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Summary. Solid modeling engines are capable of faceting CAD models but
may facet each face independent of adjacent faces. Regions of the resulting
model have gaps between faces of their boundaries. An algorithm is described
to seal faceted CAD models such that the boundary of neighboring faces has
the same discretization along their shared edges. The algorithm works by
sealing skin edges of geometric face faceting to geometric model edge facets,
using vertex-vertex and vertex-edge contraction. Ten intricate CAD models of
moderate to high complexity are tested with a range of facet tolerances. The
algorithm succeeds in creating watertight models in most cases, with failures
only at extreme values of facet tolerance and/or in the presence of geomet-
ric features which are outside the normal features encountered in most models.
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1 Introduction

Computational simulation relies increasingly on valid, accurate representa-
tions of the geometry of objects being simulated. Geometric models are most
often constructed in Computer-Aided Design (CAD) systems, then transferred
to a discretized representation for use in simulation. This discretized represen-
tation is often in the form of a Facet-Based Model (FBM), where geometric
Vertices, Edges, and Faces are represented by collections of points, edges, and
triangles, respectively. FBMs serve a variety of uses in computational simula-
tion. First, they are often the means of transferring geometric models between
applications, often in the form of STereo Lithography (STL) files [1]. FBMs
are also sometimes used as the basis for generating the 3d discretization, or
mesh, for a given geometric model [2, 3]. In other cases, the FBM is used
directly, for example in monte carlo radiation transport (based on ray-tracing
on FBMs)[4], and clash detection for robotic applications.

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo
kgruda
Rectangle



2 Brandon M. Smith, Timothy J. Tautges, and Paul P.H. Wilson

One of the reasons FBMs are used so widely is that they are provided
by virtually all geometric modeling systems. Modeling engines such as ACIS
[5] and Open.Cascade [6] all provide API functions for getting the triangular
facets for each (geometric) Face and facet edges for each (geometric) Edge.
Typically, facet edges and faces (triangles) are guaranteed to be within a facet
tolerance of the geometric entities they resolve, and this facet tolerance is input
to the modeling engine. However, most FBMs provided by geometric modeling
systems suffer from a fundamental flaw which prevents their usage as-is for
other applications: the FBMs are not watertight. That is, each Face and Edge
in the geometric model is faceted independently, with neighboring Faces not
sharing facet points with the Edge where they meet nor with each other. While
there may be points in each of those facetings that are coincident along the
shared Edge, this is not always the case, and for multi-material models, this
is almost never true. For example, Figure 1 shows a model where facetings of
two Faces bounding an Edge of a cylinder are far from coincident. This flaw
must be fixed before FBMs can be used for the other applications mentioned
above.

There has been a great deal of previous work on the subject of making
faceted models watertight. These efforts fall roughly into two groups: one
that views the faceted model similar to a point cloud that is the basis of
deriving a closed faceted model, and another group that focuses on fixing
localized problems in the model, e.g. by filling and closing holes in a faceted
surface. None of the efforts reviewed in this work makes use of the topological
information often available from geometric models, and few work on models
having non-manifold topological features. Furthermore, these approaches vary
greatly in their robustness, and few come with guarantees about what kind
of FBMs can be made watertight. Implementations of these methods are also
not available as open-source software, for use with other geometric modeling
packages. A provably reliable solution for fixing FBMs, in an open-source
implementation that could be applied in other modeling environments, is a
key capability in developing other applications on FBMs.

The contribution of this paper is the demonstration of an automatic algo-
rithm for sealing facet-based models. We demonstrate how using topological
information that accompanies a certain class of geometric models simplifies
this process, and prove that, under certain weakly-restrictive conditions, the
method is guaranteed to succeed. Robustness of our method is demonstrated
using non-manifold geometric models from a variety of applications, having
thousands of Faces and Regions. The algorithm is freely available as open-
source software under the LGPL license.

