A Metric for Automatic Hole Characterization

German Sanchez TJohn W. Branchand Pedro Atencio
1 Professor Faculty of Engineering, Systems Enginggfrogram, Magdalena
University, Colombia, E-mail: gsanchez@unimagdalktha.co

Professor school of system and informatics, facoityinas. National Uni-
versity of Colombia - Medellin, Colombia, E-mail:fmanch@unal.edu.co
Student of system and informatics school, facultsnmas. National Univer-
sity of Colombia - Medellin, Colombia, E-mail: pettisi@gmail.com

Summary: The correct repair of three-dimensional modelstils a1 open re-
search problem, since acquiring processes (methaoddechnology) still have li-
mitations. Although a wide range of approachesehla@en proposed, the main
limitation is that user intervention is requireddecide which regions of the sur-
face should be corrected. We propose an automatibad for hole characteriza-
tion enabling the classification of real and fads®malies without user interven-
tion by using an irregularity measure based on g@ometrical estimations: the
torsion contour’s estimation uncertainty, and amprapimation of geometrical
shape measure surrounding the hole.

Key Words: Curve torsion, entropy contour, Integration, suefaeconstruc-
tion.

1. Introduction

The shape reconstruction process requires estignatimathematical representa-
tion of an object's geometry using a measured datdrom the object [1]. Since
there is no an ideal sensor that does not altesdineples obtained, the process
should deal with general problems in order to gatgemodels as accurate as poss-
ible.

In context, there are many measuring drawbackbeératquisition step: topologi-
cal characteristic of the objects, sensor structphgsical properties of the ob-
ject’'s material, illumination conditions, among eth. These inadequacies
represent the main source of anomaly generatiahjrarst be repaired in order to
create a valid digital model [2].

The anomalies could be classified into three typesse, holes artifacts and re-
dundancy. Typically, these anomalies are repaired phase called Integration
[3]. Whatever the anomaly type is, the processotoect it corresponds to a wide
studying area, with many proposed techniques. Heweworrecting an anomaly is
still considered an open problem inside the Compiision and Computer
Graphics Community. The difficulty lies, in some essin the fact that exact na-
ture of the anomaly’s source is undetermined omomln, i.e. the noise distribu-
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tion function [4], or its modeling is complex ande$ not have an unique solution,
i.e. the filling of holes.

The classical reconstruction methods need to apphpst-processing procedure
after the final stage of surface-fitting. This isimly due to the difficulty in diffe-
rentiating the nature of the discontinuity, thatvidhether or not it belongs to the
actual surface (see Figure 1).

()

Figure 1. Examples of surface discontinuity, adgl discontinuities, c) false dis-
continuity.

One of the main desirable features in surface rgooction methods is the ability
to fill holes or to complete missing regions. Ladknformation is caused mainly
by the reflective properties of the material, ordeglusion problems in regions in-
accessible to the sensor.

Some methods make an implicit correction during fitimg phase by means of
global reconstruction [1] [5]. This approach ha tdisadvantages: First, it does
not permit to keep or represent false holes,those belonging to the object, and
second, the quality of the portion generated dependhe technique used and not
on the analysis of the intrinsic geometry of thgeob While taking the surface as
continuum and complete, these techniques reprodistglly appropriate solu-
tions. However, the correction of these anomabiestill limited to particular cases
when objects are closed.

A wide range of works has been proposed, manyeshtban be classified accord-
ing to the representation used in the initial dategch as mesh repair techniques
and dispersed data. However, other classificatcams be made according to the
conceptual nature of the used technique: basedeometry, algebraic methods
and implicit functions.
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Hole Detection

For the process of identifying holes, the most $&gnd functional procedure,
with great ease of implementation consists in teithat a discontinuity an the
surface is easily defined as a succession of boyretiges. A boundary edge is
defined as a triangle edge that is not shared lpyo#trer triangle. The procedure
begins with a general search on the mesh to finthitial boundary triangle [6].
The search continues with the neighboring triantgleking for the next boundary
edge which must shared a vertex with the initiagleedThe process goes on, until
the initial triangle is reached. Finally, a clogeath that defines the hole contour
is traced.

