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Summary: The correct repair of three-dimensional models is still an open re-
search problem, since acquiring processes (methods and technology) still have li-
mitations.  Although a wide range of approaches have been proposed, the main 
limitation is that user intervention is required to decide which regions of the sur-
face should be corrected. We propose an automatic method for hole characteriza-
tion enabling the classification of real and false anomalies without user interven-
tion by using an irregularity measure based on two geometrical estimations: the 
torsion contour’s estimation uncertainty, and an approximation of geometrical 
shape measure surrounding the hole. 
 
Key Words:  Curve torsion, entropy contour, Integration, surface reconstruc-
tion. 
 
1. Introduction 
 
The shape reconstruction process requires estimating a mathematical representa-
tion of an object’s geometry using a measured data-set from the object [1]. Since 
there is no an ideal sensor that does not alter the samples obtained, the process 
should deal with general problems in order to generate models as accurate as poss-
ible. 
In context, there are many measuring drawbacks in the acquisition step: topologi-
cal characteristic of the objects, sensor structure, physical properties of the ob-
ject’s material, illumination conditions, among others. These inadequacies 
represent the main source of anomaly generation, and must be repaired in order to 
create a valid digital model [2].  
The anomalies could be classified into three types: noise, holes artifacts and re-
dundancy. Typically, these anomalies are repaired in a phase called Integration 
[3]. Whatever the anomaly type is, the process to correct it corresponds to a wide 
studying area, with many proposed techniques. However, correcting an anomaly is 
still considered an open problem inside the Computer Vision and Computer 
Graphics Community. The difficulty lies, in some cases, in the fact that exact na-
ture of the anomaly’s source is undetermined or unknown, i.e. the noise distribu-
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tion function [4], or its modeling is complex and does not have an unique solution, 
i.e. the filling of holes.  
The classical reconstruction methods need to apply a post-processing procedure 
after the final stage of surface-fitting. This is mainly due to the difficulty in diffe-
rentiating the nature of the discontinuity, that is, whether or not it belongs to the 
actual surface (see Figure 1). 
 

  
(a) (b) 

  
(c)  

Figure 1. Examples of surface discontinuity, a-b) real discontinuities, c) false dis-
continuity.  

 
One of the main desirable features in surface reconstruction methods is the ability 
to fill holes or to complete missing regions.  Lack of information is caused mainly 
by the reflective properties of the material, or by occlusion problems in regions in-
accessible to the sensor. 
Some methods make an implicit correction during the fitting phase by means of 
global reconstruction [1] [5]. This approach has two disadvantages: First, it does 
not permit to keep or represent false holes, i.e. those belonging to the object, and 
second, the quality of the portion generated depends on the technique used and not 
on the analysis of the intrinsic geometry of the object. While taking the surface as 
continuum and complete, these techniques reproduce visually appropriate solu-
tions. However, the correction of these anomalies is still limited to particular cases 
when objects are closed. 
A wide range of works has been proposed, many of them can be classified accord-
ing to the representation used in the initial data, such as mesh repair techniques 
and dispersed data. However, other classifications can be made according to the 
conceptual nature of the used technique: based on geometry, algebraic methods 
and implicit functions. 
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Hole Detection 
For the process of identifying holes, the most simple and functional procedure, 
with great ease of implementation consists in the idea that a discontinuity an the 
surface is easily defined as a succession of boundary edges. A boundary edge is 
defined as a triangle edge that is not shared by any other triangle. The procedure 
begins with a general search on the mesh to find an initial boundary triangle [6]. 
The search continues with the neighboring triangles looking for the next boundary 
edge which must shared a vertex with the initial edge. The process goes on, until 
the initial triangle is reached. Finally,  a closed path that defines the hole contour 
is traced. 
The most important weakness of this simple procedure is that is limited to detect-
ing any discontinuities but does not differentiate between real and false holes, be-
cause it assumes a whole closed object surface. 
 
Filling Holes 
After the identification procedure is applied, the hole-filling procedure continues 
by means of surface segment generation, for which, different techniques have 
been proposed [7] [8] [9] [10] [11] [12] [13] [14]. There are two general trends in 
the group of geometry-based techniques: repair based on triangles meshes and re-
pair based on voxels.  Liepa [6] describes a method for filling holes in meshes 
based on Delaunay Triangulations of the hole, after a refinement approach to mesh 
optimization by minimizing an energy functional related to the neighbor curvature 
estimation.  Branch J, [14] filled the holes basing on the local interpolation of the 
radial basis function. A new segment is generated over a regular and symmetric 
mesh taking the original point-set density. This approach correctly reproduces the 
general geometry of the neighborhood hole contour but it fails when a planar sur-
face contains the hole. Wei [15] proposed an algorithm for filling holes that starts 
with a hole identification phase and then applies a triangulation of the hole region 
using the Advancing Front Method.  Finally, by solving a Poisson equation, the 
vertex of the generated triangles is adjusted. Although adequate visual results are 
obtained with this procedure, it is time costly and depends on the size of the hole. 
  