The construction of geometric models targeted in this work is a multi-
step process. First, geometric Regions are constructed using primitive (sphere,
cylinder, etc.) or free-form (spline surface) shapes and boolean operations
between them, or more complex modeling operations like lofting or sweeping.
Next, Regions are “imprinted” together; in this operation, any Faces and
Edges that are partially coincident in space are made fully coincident, by
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splitting the original Edges into coincident and non-coincident parts. This
process can be viewed as the opposite of regularization, a common operation
in most CAD systems. Following this, entities coincident in space and with
like topology are merged, such that only one entity remains. This merging
step modifies the topology of the geometric model, such that the remaining
merged entity is adjacent to all entities bounded by the entities that were
merged. Faces bounding multiple Regions have a sense (either forward or
reverse) with respect to each of those Regions, with the convention that a
forward sense implies the Face normal points out of the Region. The result of
this process is a model with some Faces shared between neighboring Regions,
and Vertices and Edges bounding multiple Regions.

The representation of non-manifold solid models, especially those with
multiple 3d Regions sharing Faces between them, varies widely across mod-
eling engines, whereas the representation and evaluation of manifold models
is quite standardized. For this reason, most applications using this type of
non-manifold geometry usually represent their own topology above the un-
derlying solid modeling engine. This approach also simplifies implementation
of “Virtual Topology” [7], facet-based geometry [8] and other specialized rep-
resentations. This type of model is used to generate contiguous meshes for
multi-material models by the Cubit [8] mesh generation code. The Common
Geometry Module (CGM)[9] also uses this approach, maintaining its own
topology graph for these and other purposes. CGM is used for all geometric
modeling operations in this paper.

The remainder of this paper is structured as follows. The remainder of this
Section discusses previous work in fixing FBMs, and the nomenclature and
functions we use for accessing FBMs and geometric models. The algorithm
for “sealing” FBMs, along with a proof of its reliability, is given in Section 2.
Implementation of the algorithm is described in Section 3, with results given
in Section 4. Conclusions and future work are described in Section 5.

1.1 Previous Work

Previous work in converting flawed FBMs into watertight faceted models can
be grouped in two categories. Region-based approaches may guarantee water-
tightness of a solid bounded by triangles, but at the cost of reconstructing the
entire region using an intermediate representation. Mesh-based approaches fix
faceting errors with small perturbations in the vicinity of the error, but offer
no guarantee of watertightness for the overall solid [10]. In a recent survey [11],
Ju concludes that mesh-based methods have been most successful at repairing
CAD models where errors are localized, while region-based methods are most
successful at reconstructing polyhedrons from poor quality data, with loss of
detail.

Region-based methods [12, 13, 14, 15] reconstruct the model based on point
cloud data derived from the faceting. Because they discard the original facets,
these methods do not preserve the details of the original geometric topology,



4 Brandon M. Smith, Timothy J. Tautges, and Paul P.H. Wilson

Fig. 1: A gap exists between faces of the cylinder because each face is faceted inde-
pendent of bounding edges.

at least in cases where those details are not also geometrically distinct. Thus,
Faces imprinted on another Face will not be preserved, since they are not
geometrically distinct. Although region-based methods are the only option
in the case of range-scanned data, they are not applicable to the problems
described here, and are not considered further in this work.

Bohn and Wozny [16] create a watertight shell by using topology to iden-
tify local gaps in the faceting, which they close based in part on heuristics.
The algorithm does not move or merge any vertices. Their method begins
by identifying free edges, and organizing them into loops, where each loop
bounds a region that must be filled in with facets. This filling is done using an
“ear clipping” algorithm, where two consecutive edges in the loop are used to
form a tringle, with the third edge replacing the two edges in the loop. Edge
pairs with the smallest angles are favored in this approach. The algorithm
concludes by using edge flips to improve geometric quality of the facets.

Barequet and Sharir also approach this problem [17] by idenitfying free
edges, but split those edges such that the resulting edges are more consistent
in edge length. A distance- and orientation-based heuristic is then used to
determine matching groups of edges; gaps between these groups are filled by
constructing new facets. In a subsequent effort [18], vertices within a certain
distance tolerance are moved to eliminate gaps between triangulated faces.
Edges are considered in pairs, rather than by groups forming arcs or loops. Free
edges that remain after this process are identified and assembled into loops,
and triangulated using [19]. In ambiguous situations, the user is prompted for
guidance.