The most important weakness of this simple proaedtuthat is limited to detect-
ing any discontinuities but does not differentib&dween real and false holes, be-
cause it assumes a whole closed object surface.

Filling Holes

After the identification procedure is applied, th@e-filling procedure continues
by means of surface segment generation, for wrddferent techniques have
been proposed [7] [8] [9] [10] [11] [12] [13] [14T-here are two general trends in
the group of geometry-based techniques: repairdoasdriangles meshes and re-
pair based on voxels. Liepa [6] describes a mefoodilling holes in meshes
based on Delaunay Triangulations of the hole, aftexfinement approach to mesh
optimization by minimizing an energy functionalatdd to the neighbor curvature
estimation. Branch J, [14] filled the holes basimgthe local interpolation of the
radial basis function. A new segment is generatezt @ regular and symmetric
mesh taking the original point-set density. Thipraach correctly reproduces the
general geometry of the neighborhood hole contotiitifails when a planar sur-
face contains the hole. Wei [15] proposed an algarifor filling holes that starts
with a hole identification phase and then appliégamgulation of the hole region
using the Advancing Front Method. Finally, by sotya Poisson equation, the
vertex of the generated triangles is adjusted. Altfh adequate visual results are
obtained with this procedure, it is time costly aleghends on the size of the hole.

Voxel-based approaches estimate an initial surfetemetric representation by
voxel-set. These voxel units are marked with a siggording to their relative po-
sition to the surface, that is, inside or outsile surface. Different techniques
have emerged to fill the hole in the volumetricaaCurless [16] proposed a me-
thod based on volumetric diffusion consisting oflistance function estimation
which is used to mark the voxel, and then diffas®applied through the volume
to find the zero-set that define the surface. Ailsimrapproach is proposed by Da-
vis [8]. Ju [17] proposed a method of contour stefaeconstruction by marking
the voxel using an Octree data structure. The pieeis able to fill small gaps,
taking into account geometric characteristics. fian limitation is that the hole
size must be smaller than the relative surface. s&enilarly, Joshua [10] de-
scribes an algorithm for hole-filling based on spdecomposition by atomic vo-
lume regions and defines the model as the uniomredr atomic units using a
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graph cut. User intervention is required to sefleetway to fill the hole. Chun [18]
describes a two-phases approach to 3D model réffarfirst phase, a radial ba-
sis function interpolation is used to fill the regiinside the hole; the second one
is a post-processing stage to refine the geomettail. In the refinement stage
the normals are adjusted to produce adequate vissials.

We can conclude that hole-repairing methods ariealp part of a pre-process of
the surface fitting step, to get an accurate remtasion of the geometrical charac-
teristics. In order to correctly fill those holesmanual-assisted correction proce-
dure is needed. Generally, this manual-assistecedwoe has been based on both
geometric and mathematical concepts. Their mosbitapt weakness lies in its
application-domain limited nature, mainly due teitmarrow flexibility in objects
with different topologies.

In this paper, we propose a metric for robust loblaracterization in 3D models.
This metric intends to characterize holes througbngetric features measures.
Our hypothesis is based on a widely accepted dieiinj19]: free-form objects are
smooth except in regions that represent specificrgdric details. Hence, if there
are not any problems in the acquisition stage)se feontour anomaly should not
have large geometric variations; otherwise, it ddug caused by problems in the
acquisition stage and constitute an anomaly t@paired.

Thus, if there were any problems during the actjaisprocess then the data is al-
tered introducing distortion that should not be ador the segments that define
the anomaly. That is, acquisition problems intradlsome degree of "contour dis-
tortion”. The characterization of each anomaly ésdxdl on the quantification of
this distortion, which for this particular caseajgproximated by a quantification of
the entropy in the boundary geometry.

The paper is organized as follows: section 2 intoed the topic of anomalies cha-
racterization; section 3 describes the hole contesgjularity measure; section 4
describes the proposed contour’s irregularity; aadtion 5 presents the experi-
mental design and results.