Voxel-based approaches estimate an initial surface volumetric representation by 
voxel-set. These voxel units are marked with a sign according to their relative po-
sition to the surface, that is, inside or outside the surface. Different techniques 
have emerged to fill the hole in the volumetric space. Curless [16] proposed a me-
thod based on volumetric diffusion consisting of a distance function estimation 
which is used to mark the voxel, and then  diffusion is applied through the volume 
to find the zero-set that define the surface. A similar approach is proposed by Da-
vis [8]. Ju [17] proposed a method of contour surface reconstruction by marking 
the voxel using an Octree data structure. The procedure is able to fill small gaps, 
taking into account geometric characteristics. The main limitation is that the hole 
size must be smaller than the relative surface size.  Similarly, Joshua [10] de-
scribes an algorithm for hole-filling based on space decomposition by atomic vo-
lume regions and defines the model as the union of inner atomic units using a 
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graph cut. User intervention is required to select the way to fill the hole. Chun [18] 
describes a two-phases  approach to 3D model repair. The first phase, a radial ba-
sis function interpolation is used to fill the region inside the hole; the second one 
is a post-processing stage to refine the geometrical detail. In the refinement stage 
the normals are adjusted to produce adequate visual results. 
 
We can conclude that hole-repairing methods are typically part of a pre-process of 
the surface fitting step, to get an accurate representation of the geometrical charac-
teristics. In order to correctly fill those holes, a manual-assisted correction proce-
dure is needed. Generally, this manual-assisted procedure has been based on both 
geometric and mathematical concepts. Their most important weakness lies in its 
application-domain limited nature, mainly due to their narrow flexibility in objects 
with different topologies. 
In this paper, we propose a metric for robust hole characterization in 3D models. 
This metric intends to characterize holes through geometric features measures. 
Our hypothesis is based on a widely accepted definition [19]: free-form objects are 
smooth except in regions that represent specific geometric details. Hence, if there 
are not any problems in the acquisition stage, a false contour anomaly should not 
have large geometric variations; otherwise, it could be caused by problems in the 
acquisition stage and constitute an anomaly to be repaired. 
 
Thus, if there were any problems during the acquisition process then the data is al-
tered introducing distortion that should not be equal for the segments that define 
the anomaly. That is, acquisition problems introduce some degree of "contour dis-
tortion”. The characterization of each anomaly is based on the quantification of 
this distortion, which for this particular case is approximated by a quantification of 
the entropy in the boundary geometry. 
 
The paper is organized as follows: section 2 introduces the topic of anomalies cha-
racterization; section 3 describes the hole context irregularity measure; section 4 
describes the proposed contour’s irregularity; and section 5 presents the experi-
mental design and results. 
 
2. Anomalies Characterization 
 
The main problem for the automatic repair of holes is to differentiate whether or 
not the discontinuity belongs to the object. In this context, the key difference be-
tween 3D scattered data and other data types such as images or video, is that 3D 
scattered data are typically irregularly sampled. The points’ distribution of vertices 
across the surface is not uniform, so to quantify a measure it must be robust under 
different distribution of points.  
In order to get the most accurate estimation of the irregularity of a hole we pro-
pose a metric that measures the hole´s most important geometrical features from 
two points of view: surface irregularity around the hole, and contour curve irregu-
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Note that the eigenvector associated with λ� indicates the low variation direction 
of the data, therefore, aims to approximate the normal vector of the surface in the 
point � , so that  � indicates quantitatively the variation of the surface tangent 
plane, and it constitutes a measure of the variation of the surface. 
 
Once the approximation of the curve is obtained, the next step is to compute a 
clustering of surfaces, so that the variance of each cluster does not exceed a fixed 
threshold β. The general description of this procedure is presented in Algorithm 1 
and an example in Figure 3.  

Algorithm 1: Clustering and center selection of environment. 

Center selection ( ) 
Take a Pk random seed point and create a new cluster Ci. 
while(Nota ll point are clustering) 
Add a vertex Vk є Nci successively to C, while Vci < β, where Nci is a radi-
al neighborhood of Ci and Vci is the estimation of variance of cluster Ci. 
Endwhile 

 

 
Figure 3. Cluster contour result. 

