges (2007) “A  

language-independent API for unstructured mesh access and manipulation,” in 

Proc. 21st International Symposium on High Performance Computing Systems 

and Applications, IEEE, p. 22 

15. G. D. Sjaardema, T. J. Tautges, T .J. Wilson, S. J. Owen, T. D. Blacker, W. J. 

Bohnhoff, T. L. Edwards, J. R. Hipp, R. R. Lober, and S. A. Mitchell (1994) 

CUBIT mesh generation environment, volume 1: Users manual, Sandia Nation-

al Laboratories, Albuquerque, NM.  

16. MeshKit website (2010) 

http://trac.mcs.anl.gov/projects/fathom/browser/MeshKit  

17. M. A. Smith, C. Rabiti, G. Palmiotti, D. Kaushik, A. Siegel, B. Smith, T. 

Tautges, and W. S. Yang (2007) “UNIC: Development of a new reactor physics 

analysis tool,” in Proc. Winter Meeting on International Conference on Making 

the Renaissance Real, American Nuclear Society, pp. 565-566. 

 

 

 

http://www.grc.nasa.gov/WWW/5810/rvc/tcgrid.htm
http://www-users.informatik.rwth-aachen.de/~roberts/software.html
http://montecarlo.vtt.fi/
http://trac.mcs.anl.gov/projects/fathom/browser/MeshKit/trunk/rgg/README
http://www.spatial.com/
http://www.opencascade.org/
http://trac.mcs.anl.gov/projects/fathom/browser/MeshKit