Sheng and Meier [20] use a series of increasing distance tolerances, up
to a maximum tolerance, to merge vertices then edge pairs whose endpoints
have been merged. This ensures that the best candidates will be paired with
each other. One drawback of this approach is that it requires facet edges
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of similar lengths to close gaps in the faceting; this is often not the case in
typical facetings returned from modeling engines. Geuziec et. al [21] also note
that Sheng and Meier’s algorithm may create edges adjacent to more than
two triangles, when the same end is merged more than once. They avoid this
simply by preventing merges that will create edges adjacent to three triangles.

Borodin et al. improves on the merge-only approach by introducing a
vertex-edge contraction, or t-joint operator [22, 23], where a free edge is split
if a corresponding point is too far from either end but close enough to the
edge. Vertex-edge contraction allows model repair to proceed using a smaller
tolerance than if implemented with vertex merging alone. Kahlesz et al. [24]
use a similar approach.

An approach by Busaryev et al. [25] represents face boundaries as strings
of intersecting balls. Boundaries of adjacent faces are joined by combining
balls using a tolerance. Although the watertight output is produced using
Voronoi diagram and Delaunay triangulation techniques, the repair phase of
combining balls resembles vertex-vertex contraction.

The advances in mesh-based watertightness are well summarized in an
algorithm by Chong et al. [26]. First vertex-vertex contraction is performed
by proximity. Next vertex-edge contraction is used, then large holes are tri-
angulated. Finally skewed elements are removed by edge swapping or node
merging. The last step is important because prior vertex-vertex and vertex-
edge contraction likely create facets with poor aspect ratios.

These mesh-based algorithms attempt to restore missing information, in
the form of where facets meet to close gaps, using three methods:

1. Perform vertex-vertex contraction by proximity.
2. Perform vertex-edge contraction by proximity.
3. Triangulate a patch across gaps that minimizes area or another heuristic

quantity.

However, we observe that much of the information they try to restore based
on spatial proximity and searching was known at one point, but was lost
or thrown away. For example, vertex-vertex and vertex-edge contractions are
usually motivated by sealing neighboring geometric Faces at shared Edges.
Knowing these topological relationships greatly narrows the search for match-
ing free facet vertices and edges. In the case where the geometric model is still
available, new points in the faceting can even be projected to the geometric
entities the faceting is supposed to resolve. We believe that methods for repair
of FBMs are greatly improved by taking advantage of geometric model infor-
mation that previously has not been used. Furthermore, we assert that this
information is often available when the original faceted model is created, but
has not been used because of limitations in file formats used to transfer FBMs
to applications. The sealing algorithm described in this paper uses geometric
model information to improve the robustness of obtaining watertight FBMs.
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1.2 Notation and Assumptions

In this work, we consider a geometric model described in the form of a Bound-
ary Representation (BRep). This model consists of geometric Vertices, Edges,
Faces, and Regions, indicated with script letters V/E/ F/R, respectively. Note
that non-manifold topology is allowed; in particular, many of the models we
encounter have multiple Regions, with Faces shared between two of those Re-
gions, and Edges and Vertices shared by multiple Regions. The collection of
geometric model entities forms a cell complex; that is, the intersection of two
entities of like dimension is either empty or corresponds to one or more enti-
ties of lower dimension that are also in the cell complex. Each Vertex, Edge,
and Face has a corresponding faceting represented by a set, denoted with
V,E, F, and R, respectively, with each of these sets containing points p, and
possibly edges and faces e and f , depending on the topological dimension (R
is empty, since Regions have no facets, but are still represented in the model,
to get adjacency relations with other Faces). We assume that the faceting for
each geometric Edge with a single Vertex has at least three facet edges. Edge
facetings not satisfying this assumption would not be useful for graphics pur-
poses, and in practice this assumption is satisfied in most observed facetings.
Each faceting V,E, and F is itself also a d−dimensional cell complex; how-
ever, this cell complex does not share points with the facetings of other model
entities, even those bounding the model entity in question. This is also typical
of faceted models from most modeling engines. A function d(., .) returns the
distance between the indicated entities, and Ω(.) represents the boundary of
the indicated entity, which is a collection of (d-1)-dimensional facets.