2. Anomalies Characterization

The main problem for the automatic repair of hateso differentiate whether or
not the discontinuity belongs to the object. Irstbontext, the key difference be-
tween 3D scattered data and other data types suthages or video, is that 3D
scattered data are typically irregularly sampldak Points’ distribution of vertices
across the surface is not uniform, so to quantifiyesure it must be robust under
different distribution of points.

In order to get the most accurate estimation ofititegularity of a hole we pro-
pose a metric that measures the hole’s most imypageometrical features from
two points of view: surface irregularity around tmae, and contour curve irregu-
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larity measure from the torsion and curvature entrépgummary of the gener
diagram is shown in Figure

/\

Context irregularity measure | [ Contour irregularity measure

~ High entropy
A 4 \ 4

| Is an anomal | | Is a falsthole

Figure 2. Diagram of ha characterizatic.
3. Hole’s context irregularity measure

Initially, it starts making a cluster environmemadysis by regions variabilit
quantification around the holFor each oneof clustes, the centroid is taken tcs-
timate a shape descripticby geometrice-topological propertie. Therefore, his
stage mplements a general technique of clustering byoregirowing. The alo-
rithm starts calculating a prior estimation of cmwe at each point of surfac6].
It is approximated by principal component analystisained resolving the ca-
riance matrixso hat

1
n—1

mc =

> i-p @ - ®
i=1

where n is the neighborhood size p, andp is the centroid of each clus and is
defined following equatic:

2R
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The curvature estimation is approximate by3, like in [2€]:
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Note that the eigenvector associated withindicates the low variation direction
of the data, therefore, aims to approximate thenabwector of the surface in the
pointp, so thatc indicates quantitatively the variation of the sid tangent
plane, and it constitutes a measure of the vanaifdhe surface.

Once the approximation of the curve is obtained, rixt step is to compute a
clustering of surfaces, so that the variance ohe#gster does not exceed a fixed
threshold3. The general description of this procedure is¢me=d in Algorithm 1
and an example in Figure 3.

Algorithm 1: Clustering and center selection of eoniment.

Center selection ()

Take a Pk random seed point and create a new rclDste
hile(Nota Il point are clustering)
dd a vertex Vle Nci successively to C, while Vcif; where Nci is a radi-
I neighborhood of Ci and Vci is the estimation afignce of cluster Ci.
ndwhile

Figure 3. Cluster contour result.

In this work we only use the curvature approximatior clustering the point set

around the hole-contour. However, the classicdbsaercurvature measures, such
as the Gaussian and the mean curvature at a gargwface, are not very indica-

tive of local shape. Hence, we used a measuregémdient of the size of the sur-
face so it is locally described as shape of théasar The shape index [20] is a
measure that describes the second order structuhe surface in the neighbor-

hood of any one of its points. This is thus estadats follow:

2 Ky + ky
s = —arctan
T kz - k1

(4)

Wherek, > k, are theprincipal curvatures, and s € [—1, +1] except for the pla-
nar region that has an indeterminate shape indestrder to obtain a global hole-
contour description, an average shape-index ofarus estimated, due to the fact
that shape-index is a point measure. So, the ddrgh@ape-index of each cluster
is thus:
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Where,s; is a shap-index of the clust¢c;, andc; € C is the set ok cluster (set
Figure 4). The poirset of siz N = p,,...py, such thap; is the amount of pois
of the clustei. In general, this corresponds tshap+~index averag, weighted by
the amount of poirsin eachcluster
Hole contour
/ -

centroid -

cluster

Figure 4.Poins’ selectiol for index-shap: estimation

4. Measure ofContour’s irregularity

In this step we are intered in measuing the geomeical characteristic of th
contour curvei.e. its mean its curvature and its torsic The aim of these esta-
tions is to quantify its irregularity by meaof the uncertainty using the entro
measure

Contours’ torsionEntropy Measurt

The two fundamental characteristics of a curve areutyature and torsion; ese
allow tomeasure how a curve bends inside the 3D spacefoherit constitutes
curve’s particular characteristic. Often, we assdrthatdiscontinuou contour
curves insmooth objects without acquisition problem are stimdoo.

Contour bens give us a measure of irregularity. However, estinggthe accurate
torsion value of a sample curve, defined by a pigse linear approximatio
through an ordered finite collecticof points { p;}, is not a trivialtasksince nois¢
is present. i.e., the poinp; stay too close to the curve, but not necessaglyii
it.

