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Summary. Two of the most successful methods to generate unstructured hexahedral meshes
are the grid-based methods and the advancing front methods. On the one hand, the grid-based
methods generate high quality elements in the inner part of the domain using an inside-outside
approach. On the other hand, advancing front methods generate high quality hexahedra near
the boundary using an outside-inside approach. In this paper we propose the receding front
method, an original approach that combines the advantages of both methodologies: we use
an inside-outside mesh generation approach by means of a reversed front advance. We apply
this approach to mesh outer domains. To reproduce the shape of the boundaries, we first pre-
compute the mesh fronts by combining two solutions of the Eikonal equation on a tetrahedral
reference mesh. Then, to generate high quality elements, we expand the quadrilateral surface
mesh of the inner body towards the unmeshed external boundary using the pre-computed
fronts as a guide. Further research is under way in order to apply the proposed method to more
complicated geometries.
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1 Introduction

During the last two decades several general-purpose algorithms for fully automatic
hexahedral mesh generation have been proposed, see [1, 2, 3, 4, 5, 6] for a survey.
However, none of the existent algorithms is robust, automatic and generates high-
quality meshes for any initial geometry. There are two families of methods that al-
most fulfill all these requirements, the grid-based and the advancing front methods.
In fact, these approaches are the most successful methodologies to obtain a general-
purpose hex-meshing algorithm. Furthermore, the grid-based and advancing front
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methods have advantages and disadvantages that complement each other. Thus, we
can consider how to obtain a hexahedral meshing approach that presents only the
advantages, and avoids the disadvantages, of these two methods.

On the one hand, the grid-based methods [7, 8, 9, 10] are the only family of
robust and fully automatic hexahedral mesh generation algorithms. In addition, they
generate high-quality meshes in the inner part of the mesh. These advantages are
possible because the mesh is generated from inside-to-outside. However, the grid-
based methods generate low quality hexahedra near the boundary and the final mesh
depends on the spatial orientation of the domain. These drawbacks appear because
the inner mesh does not have layers of hexahedra that progressively adapt to the
boundary shape of the domain.

On the other hand, the advancing front methods [11, 12, 13] generate high-quality
meshes near the boundary (boundary sensitive) that do not depend on the orientation
of the object (orientation insensitive), see details on hex-meshing requirements in
[2]. This is possible because the elements are generated layer by layer following the
shape of the boundary surface. However, the advancing front methods are less ro-
bust and automatic. When the fronts are advanced, from the boundary to the inner
part, they collide and can delimit complex voids. Specifically, if the advancing front
method starts with a prescribed quadrilateral mesh of the boundary (constrained ap-
proach) [11] the resulting void is, in general terms, over-constrained and cannot be
meshed. On the contrary, the versions of the advancing front method that start with-
out a prescribed mesh of the boundary (unconstrained approach) [12, 13] can always
generate a hexahedral mesh for the void. To this end, usually the unconstrained meth-
ods [12, 13, 14, 15] use a tetrahedral mesh to generate a hexahedral one. However,
the quality of the mesh of the inner void is not guaranteed because it results from
splitting each tetrahedron in four hexahedra. These disadvantages at the inner part
are caused because the elements are generated from outside-to-inside. Note that also
there are constrained methods that directly transform a tetrahedral mesh into a hex-
dominant mesh [16, 17].

Summarizing, by generating elements from inside-to-outside we can avoid the
front collisions that lead to unmeshed voids or low-quality inner meshes. Moreover,
by generating the elements using fronts (layers of elements) we can obtain meshes
that reproduce properly the shape of the domain boundary. In this work we apply
these advantages to mesh outer domains. To this end, we propose:

e To generate layers of elements from inside-to-outside. Hence, we present the first
receding front method. That is, a reversed advancing front method.

e To pre-compute the fronts (or layers of hexahedra) combining two solutions of
the Eikonal equation. One solution determines the distance to the inner part and
the other the distance to the outer boundary. The level sets of the combination of
both solutions determine the fronts.

This work is clearly related to the grid-based and advancing front methods. How-
ever, the grid-based methods do not generate layers of hexahedra from inside-to-
outside that smoothly adapt to the boundary of the domain. In addition, the advancing
front methods do not start to generate layers of hexahedra from inside the domain. In
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this sense, the proposed approach is different to both methodologies. Furthermore,
we propose to pre-compute the fronts by solving the Eikonal equation. It is important
to point out that there are other mesh generation works that use the Eikonal equation.
In his seminar work, Sethian proposes a method to advance structured meshes by
solving the Eikonal equation [18]. Another front propagation method based on the
Eikonal equation is presented in [19]. In [20, 21], the authors show how to obtain
the medial axis transform (MAT) by means of the Eikonal equation. Nevertheless,
this is the first work were two solutions of the Eikonal equation are combined to
pre-compute the fronts and obtain an unstructured hexahedral mesh.

The remainder of the paper is organized as follows. First, we present a 2D mo-
tivation example in Section 2. According to this motivation, in Section 3 we detail
the receding front method. Specifically, we present how to pre-compute the fronts,
generate the meshes between the fronts and refine the resulting hexahedral fronts.
Finally, in Section 4 we present several example meshes that demonstrate the capa-
bilities of the first implementation of the receding front method.

2 2D Motivation

To illustrate and clarify the basis of the receding front method in 3D, we consider a
2D example. Specifically, we present a smooth domain with a three-branched skele-
ton to be meshed with quadrilateral (hexahedral) elements. With the help of this
domain we first review the main advantages and disadvantages of the grid-based
and advancing front methods. Then, we outline the proposed receding front method
which combines the advantages of both methods.