There are two tolerances that are important to the algorithm described in
this paper. First, the “merge tolerance” is the distance below which two enti-
ties are considered spatially coincident; we denote this as εg, recognizing that
in effect this also serves as the geometric tolerance for those model entities.
This tolerance is used in various places during the merging process described
earlier. The facet tolerance εf is the maximum distance between a facet edge
or face and the geometric Edge or face it resolves.

We assert certain things about the faceting, based on guarantees provided
by the modeling engines constructing them. First, all facet points are within
εg of the corresponding model entities. While this is typical of faceted mod-
els from most modeling engines, it could also be achieved by projecting facet
points to the corresponding model entity, using a function provided by virtu-
ally all modeling engines. Second, all facet edges and triangles are within εf of
the corrresponding model entities. Most modeling engines providing facetings
take εf as an input parameter, though in practice this input is disregarded if it
is much larger or smaller than the default value used by the modeling engine.
We also assume that εf � εg; since both these parameters can be changed
through user input, this does limit the variations allowed in one parameter
after the other has been chosen. Finally, all points on the boundary of a given
faceting, Ω(E) or Ω(F ), are within εg of some model entity that bounds
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the corresponding model entity, though which bounding model entity is not
known on input. While not stated explicitly by the modeling engines, in prac-
tice this has been found to be the case for both ACIS and Open.Cascade. Each
faceting E and F is non-degenerate (all points of d−dimensional facets, d > 0,
are distinct), and is oriented and non-inverted (tangent or normal of facet is
consistent with that of the underlying model entity in the neighborhood of
the facet). Although we have not encountered cases where this assumption is
invalid, invalidities of this type could be fixed using preprocessing similar to
that discussed in Section 2.1.

The local feature size (LFS)[27] at point x is the smallest closed disk cen-
tered at x that intersects two Vertices, two non-adjacent Edges, or an Edge
and a Vertex that is not adjacent to the Edge. We assume that LFS � εf .
We have observed cases where this assumption is not valid; preprocessing is
used to fix these cases, as described in Section 2.1.

2 Sealing Algorithm

The requirements of the proposed algorithm are:

• Seal faceted Faces along Edges to create a watertight model.
• To preserve human efficiency, the algorithm must be automatic.
• New facets must be owned by exactly one Face.
• Support non-manifold Faces.
• Fast enough to use as a preprocessing module.
• Deformation of input model should be minimized.
• Creation of new triangles should be minimized.

The input to this algorithm is a set of Vertices, Edges, Faces, and Regions
with appropriate topological relationships. Faces and Edges are represented
by facets and edge elements that resolve their geometric entities to within
the facet tolerance. The boundary of each faceted face is not the same as the
face’s adjacent faceted Edges. The endpoints of adjacent faceted edges are
the same such that facet edges can be joined to form loops. The boundaries
of Regions are represented by the facets of their bounding Faces. The facet
tolerance is selected based on the feature size and required accuracy of the
faceted representation. The input model is faceted, implying that the facet
tolerance has previously been selected.

2.1 Preprocessing and Input to Sealing Algorithm

On input, the geometric model may not satisfy the local feature size assump-
tion; that is, the model may contain features that are smaller than the facet
tolerance input to the sealing algorithm. For example, the 40◦ section of the
ITER model, discussed in Section 4, has multiple Edges and Faces of near-
zero length and area, respectively. These features must be removed before the
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sealing process can start. Edges with length less than the facet tolerance are
removed by identifying their endpoints together; Edges that average less than
the facet tolerance apart from each other are merged together. Faces can be
removed if all of their bounding Edges occur in merged pairs. These faces are
approximately one-dimensional and are the result of imprinting neighboring
regions in the solid model. Regions are removed if all of their child faces have
been removed, though in practice this does not occur for any of the models
tested for this work.

One additional defect was identified for several faceted models used in
this work, where skin vertices were distinct but within geometric tolerance
(εg) of each other. This results in exactly two extra skin edges per defect. To
remedy this, skin vertices within εg of each other are merged. The search for
these defects is only within individual facets or facet edges, rather than all
geometrically proximate facet points, and therefore is relatively inexpensive,
scaling linearly with the number of facet edges.