In this work we only use the curvature approximation for clustering the point set 
around the hole-contour. However, the classical surface curvature measures, such 
as the Gaussian and the mean curvature at a point of a surface, are not very indica-
tive of local shape. Hence, we used a measured independent of the size of the sur-
face so it is locally described as shape of the surface. The shape index [20] is a 
measure that describes the second order structure of the surface in the neighbor-
hood of any one of its points. This is thus estimated as follow: 

� = 2 arctan &� + &�&� − &� (4) 

Where k� ≥ k� are the principal curvatures, and  s ∈ ,−1, +1. except for the pla-
nar region that has an indeterminate shape index. In order to obtain a global hole-
contour description, an average shape-index of cluster is estimated, due to the fact 
that shape-index is a point measure. So, the centroid shape-index of each cluster i 
is thus: 
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G��� = − �H2 × H22� ⋅ H222‖H2 × H22‖�  (6) 

 

Figure 5. Normal, tangent and osculating plane. 

To estimate the torsion we adopt the weighted least squares approach and local 
arc-length approximation [22] [23] [24].  It considers a samples-set Cp;D from a 
spatial curve. The estimation of derivates of  r at  p� is performed with a point-
subset  K of 2q + 1 points such that (see Figure 6): 
 K = M�NO, �NO��, … , �OQ. 
 

 

Figure 6. Weight least square curve.  

Then a parametric curve �xS�s�, yS�s�, zS�s)) is fitted locally, assuming p��r� and an 
arc-length s;value associated to the samples p;:  

VS��� = V� + V�2 ⋅ � + 12 V�22 ⋅ �� + 16 V�222 ⋅ �� 

XS��� = X� + X�2 ⋅ � + 12 X�22 ⋅ �� + 16 X�222 ⋅ �� 

Ŷ��� = Y� + Y�2 ⋅ � + 12 Y�22 ⋅ �� + 16 Y�222 ⋅ �� 

(7) 

Taking VS coordinate, the derivates  x�2 , x�22, x�222 are obtained minimizing [21]: 
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E\�x�2 , x�22, x�222� = � w; ^x; − x�2 s; − 12 x�22�s;�� − 16 x�222�s;��_�`
;�N`

 (8) 

Where w; = 1, s; = ∑ ‖pb − pb��‖;N�b��  , p; ∈ ℝ�. It can be written in terms of ma-
trix inversion: 

d ⋅ e = f (9) 

A similar approach is used to estimate the  and X derivates getting the vectors: 

g = h  X�2 X�22 X�222i j = h  Y�2 Y�22 Y�222i 

From the equations system: 

kd ⋅ e = fd ⋅ l = fd ⋅ j = fm (10) 

here, 

na� a� aoa� a� apao ap aqr ⋅ h  V�2  X�2  X�2 V�22  X�22  X�22 V�222  X�222  X�222i = hb\,� bt,� bu,�b\,� bt,� bu,�b\,� bt,� bu,�
i 

 
The a; values and b\,; are defined thus: 
 

v� = � w��
O

�NO   v� = 12 � w��
O

�NO   v� = 14 � w�o
O

�NO  

vo = 16 � w�o
O

�NO  vp = 112 � w�p
O

�NO  vq = 136 � w�q
O

�NO  

 

z{,� = � w�
O

�NO
V z{,� = 12 � w��

O
�NO

V z{,� = 16 � w��
O

�NO
V 

z|,� = � w�
O

�NO
X z|,� = 12 � w��

O
�NO

X z|,� = 16 � w��
O

�NO
X 

z},� = � w�
O

�NO
Y z},� = 12 � w��

O
�NO

Y z},� = 16 � w��
O

�NO
Y 

 
Finally, it defines: 

H�2 = h V�2 X�2 Y�2
i H�22 = h V�22 X�22 Y�22i H�222 = h V�222 X�222 Y�222i 
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The computation of G��� is straightforward, thus: 
 

G���� = − �H�2 × H�22� ⋅ H�222‖H�2 × H�22‖�  

Due to their nature, hole-characterization problems suggest solutions based on in-
ference, since it needs a process of drawing conclusions from available informa-
tion that is partial, insufficient and that does not allow to reach an unequivocal, 
optimal and unique solution. Then we need to make inferences from the available 
data assuming it is noisy. Specifically, the topic of hole characterization consti-
tutes a highly ambiguous example to take decisions because there are many possi-
ble configurations of irregular contours. Both aspects, noise and ambiguity imply 
taking uncertainty in account.  
The adequate way to deal with the presence of uncertainty, related to lack of in-
formation, is to introduce assumptions about the problem’s domain or a priori 
knowledge about the data, by means of the notion of degrees of belief. It should be 
treated using the classical rules of calculus of probabilities. The rules of probabili-
ty theory allow us to assign probabilities to some "complex" propositions on the 
basis of the probabilities that have been previously assigned to other, perhaps 
more "elementary" propositions. However, in order to estimate a measure to cha-
racterize contours, we are not interested in just probability estimation about a 
geometrical characteristic, but also in its variability. High variability could be 
measured through entropy. Specifically, conditional entropy is used.  
 