Given a domain, the grid-based methods first generate a quadrilateral (hexahe-
dral) mesh in the inner part of the domain, Fig. 1(a). Then, the remaining void be-
tween the inner mesh and the boundary, Fig. 1(b), has to be meshed. To this end,
several new nodes are created on the boundary. These nodes are connected with the
quadrilateral elements of the boundary of the inner mesh to form the last layer of
hexahedra, Fig. 1(c). Since the boundary of the inner mesh is not adapted to the
shape of the domain boundary, the last layer of hexahedra can present low quality
elements. We would like to remark that this approach is robust and can be applied to
general geometries to obtain meshes with high-quality elements in the inner part.

The advancing front methods generate layers of elements (fronts) that start at the
domain boundary and layer by layer reach (advance towards) the inner part of the
domain. At the last step, several elements that connect the fronts close the remaining
void. There are two families of advancing front methods: the constrained [11] and
the unconstrained approaches [12, 13].

The constrained approach generates a first layer of elements, Fig. 2(a), that
matches with a prescribed mesh of the boundary. Then, several layers of elements
are generated by merging and matching the elements that are in front of the last
layer, Fig. 2(b). Since the process starts with a prescribed mesh of the boundary
and advance inwards, the last voids in the inner part of the domain can be complex
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Fig. 1. Several steps of a grid-based method: (a) inner mesh; (b) void between boundary and
inner mesh; and (c) final mesh.
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Fig. 2. Several steps of a constrained advancing front method: (a) first front; (b) last front and
contours of the previous fronts; and (c) unmeshed void.
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Fig. 3. Several steps of an unconstrained advancing front method: (a) fronts and final void; (b)
simplicial mesh of the void; and (c) splitting simplicial mesh.

and over-constrained. Specifically, in the 3D case the advance can lead to remaining
voids that cannot be meshed, Fig. 2(c).

The unconstrained approach relaxes the hex-meshing problem by considering
that the domain boundary is not meshed. The meshing process starts at the boundary
and provides a decomposition of the domain in several layers, Fig. 3(a). The process
stops when the inner void can be discretized with a hex-meshing primitive. Since the
inner void results from successive offsets of the boundary, it can be as much difficult
to hex-mesh as the initial domain. Thus, there are configurations where the inner
void can not be meshed with a high-quality hex-meshing primitive. However, it is
always possible to generate a hexahedral mesh. To this end, this approach generates
a simplicial mesh of the unrecognized inner void, Fig. 3(b). The simplicial mesh can
always be split in quadrilateral (hexahedral) elements, Fig. 3(c). Then, the boundary
of this inner mesh is propagated through the layers to the boundary of the domain.
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Fig. 4. Pre-computing the fronts: (a) outer boundary and inner seed; (b) level sets from in-
side to outside; (c) level sets from outside to inside; and (d) combining inside-to-outside with
outside-to-inside level sets.

The quality of the inner elements is not guaranteed because they are originated by
a simplicial mesh. Moreover, the boundary of the inner mesh is propagated through
the domain to the boundary. Thus, the inner mesh determines the structure and the
quality of the inner part of the boundary curves (surfaces). It is important to point out
that the element quality close to the boundary features is ensured because it is a front
approach, except when the boundary has a very sharp dihedral angle. In addition,
this approach is fully automatic and provides high-quality meshes for a wide range
of geometries.

To combine the advantages of both the grid-based and the advancing front meth-
ods, herein we propose the receding front method. To apply this methodology we
require an initial mesh (seed) of the inner part of the domain, Fig. 4(a). Note that for
the specific case of meshing the outer domain of a given body the initial mesh is a
quadrilateral mesh of the body surface. This way, we can decouple the problem of
generating the inner seed from the front generation process. The fronts that determine
the layers of elements can be pre-computed. Specifically, we generate an offset of the
shape of the inner seed towards the boundary, Fig. 4(b), and an offset of the boundary
shape inwards, Fig. 4(c). These offsets are obtained as the level sets of two solutions
of the Eikonal equation, Section 3.1. One solution is related to the boundary of the
inner part and the other one to the outer boundary. To compute these solutions we
use an edge-based solver on a triangular (tetrahedral) mesh [22]. Then, we combine
both solutions to obtain a function of the domain that reproduces the inner shape in
the inner part and the boundary close to the outer part, Fig. 4(d). Then, the fronts are
obtained as the level sets of this function. Finally, these fronts can be used as a guide
to generate layers of elements starting from the inner seed and finishing in the outer
boundary, Fig. 5. To this end, we need to consider a set of templates that determine
how to offset the previous layer of elements to the new front, Section 3.2. Moreover,
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Fig. 5. Layers of elements for the receding front method: (a) first layer; (b) second layer; (c)
third layer; and (d) final layer.

we have to consider a set of refinement rules that ensure that the element size is not
surpassed. The resulting procedure generates layers of elements that progressively
morph from the shape of the inner seed to the shape of the outer boundary. More-
over, starting from the inner part we can avoid over-constrained or complex inner
voids.

3 The Receding Front Method

The receding front method is decomposed into two steps. First, we pre-compute a set
of fronts between the inner and the outer boundaries. Second, we expand the quadri-
lateral mesh of the inner boundary towards the unmeshed outer boundary according
to the pre-computed fronts.

3.1 Pre-computing the Fronts

Given a domain ~ C R", the Eikonal equation is the following non-linear partial
differential equation

[Vd| = fin
1
dur (eg= O; W
where f is a known function and || - || is the euclidean norm. To solve the Eikonal

equation, we first generate a tetrahedral mesh of the domain. Then, we obtain the
solution for that discretization by means of an edge-based solver [22].

Forf =1 the solution d is the distance from @ . For f = ﬁ the level sets of
the solution d follow the size field h(x) defined for each X € @ . In this work we
considerf =1.




