In order to approximate a correct classificatiorcafitour curves, we used ther-
sion measure. For spatial cu the torsion is defined bB’(s) = t(s)N(s)
where N(s) = r"’(s)/||r"’(s)|| is the normal vector, s is the -length from a se-
cific positionr(t,) given by a parametric curr, to a close positior(t;) and ce-
fined bys(ty) = fttolllr’(u)ll du (see Figure 5). For a n arclength
rizec r(t), t(s) is thus estimate:
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(rl X rll) . rlll
I xr”||?

7(s) = — (6)

Figure 5. Normal, tangent and osculating plane.
To estimate the torsion we adopt the weighted legstires approach and local
arc-length approximation [22] [23] [24]. It consid a samples-sép;} from a

spatial curve. The estimation of derivatesroét p, is performed with a point-
subsetP of 2q + 1 points such that (see Figure 6):

P ={p_g,P-gs1, - D}

P-q
H(8)=(X(s), ¥(s), 2(5) )
Pq

Figure 6. Weight least square curve.

Then a parametric cun(&(s), §(s), Z(s)) is fitted locally, assuming,-r, and an
arc-lengths;value associated to the sampbes

~ I 1 " 2 1 " 3
x(s)=x0+x0-si+§x0 - S +Ex° - S;
~ ! 1 " 2 1 " 3
3’(5)=)’0+3’0‘5+§3’0 Y +g3’0 Y )
N 1] 1 1 2 1 nr 3
z(s)=zo+zo-s+izo-si +gz0 - S;

Takingx coordinate, the derivates), x;, x’ are obtained minimizing [21]:
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1 " "r c 1 1 " 2 1 nr 3 :
Ex(x0,X0,%0") = Z Wi (Xi — XpSj _EXO (s) _gxo (si) ) (8)
i=—q
Wherew; = 1, s; = Y15 llpk — Prsll» pi € R3. It can be written in terms of ma-
trix inversion:

A-x=Db )

A similar approach is used to estimate %h@dy derivates getting the vectors:

Yo 2
Y=y 2=z
y(l)H Z(I)ll
From the equations system:
A-x=Db
A-y=hb (10)
A-z=Db

here,

14 12
4 33 X0 Yo yo | =|[bxz byz bz

a; a, ay X Yo Yo by1 by: by

as .
nr mnr mnr

a4 35 Ag X0 Yo Yo bys bys by

Thea; values and, ; are defined thus:

q q q
_ 2 _1 3 _1 4
a, = W,:SL' a, = E Wisl' as = Z Wisl'
i=— i=— i=—q
q q q
a —lz:ws4 a iZw-s:’ a 1z:ws6
4 6 (241 5 12' (2] 6 36 [
i=—q i=—q i=—q
q q q

i=—q i=—q i=—q
q q q
1 2 1
bzlzzwtslzt bzzzzzwisi Zj bz3:EZW151 Zj
i=—q i=—q i=—q
Finally, it defines:
X6 x(/)/ X(’)”
r_ I " " " "
o =1|Yo o =|Yo o =1[Yo
’ " "
Zg Zg Zg
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The computation of(s) is straightforward, thus:

III

oy = XD
° llrg % ro”ll2
Due to their nature, hole-characterization problemggest solutions based on in-
ference, since it needs a process of drawing csitela from available informa-
tion that is partial, insufficient and that doed atlow to reach an unequivocal,
optimal and unique solution. Then we need to makerénces from the available
data assuming it is noisy. Specifically, the topfchole characterization consti-
tutes a highly ambiguous example to take decidi@tsiuse there are many possi-
ble configurations of irregular contours. Both aspenoise and ambiguity imply
taking uncertainty in account.
The adequate way to deal with the presence of taiogy, related to lack of in-
formation, is to introduce assumptions about theblgm’s domain om priori
knowledge about the data, by means of the notiategfees of belief. It should be
treated using the classical rules of calculus obpbilities. The rules of probabili-
ty theory allow us to assign probabilities to scfoemplex" propositions on the
basis of the probabilities that have been previoassigned to other, perhaps
more "elementary” propositions. However, in ordeestimate a measure to cha-
racterize contours, we are not interested in jusbability estimation about a
geometrical characteristic, but also in its vatigbi High variability could be
measured through entropy. Specifically, conditicerattopy is used.