Given two variables V and X, the 8{|| quantity that measures the amount of uncer-
tainty about one variable x when we have some limited information about another 
variable X  is conditional entropy [25]. It is obtained by calculating the entropy of V as if the precise value of X  were known and then taking the expectation over the 
possible values of y. 

8{|| = − � �|| 8��{||� = − � �|| � �{||{ log ��{||� 

In a similar way, 

8{|| = − � �{|{,| log ��{||� (11) 

Given a sequence of �  points  K: � ∈ ℝ� forming the contour of a 3D curve de-
fining an anomaly, and a set � of geometrical characteristic measured associated 
to each one in K. We want to measure the irregularity in � from a prior knowledge 
of some geometrical characteristic measure. It means, the certainty a point � is es-
timated taken a � -set �: C�A: � − � − 1 < & < � − 1D over a sorted sequence of 
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points used to estimate the next value. The certainty or in inverse form, the unpre-
dictably of all � is related to entropy.  

8� = − � ��� , ��log ����|����
  (12) 

 
Where  �: M�N�����, �N� , … , �N�, �N�Q, and: 
 � = G��� = − ���×����⋅����

‖��×���‖	  . 

 
Contours’ curvature Measure 

The principal limitation of a descriptor based on torsion measure is deal with pla-
nar curves. Planar curves may appear as a result of occlusions; although these are 
uncommon the torsion based decision is inappropriate.  However, in order to com-
pleteness, our metric take into account those cases and use for planar cases a tan-
gent vector variability measure like irregularity. 

For anomalies in planar cases the tangent variability usually is high, otherwise, 
real holes show smooth changes between tangents angles (see Figure 7). 

  
a) b) 

  
c) d) 

Figure 7. Tangent vector (Red) variability for a) Dragon object and b) eye contour 
from Mask, c-d) close view of both cases respectively. 

To estimate this measure, we take the weighted least squares approach and local 
arc-length approximation made in the section 4. Tangent vector is defines ���� =@��� × ����, or in derivates terms ���� = �����‖�����‖ . We estimate the entropy 8� of 

angle between successive tangents like the equation 12, replacing the torsions dis-
tributions by angle between tangents distribution. And finally quantify the global 
entropy of the contour 8� by: 

S� = S� + S� (13) 

Finally,  
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9HH��?�vH��X = ‖89= ‖�8� + 8�� 

 
For undefined cases of  SI��� it means for planar case, the S5 measure is an accurate 
estimation of irregularity. 
 
5. Experiment Design and Result 
In order to estimate the �{| and  �{|| quantity given a continuous variable of tor-
sion measure, we used a bin size H to discrete the domain of an experimental set of 
hole-contour configurations. The experimental set was obtained from 10 images 
with real hole anomaly and 10 contours of false hole anomaly, in partial and com-
plete 3d models’ range data. Some images were scales to maintain a fixed scale. It 
was done by subtracting the mean and dividing by the standard deviation. The pa-
rameter r was set to 10% of standard deviation and m set to 2. The irregularity was 
estimated with equation 13. Figure 8 shows the irregularity estimated for both sets. 
It shows that the irregularity measure is highly sensitive to the irregularities in the 
contour. Determining if an anomaly is real or false is straightforward because the 
values are sufficiently separated. The midpoint of the range of separation is 3.1. 
The experimental threshold for classification was estimated in this value. 
 

 

 

Figure 8. Irregularity values of false (blues) and real anomalies (red). 

 
The irregularity could increase when increased the separation of the data. The me-
thod is highly sensitive to noise; small changes in the regularity of the contour 
show an equal increase in the estimation of entropy. This method can be used as 
an initial step in the process of correcting anomalies. We aim to complement the 
method with the filling process to propose an automatic robust method to correct 
anomalies.  
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The proposed method allows to estimate a metric for the automatic classification 
of anomalies in range images. The purpose of the method is to automate a process 
that has traditionally required user intervention. The method estimates the most re-
levant geometric characteristics of curves and surfaces to describe them.  
The anomalies used as the working set were mostly generated by occlusion.  
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