After preprocessing is completed, we have the faceted geometric model
V/E/F/R (including toplogical relations between them), along with specifi-
cation of the geometric and faceting tolerances εg and εf , respectively.

2.2 Sealing

Given the input described in Section 2.1, the goal is to seal facets in the model
together, such that the facetings of the Faces, Edges, and Vertices satisfy the
requirements of a cell complex. That is, the intersections of points, edges, and
triangle facets should correspond to other points and edges in the faceting.

In this section, we present the sealing algorithm that is the primary subject
of this paper. The algorithm is presented in its entirety here; proof of its
success is discussed in the following Section.

The general structure of our algorithm is to work Face by Face, sealing
the skin of the Face’s faceting to the faceting of bounding Edges. We take
advantage of the known topological relations between Faces and their bound-
ing Edges and Vertices, and the correspondence between a Vertex, Edge or
Face and its faceting. The only remaining assumption describes the geometric
proximity of facet points, edges, and faces, with the geometric entities they
are supposed to resolve.

We describe the sealing algorithm in two parts. First, the higher-level
algorithm for sealing a Face faceting with that of bounding Edges is given in
Algorithm 1. This part of the algorithm has three main parts: a) matching
points on the skin of the Face faceting to the Vertex points; b) separating
the edges on the skin of the Face faceting into arcs Ωj , using the Vertex
points as separators; and c) for each arc Ωj , sealing the edges on that arc to
those of a corresponding Edge that bounds the Face; this last step requires
an algorithm seal, described in a following Algorithm. Part b) uses a function
doriented that computes the average distance between two ordered lists of facet
edges. This distance function is computed as the summed distance between
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parameterized points in both edge sequences normalized for edge length, as the
edges are traversed in their respective orders. This traversal direction-aware
measure will compute a significant distance between two sequences of edges
that are exactly spatially coincident but ordered in opposite directions. This
algorithm is necessary for distinguishing a number of pathological cases we
have observed in the facetings of various real geometric models.

In the second part of the algorithm, shown in Algorithm 2, the task is
to seal two sequences of facet edges. These sequences are ordered, such that
they share the facet point(s) at their start point and, if distinct, their end
point. Overall, this algorithm works by considering edges ee and es from the
Edge and skin sequences, respectively, that share a point, pc; and sealing them
together, either directly if the edges from either sequence are close enough in
length, or by splitting an edge in either sequence then sealing to one of the
resulting edges. A graphical depiction of the three cases is shown in Figure 2.

Algorithm 1 Face sealing algorithm.
I. ∀F i

a. ∀Vi ∈a F i

1. find e ∈ ΩF is.t. d(e,Vi) min
2. if d(p ∈adj e,Vi) min, choose p
3. else split e→ new p
4. p → V i

b. group ΩF i → ΩjF i using p ∈ Vk ∈adj F i

c. ∀ΩjF i = e
1. find Ek s.t. doriented(Ωj , Ek) min
2. if Ek not sealed yet, Ek → ΩjF i

3. else seal(ΩjF i, Ek)

Fig. 2: Three cases for sealing edges from two sequences of facet edges. a) Facet
edges are similar in length, and can be sealed directly; b) and c), split skin / edge
facets, respectively.
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Algorithm 2 Edge/skin sealing algorithm. otherpoint(e, p) is the point ad-
jacent to e not equal to p; for en, pn = next({e}, e, p), en is the next edge
along the ordered sequence of edges {e} that shares p; pn = otherpoint(en, p).
Begin: seal arc Ωj = {p}, {e}, Ek = {p}, {e}
I. Initialize:

a. pc = Ωstart(Ω
j)

b. es, ps = next(Ωj ,−, pc)
c. ee, pe = next(Ek,−, pc)