Given two variableg andy, theS,,, quantity that measures the amount of uncer-
tainty about one variable x when we have some dichinformation about another
variabley is conditional entropy [25]. It is obtained byladating the entropy of

x as if the precise value gf were known and then taking the expectation dver t
possible values of y.

Sxly = Z Py 5[pXIy Z Py Z Dy 108 (Px|y)

In a similar way,
xly Z Pxy log (pxly) (12)

Given a sequence af points P:p; € R3 forming the contour of a 3D curve de-
fining an anomaly, and a setof geometrical characteristic measured associated
to each one i?. We want to measure the irregularitygrfrom a prior knowledge

of some geometrical characteristic measure. It s\@e certainty a point; is es-
timated taken d -sety;: {p,:i — 1l —1 < k <i— 1} over a sorted sequence of
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points used to estimate the next value. The caytainin inverse form, the unpre-
dictably of ally; is related to entropy.
n

Sp = —Z p(@i, Ylog (p(@:il¥) (12)
i
Where i;: {(pi—(l+1)’§0i—l' o Pi2, 9"i—1}‘ and:
! )
o =1(p) = _W'

Contours’ curvature Measure

The principal limitation of a descriptor based orston measure is deal with pla-
nar curves. Planar curves may appear as a resaottchisions; although these are
uncommon the torsion based decision is inapprapriatowever, in order to com-
pleteness, our metric take into account those casgsise for planar cases a tan-
gent vector variability measure like irregularity.

For anomalies in planar cases the tangent vatyahiBually is high, otherwise,
real holes show smooth changes between tangertsgsge Figure 7).

AN

b)

%
c) d)

Figure 7. Tangent vector (Red) variability for apBon object and b) eye contour
from Mask, c-d) close view of both cases respeltive

To estimate this measure, we take the weighted $spgres approach and local
arc-length approximation made in the section 4.g€am vector is defineB(t) =

N(s) x B(s), or in derivates termB(t) = IIZ’EZII . We estimate the entrosy of
angle between successive tangents like the equi®ipreplacing the torsions dis-
tributions by angle between tangents distributibnd finally quantify the global

entropy of the contows, by:

Sc =S¢ + St (13)

Finally,
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Irregularity = ||SI||(S,, + St)

For undefined cases &fl it means for planar case, themeasure is an accurate
estimation of irregularity.

5. Experiment Design and Result

In order to estimate ths,, and p,|,, quantity given a continuous variable of tor-
sion measure, we used a bin size discrete the domain of an experimental set of
hole-contour configurations. The experimental satwbtained from 10 images
with real hole anomaly and 10 contours of falseetaiomaly, in partial and com-
plete 3d models’ range data. Some images weressttateaintain a fixed scale. It
was done by subtracting the mean and dividing bystandard deviation. The pa-
rameter r was set to 10% of standard deviationnaset to 2. The irregularity was
estimated with equation 13. Figure 8 shows thedarity estimated for both sets.
It shows that the irregularity measure is highlgsseéve to the irregularities in the
contour. Determining if an anomaly is real or failsetraightforward because the
values are sufficiently separated. The midpointhef range of separation is 3.1.
The experimental threshold for classification wsisneated in this value.

10

~ O 00

Figure 8. Irregularity values of false (blues) aadl anomalies (red).

The irregularity could increase when increasedstigaration of the data. The me-
thod is highly sensitive to noise; small changeshia regularity of the contour

show an equal increase in the estimation of entrdpis method can be used as
an initial step in the process of correcting andesalWe aim to complement the
method with the filling process to propose an awttienrobust method to correct
anomalies.
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The proposed method allows to estimate a metri¢Herautomatic classification
of anomalies in range images. The purpose of thbaedds to automate a process
that has traditionally required user interventibhe method estimates the most re-
levant geometric characteristics of curves andased to describe them.

The anomalies used as the working set were mostigrated by occlusion.
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