II. while Ωj not sealed
a. if pe = ps

1. ee ← es

2. Ωjsealed.
b. else if d(ps, pe) ≤ εf

1. pe ← ps

2. ee ← es

3. pc = pe

4. es, ps = next(Ωj , ee, pc)
5. ee, pe = next(Ek, ee, pc)

c. else if d(pe, es) ≤ εf
1. split es with pe, es → e1(pc, pe), e2(pe, ps)
2. pc = pe

3. ee, pe = next(Ek, ee, pc)
4. es = e2
(ps unchanged)

d. else if d(ps, ee) ≤ εf
1. split ee with ps, ee → e1(pc, ps), e2(ps, pe)
2. pc = ps

3. es, ps = next(Ωj , es, pc)
4. ee = e2
(pe unchanged)

2.3 Proof

Previous methods to obtain watertight faceting have in some cases relied
on user guidance. This type of guidance is impractical for the large models
encountered in our work. Therefore, automation is critical to practical use of
this algorithm. Although space does not allow a complete derivation of the
proof of reliability of our algorithm, we describe here the general structure of
this proof.

We develop the proof of reliability of this algorithm in four steps:

Can seal Vertices to points on Face skin: By definition, the Vertex facet
point p is located on the geometric model, and the facet edges in ΩF i are
within εf of the geometric Edges on ΩF . Because F i is a cell complex
and so is the geometric model itself, each Vertex point p will therefore
be within εf of ΩF i as well. p will be closest to only one point of ΩF i
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because LFS� εf . p can therefore always be sealed to ΩF i, possibly after
splitting one of the edges in ΩF i to insert a point closest to p.

Can separate ΩF i into ΩjF i: ΩF i is a cell complex, with points corre-
sponding to VεaF i sealed to ΩF i. Because the geometric model is also a
cell complex, these points will separate ΩF i into sequences of facet edges
ΩjF i, with each sequence bounded by one or two pεV,VεaF .

ΩjF i corresponds to Ek, EkεaF i: ΩΩj = V l, and F i and the geometric
model are cell complexes, each ΩjF i will correspond to one Ek, and Ek

are distinct because of the preprocessing done before execution of the
sealing algorithm.

Can seal ΩjF i with Ek: The facet points on ΩjF i and Ek are within εg
of the geometric model; the facet edges on ΩjF i and Ek are within εf
of the geometric model; and ΩjF i and Ek are ordered consistently with
each other. Therefore, similar to sealing the Vertices to ΩF i, the facetings
ΩjF i and Ek can be sealed together, possibly requiring splitting some of
the edges on ΩjF i or Ek.

When all Face facetings have been sealed to the facetings of their bounding
Edges, the whole model has been sealed.

3 Implementation

This algorithm is implemented in C++. Geometric models are initialized by
reading their faceting and geometric topology through CGM [9] into MOAB
[28]. MOAB represents the geometric model entities as entity sets in the mesh,
with the entity sets containing the facets defining the entity (Region sets are
empty, since there is no 3d mesh), and topological relations between entities
represented using parent/child relations between the sets.

The sequences of facet edges used in the algorithm described earlier are
represented only as ordered lists of facet points. Facet edges are not repre-
sented explicitly, since they are being modified frequently as sealing proceeds.
Spatial searches are accelerated using MOAB’s k-d tree decomposition.

The final results of sealing are represented in MOAB using the same geo-
metric entity sets used for input. This representation can be output to various
mesh formats, or can be left in MOAB for subsequent operations (e.g. facet
coarsening and refinement to generate FE meshes).

4 Results

Test models displayed in Figure 3 and listed in Table 1 were chosen from
previous radiation transport simulations. Models vary in complexity, with the
most intricate having more than 29 million triangular facets. Before being
sealed, five test models were already watertight by proximity. Although not
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topologically the same, skin points of adjacent faceted surfaces were within
the solid modeling engine’s absolute tolerance of each other. These models
were created using the ACIS solid modeling engine. Five test models did not
originate in ACIS and were not watertight by proximity, due to file format
translation, non-manifold surfaces, and imprecise modeling.

(a) ITER Module 13 (b) 40◦ ITER Benchmark

(c) FNG Benchmark (d) UW Nuclear Reactor

Fig. 3: Detailed CAD models were used to test the sealing algorithm.

Table 2 shows the number of Faces that failed to conform to their bounding
Edges after sealing, for various models and facet tolerances. Note that for
facet tolerances of 10−2 cm to 10−5 cm all but the ITER Benchmark model
were watertight. This includes the default facet tolerance of 10−3 cm. The
ITER Benchmark failed to completely seal because it contained many Faces
with features smaller than the facet tolerance, created by imprinting. Failures
occur if the facet tolerance becomes larger than the feature size, as in the
10−1 cm group.



Sealing Faceted Surfaces to Achieve Watertight CAD Models 13

Model Geometric Entity Facet Tolerance [cm]
Regions Faces Edges 10−1 10−2 10−3 10−4 10−5

UW Nuclear Reactor 2820 30237 65078 2.62 2.62 2.98 8.56 29.1
Advanced Test Reactor 2132 11827 22402 0.44 0.45 0.84 2.44 7.65
40◦ ITER Benchmark 902 9834 20485 0.32 0.78 2.07 8.76 16.3
ITER Test Blanket Module 71 4870 13625 0.07 0.08 0.12 0.38 1.57
ITER Module 4 155 4155 10255 0.29 0.29 0.34 1.07 2.89
ITER Module 13 146 2407 5553 0.28 0.29 0.50 2.54 8.65
FNG Fusion Benchmark 1162 4291 5134 0.11 0.11 0.14 0.46 1.14
ARIES First Wall 3 358 743 0.17 0.87 1.21 1.55 2.45
High Average Power Laser 15 139 272 0.15 0.47 0.53 0.61 0.88
Z-Pinch Fusion Reactor 24 95 143 0.05 0.29 0.99 1.17 1.53

Table 1: Geometric entity count and number of triangular facets [millions] as a
function of facet tolerance [cm].

Model Facet Tolerance [cm]
10−1 10−2 10−3 10−4 10−5

UW Nuclear Reactor 1019 0 0 0 0
Advanced Test Reactor 88 0 0 0 0
40◦ ITER Benchmark 18 9 0 18 191
ITER Test Blanket Module 0 0 0 0 0
ITER Module 4 0 0 0 0 0
ITER Module 13 2 0 0 0 0
FNG Fusion Benchmark 63 0 0 0 0
ARIES First Wall 1 0 0 0 0
High Average Power Laser 0 0 0 0 0
Z-Pinch Fusion Reactor 3 0 0 0 0

Table 2: Number of face sealing failures as a function of facet tolerance [cm].

4.1 Triangle Count

The speed of computations performed on the FBM is affected by the number of
triangles in the model. The number of triangles increases due to vertex-edge
contraction (since triangle facets connected to the edge are split with the
edge), but decreases due to vertex-vertex contraction of adjacent skin points
of the same face. For the default facet tolerance of 10−3 cm, the change in
the number of triangles ranged from 0% to 2%. Across the entire test suite
of ten models and five facet tolerances, the change in the number of triangles
ranged from -36% to 3%. A decrease in the number of triangles was common
for the 10−1 cm facet tolerance, since at that tolerance many facet points on
the same Face get merged.

During sealing, each Face imposes an additional constraint on adjacent
Edges. If the faceted Edge itself were to be sealed, it too would impose an
additional constraint on the sealing process. By replacing the faceted Edge
with a corresponding skin arc as suggested in Algorithm 1, the number of
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contraints on the edge is reduced by one. This decreases the number of addi-
tional triangles due to vertex-edge contractions.

4.2 Inverted Facets

When sealing, facets become inverted if a skin point is moved across an edge of
the facet. This typically occurs with long, narrow facets. Each inverted facet
is removed along with adjacent facets to create a polygon. The polygon is
refaceted using the ear clipping algorithm as implemented in [29], with O(n2)
time complexity, with n the number of points bounding the polygon. It is
possible that the new facets are still inverted. If so, the polygon is iteratively
expanded and refaceted until the new facets are no longer inverted. The poly-
gon can only be expanded to the skin of the Face, so that the new facets are
constrained to the skin. One can think of the Face skin as being owned by
Edges instead of the face. Inverted facets that cannot be fixed by this method
are a rare occurrence if the input model conforms to the input assumptions,
as suggested by Table 3. Although the ear clipping algorithm is O(n2), n is
typically small.

Model Facet Tolerance [cm]
10−1 10−2 10−3 10−4 10−5

UW Nuclear Reactor 272 0 1 0 13
Advanced Test Reactor 30 0 0 0 0
40◦ ITER Benchmark 7 7 4 0 10
ITER Test Blanket Module 0 0 0 0 0
ITER Module 4 0 0 0 0 0
ITER Module 13 2 0 0 0 0
FNG Fusion Benchmark 16 0 0 0 0
ARIES First Wall 0 0 0 0 0
High Average Power Laser 0 0 0 0 0
Z-Pinch Fusion Reactor 2 1 0 0 0

Table 3: The number of Faces containing inverted facets after sealing as a function
of facet tolerance [cm].

4.3 Timing

The implementation was executed on an Intel Xeon 3 GHz processor with 64
bit Linux. The sealing algorithm is intended to be used as a preprocessing
step for applications that use FBMs. Timing results are shown in Table 4.
Results do not include file reading and writing, because as part of an existing
application, the use of this algorithm will not incur additional runtime due to
file reading and writing. In general, sealing required less than one minute for
most models and facet tolerances.
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Model Facet Tolerance [cm]
10−1 10−2 10−3 10−4 10−5

UW Nuclear Reactor 136 65 64 156 587
Advanced Test Reactor 93 16 27 76 235
40◦ ITER Benchmark 6 12 38 71 236
ITER Test Blanket Module 15 9 9 14 30
ITER Module 4 10 8 8 23 67
ITER Module 13 6 5 6 19 67
FNG Fusion Benchmark 7 4 4 9 29
ARIES First Wall 1 3 5 13 36
High Average Power Laser 1 1 2 5 25
Z-Pinch Fusion Reactor 1 1 2 4 12

Table 4: The time [seconds] to seal each model as a function of facet tolerance [cm].

4.4 Application Example: Particle Tracking

This algorithm was developed, in part, to seal faceted CAD models for Monte
Carlo radiation transport. One of the causes of lost particles is leakage between
Faces. Figure 4 shows the lost particle fraction for each model before and after
sealing. The default facet tolerance of 10−3 cm was used for all models. The
ITER Benchmark, Test Blanket Module, Module 4, and Module 13 models lost
significantly fewer particles after sealing. Sealing did not significantly affect
the UW Nuclear Reactor, Advanced Test Reactor, FNG Fusion Benchmark,
ARIES First Wall, High Average Power Laser, and Z-Pinch Reactor models.
This reflects the input models, of which half were already watertight by node
proximity.

Sealing did not eliminate lost particles. The first three lost particles of
each sealed model were investigated. In each case the particles became lost
because of a specific defect in the particle tracking algorithm, unrelated to
watertightness. Improvement of the particle tracking algorithm is an active
research topic.

5 Conclusions

A tool was developed to make existing faceted models watertight without
human intervention. Faces were sealed to their bounding edges using vertex-
vertex and vertex-edge contraction. Because sealing progresses by Face, this
algorithm naturally supports non-manifold geometry. Ten CAD models were
tested over a 4 decade range of facet tolerances. Models were successfully
sealed if the input assumptions of the algorithm were met. It is assumed that
the facet tolerance is less than the feature size and greater than the merge
tolerance. On average, sealed models contained more triangles than unsealed
models as a result of vertex-edge contraction. Sealing can create inverted
facets, with most occurring when input assumptions are not met. Timing



16 Brandon M. Smith, Timothy J. Tautges, and Paul P.H. Wilson

Fig. 4: Lost particle fraction before and after sealing each model. Error bars indicate
one standard deviation.

results show that the algorithm is fast enough to be used in preprocessing
for applications that use faceted geometry. A particle tracking application
was used to test models before and after sealing. One cause of lost particles,
leakage between unsealed Faces, was eliminated through application of the
sealing algorithm. The cause of remaining lost particles was determined to be
roundoff and precision issues in the ray-triangle intersect computation; this is
the topic of further research.
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